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Particle collection by permeable drops
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The interaction of a small, solid particle with a nearby fluid droplet covered with a
thin, permeable membrane is considered for linear ambient flows under conditions where
viscous forces dominate. A bispherical-coordinate solution was developed to describe the
relative motion along and normal to the line-of-centers between the particle and drop. The
effect of the permeability of the drop membrane is relatively weak, except in near contact
where the lubrication pressure in the narrow gap between the particle and drop surfaces
can cause significant permeation of fluid across the membrane, as further described by a
lubrication analysis. These results were then used in a trajectory analysis to predict particle
collection rates by permeable drops in a dilute suspension undergoing uniaxial extensional
(or compressional) flow. Even a small amount of permeation allows for a large increase
in the particle collision rate with the drop interface. For example, the collision efficiency
(collision rate divided by that in the absence of hydrodynamic interactions) is 0.17 for
equisized particles and drops with a dimensionless permeability k/a = 0.0001 (where k is
the membrane permeability per unit thickness, and a is the reduced radius of the drop and
particle). In contrast, it is identically zero (due to the singular lubrication resistance) for
smooth, impermeable spheres in the absence of attractive molecular forces and fluid slip.
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I. INTRODUCTION

Aggregation of small solid particles suspended in a liquid is important in various biological
(e.g., cell flocculation) and industrial (e.g., coagulation to enhance sedimentation rates) processes.
Similarly, droplet coalescence is important in, for example, emulsion processing and raindrop
formation. Starting in the 1970s, particle aggregation in dilute suspensions undergoing simple shear
or another linear flow and accounting for hydrodynamic interactions was studied by Curtis and
Hocking [1], van de Ven and Mason [2], Zeichner and Schowalter [3], and Adler [4], among others.
Theoretical analyses of the collision rates of small particles at low Reynolds number are enabled
by the formalism of Batchelor and Green [5], who described the general form of the hydrodynamic
interaction between a pair of solid spheres in a linear flow field, including asymptotic expressions
for large and small separations. A key result is that molecular attractions, such as van der Waals
forces, are required to overcome the viscous lubrication resistance and bring the solid spheres into
contact (alternatively, a small amount of surface roughness or fluid slip may allow for contact).

Similar analyses of the coalescence of liquid drops suspended in an immiscible fluid were
subsequently performed. They account for the internal flow within the drops, as described using
the bispherical-coordinate solutions of Zinchenko [6] and Wang, Zinchenko, and Davis [7] for
the hydrodynamic interactions between equisized drops and between nonequal drops, respectively,
along with the lubrication theory developed by Davis, Schonberg, and Rallison [8] for drops in
close approach. The mobility of the drop interfaces weakens the lubrication singularity and allows
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for nonzero collision rates of spherical drops, even in the absence of attractive molecular forces.
However, the lubrication pressure in the narrowing gap between the approaching drops eventually
becomes large enough to cause deformation of the interfaces, which then prevents collisions
without attractive forces or other effects (such as a breakdown of the continuum equations when
the gap becomes comparable to the molecular spacing). The effect of slight deformation on drop
coalescence with attractive forces was described by Rother and Davis [9].

Of additional interest are particle collisions or collection in heterogeneous systems, such as
in the flotation of hydrophobic particles by air bubbles or the scavenging of soot particles from
the atmosphere by raindrops or snowflakes. In the present work, we consider the collection of
particles in a viscous fluid by droplets covered with thin, permeable membranes. The original
motivation for this study is a recent technology described by van Netten, Borrow, and Galvin [10],
in which hydrophobic particles are collected from a stirred aqueous suspension by a water-in-oil
binder composed of water droplets covered with permeable hydrophobic films. However, we take
a fundamental approach that may have applications in other fields, such as ones involving vesicles,
cells, or encapsulated liquids. Of relevance is the work of Davis [11], who considered flow due to
a porous sphere sedimenting toward a solid sphere or wall, for which a Brinkman-type flow within
the particle allows for contact under the action of finite force. Of further relevance is the motion of a
solid sphere toward (or away from) a flat, permeable surface, such as encountered during membrane
filtration of small particles [12–14]. Permeation of liquid through the membrane allows the particle
to collide with (or be removed from) the membrane at a nonzero velocity.

II. PROBLEM DESCRIPTION AND METHODS

We consider a solid, spherical particle of radius ap near a spherical drop of radius ad , immersed
in a viscous fluid at low Reynolds number, Re = ρUL/μ � 1, and large Péclet number, Pe =
UL/D � 1, where ρ and μ are the fluid density and viscosity, U is a characteristic flow velocity
(e.g., the shear rate times the drop or particle radius), D the relative Brownian diffusivity, and L is
a characteristic length scale (e.g., ad or ap). For shear rates of 100 s−1, drop and particle radii in
the approximate range between 1.0 and 100 microns meet these criteria. The particle and drop are
assumed force-free and torque-free, so that any gravitational effects are dominated by the imposed
flow. The drop is covered by a very thin film or membrane (moving as a rigid body), on which
the relative tangential velocity of the fluid is zero but for which the normal relative velocity is
proportional to the dynamic pressure drop across the membrane. The constant of proportionality
is k/μ, where k is the membrane permeability divided by its thickness (also called the membrane
permeance). Typical values of k for microfiltration membranes are of order 10−4 µm [15], so that the
dimensionless permeabilities, k/a, where a is the reduced radius, are expected to be on the order of
10−4–10−6 for reduced radii of 1.0 to 100 microns. Both the particle and drop are assumed to remain
spherical, without deformation. The internal fluid of the drop is assumed to have the same viscosity
as that of the external fluid, but this assumption is expected to have little bearing on the results,
as the permeation and internal flow are typically small. Additionally, the two fluids are assumed
essentially isotonic, with any higher osmotic pressure in the external fluid set to just balance any
capillary pressure inside the drop due to its interfacial tension. In the method described by van
Netten, Borrow, and Galvin [10], salt may be included in the internal phase, which drives osmotic
flow across the film into the drops, to enhance particle capture. This possibility is not included in the
present work, for which permeation is solely due to the hydrodynamic pressure difference between
the external and internal fluids.

Near the particle and drop, the undisturbed external flow is linear in position and thus may be
written in the general form

U = U0 + E · x + � × x, (1)

where U0 is the velocity at the origin and represents uniform flow, E is the rate-of-strain tensor and
represents pure straining motion, and � is the rotation vector and represents solid-body rotation. As
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FIG. 1. Coordinate system for the axisymmetric motion of a spherical particle relative to a spherical drop
centered at the origin.

described by Batchelor and Green [5], the relative velocity of a particle and drop in this flow field is

V pd (r ) = � × r + E · r −
[
A(s)

r r
r2

+ B(s)
(

I − r r
r2

)
· E · r

]
, (2)

in the absence of attractive or repulsive interactions and with negligible deformation and Brownian
motion. Here, r is the vector from the center of the drop to the center of the particle (see Fig. 1
for a schematic of the axisymmetric case), r = |r|, I is the unit second-order tensor, and A(s) and
B(s) are two-sphere mobility functions accounting for hydrodynamic interactions along and normal
to the line-of-centers, respectively. The mobility functions (see the subsequent section) depend on
the dimensionless separation, s = 2r/(ap + ad ), the size ratio λ = ap/ad , and the dimensionless
permeability, K∗ = k/a, where a = apad/(ap + ad ) is the reduced radius.

Our goal is to calculate the collision efficiency, and show how it depends on the size ratio,
λ, and, in particular, the dimensionless permeability, K∗. The collision efficiency is defined as
Epd = Jpd/J

0
pd , where Jpd is the collision rate with hydrodynamic interactions and J 0

pd is the
collision rate without interactions. For a dilute suspension, in which only pairwise interactions need
be considered, the collision rate (# collisions per volume per time) is equal to the flux of particles
(#/time) upstream of a drop that pass through a collision cross-section and so collide with the drop,
multiplied by the number of drops per volume [7]:

Jpd = −npnd

∫
Ac

(� × r + E · r ) · n ds, (3)

where np and nd are the number densities (#/volume) of particles and drops, respectively, and Ac

is an upstream interception surface (far enough from the drop that the particle moves with the
undisturbed fluid), with n the outward unit normal to the interception surface. All particles passing
through the interception area subsequently collide with the drop and are assumed to then adhere
and be collected by the drop. In the absence of interactions, the particle follows the undisturbed
streamlines and would be collected if the particle center passes within a distance ad + ap of the
location of the center of the drop. In what follows, we consider two common linear flows: uniaxial
extension/compression and simple shear.

A. Uniaxial extension/compression

For uniaxial extension or compression, U = (±γ̇ x1,±γ̇ x2,∓2γ̇ x3), with the upper sign for
extension and the lower sign for compression, Zeichner and Schowalter [3] showed in the absence
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of hydrodynamic interactions that

J 0
pd = 8π

3
√

3
npndγ̇ (ad + ap )3. (4)

When hydrodynamic interactions are included, a trajectory analysis is performed to determine if a
drop and a particle will come into contact. Using uniaxial extension/compression as an example,
Eq. (2) may be decomposed into the relative velocity components along and normal to the line-of-
centers. Dividing the former by the latter to eliminate time yields,

ds

dθ
= − (1 − A)s(3 cos2 θ − 1)

3(1 − B ) sin θ cos θ
. (5)

Note that the solid-body rotation, � × r , does not play a role in the two-sphere collisions, as it
does not change the relative separation distance. Following Wang, Zinchenko, and Davis [7], the
trajectory equation may be separated and integrated to yield

s3 sin2 θ cos θ = Cφ3(s), (6)

where C is a constant specifying a particular trajectory and

φ(s) = exp

[∫ ∞

s

(
A(s ′) − B(s ′)

1 − A(s ′)

)
ds ′

s ′

]
. (7)

Thus, only if |C| < Ccr = 16/[3
√

3φ3(2)] will the trajectory end in contact or capture, which
occurs at s = 2. The critical trajectories, having C = ±Ccr, graze the s = 2 contact surface at
θ = arctan(

√
2) and θ = π − arctan(

√
2), as shown in Fig. 2. Then, matching this critical trajectory

and constant C with the streamlines for a value of s large enough that hydrodynamic interactions
may be neglected, allows the collision cross-section (upstream interception surface) to be found.
The collision efficiency from Eqs. (3) and (4) is then

Epd = Jpd/J
0
pd = 1/φ3(2). (8)

For impermeable, rigid spheres, φ(2) = ∞, since A(s) → 1 as s → 2 due to strong lubrication
forces; thus, Epd = 0 for smooth, rigid spheres in the absence of molecular effects and attractive
forces. For permeable drops, we expect that the lubrication resistance to close approach of the
particle and drop surfaces will be reduced as fluid permeates into the drop, so that Epd > 0.

B. Simple Shear

For simple shear flow, U = (γ̇ x2, 0, 0), Smoluchowski [16] first showed that

J 0
pd = 4

3npndγ̇ (ad + ap )3, (9)

where γ̇ is the shear rate.
A trajectory analysis for simple shear flow with hydrodynamic interactions yields [9]

Epd = 1

8

[
4

φ2(2)
− ψ (2)

]
, (10)

where φ(s) is given by Eq. (7) and

ψ (s) =
∫ ∞

s

B(s ′)s ′ds ′

[1 − A(s ′)]φ2(s ′)
. (11)

As before, Epd = 0 for rigid, impermeable spheres, as φ2(2)ψ (2) = 4 in this case [17], again
due to strong lubrication interactions. For solid spheres, there are only open trajectories (starting
at upstream infinity and ending at downstream infinity) and closed trajectories (in which the two
spheres orbit around each other), with no trajectories ending in contact.
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FIG. 2. Example trajectories for ap/ad = 0.25 and k/a = 0.0001 in uniaxial extension. The limiting or
grazing trajectory is shown with the particle at its ends; only those trajectories inside the limiting trajectory
end in contact. The trajectories are symmetric about the x3 axis, and all lengths are nondimensionalized using
the drop radius.

In what follows, mobility functions for a solid particle interacting with a permeable drop are
determined, with a particular focus on the near-contact interaction and the reduction in lubrication
resistance due to permeation. The resulting mobility functions are then used in Eqs. (7) and (8) or,
equivalently, backwards integration of Eq. (5) from the grazing point, to determine the collision
efficiency with permeable drops in uniaxial extension or compression.

III. MOBILITY FUNCTIONS

The mobility functions, A(s) and B(s), quantify the effects of hydrodynamic interactions on
the relative motion of two spheres in a linear flow. Following prior work for two solid spheres [5]
and two liquid spheres [6,7], arbitrary separations are analyzed using expansions in bispherical
coordinates, while the limits of large and small separations are described by the method of
reflections and lubrication theory, respectively.

A drop and a particle freely suspended in a linear flow acquire translational velocities V d and V p,
respectively, of their centers. The solid particle additionally acquires rigid-body rotation about its
center with angular velocity ωp. Likewise, the permeable but rigid membrane covering the spherical
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drop surface is in rigid-body motion with angular velocity ωd about the drop center; this rigid-body
motion should not be confused with the more complex fluid flow inside the drop. The Reynolds
number is assumed small, so that the Stokes equations govern the flow:

∇ · v = 0, ∇p = μ∇2v, (12)

where v is the fluid velocity and p is the dynamic pressure (with hydrostatic pressure subtracted
out). The fluid viscosity μ is the same inside and outside the drop, so that Eq. (12) applies for both
phases. Far from the drop and particle, the fluid velocity is v(x) = v∞(x), where v∞ is the imposed
far-field flow and x is the position vector. On the particle surface, the standard no-slip condition
applies:

v(x) = V p + ωp × (x − xp ), |x − xp| = ap, (13)

where xp is the instantaneous location of the particle center. On the membrane surface, there is
no-slip, plus a normal velocity proportional to the pressure drop:

v(x) = V d + ωd × (x − xd ) − k

μ
[pe(x) − pi (x)]n, |x − xd | = ad, (14)

where the subscripts e and i refer to the external and internal fluids, respectively, n = (x − xp )/ad

is the outward unit normal, and xd is the instantaneous location of the center of the drop (which,
without loss of generality, is set to zero with the drop centered at the origin). Note that Eq. (14)
applies to both the internal and external fluid and that the membrane thickness is assumed to be very
small compared to the drop radius.

A. Arbitrary separations

Following the usual approach for two-sphere problems, we first determine the hydrodynamic
forces and torques (about the centers) acting on the particle and drop in the resistance formulation,
i.e., with prescribed velocities V p, V d ,ωp,ωd in a linear flow field v∞(x). The zero-force and
zero-torque conditions allow us then to relate these velocities to v∞(x) and hence calculate the
mobilities A and B in Eq. (2). The resistance coefficients relating forces and torques to prescribed
particle/drop kinematics in a quiescent liquid can be also extracted from the solutions below; these
coefficients would be essential when describing the particle and drop motion in the presence of
external forces (such as gravity or interparticle attraction). However, such generality was not pursued
in the present work.

Let (x, y, z) be a Cartesian coordinate system with the z axis along the centerline from the drop
to the particle; the origin is chosen in the gap region as detailed below. Let (ρ, θ, z) be associated
cylindrical coordinates (x = ρ cos θ, y = ρ sin θ ), with the azimuthal angle θ of positive rotation
about the z axis. Determining the mobilities A and B is reduced to solving two problems.

Problem 1. v∞(x) = (−E33x/2,−E33y/2, E33z). Under the action of this axisymmetrical
straining flow, the particle and drop centers acquire the velocities (0, 0, Vp ) and (0, 0, Vd ). The
solution using (2) gives A = 1 − (Vp − Vd )/(rE33).

Problem 2. v∞(x) = (Gz, 0, 0). In this simple shear flow, the particle and drop centers acquire
the velocities (Vp, 0, 0) and (Vd, 0, 0). This flow also generates the rotational velocities (0, ωp, 0)
and (0, ωd, 0) for the particle and drop membrane motion about the centers. The solution using
Eq. (2) gives B = 2[1 − (Vp − Vd )/(Gr )].

Both problems are solved in bispherical coordinates ξ, η introduced as follows:

z = c sinh η

cosh η − ν
, ρ = c sin ξ

cosh η − ν
, ν = cos ξ, 0 < ξ � π, −∞ < η < ∞. (15)

The particle and drop shapes become coordinate surfaces η = ηp and η = ηd , respectively, if the
parameters ηp > 0, ηd < 0 and c > 0 are determined from the relations

r = ap cosh ηp + ad cosh ηd, | sinh ηd | = λ sinh ηp, c = ap sinh ηp = ad | sinh ηd | (16)

(see Wang, Zinchenko, and Davis [7] for explicit expressions).
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Solution of Problem 1. For this axisymmetrical case, the stream-function approach of Goren
[12] could be potentially used. However, in his work on the solid sphere motion toward/away
from a plane porous membrane in a quiescent liquid, many simplifications arose in the bispherical-
coordinate solution due to η = 0 on the permeable surface. Accordingly, his problem could be
reduced to a single, fourth-order difference equation for the coefficients in the series expansion.
Due to ηd �= 0, the stream-function approach would be much harder to apply in the present
work. Instead, a more straightforward (but still efficient) flow representation in primitive variables
(velocity-pressure) is chosen herein, based on the general Stokes flow series solution in bispherical
coordinates derived by Lin, Lee, and Sather [18]. As follows from their work, the axisymmetrical
form for the velocity components vρ, vz and pressure p between the spheres (ηd < η < ηp ) and
inside the drop (η < ηp ) can be sought as

vρ = ρ

c
F + �, vz = z

c
F + �, p = μ

2F

c
, (17)

with series expansions

F = ζ

∞∑
n=0

fn(η)Pn(ν), � = ζ

∞∑
n=1

ϕn(η) sin ξP ′
n(ν), � = ζ

∞∑
n=0

ψn(η)Pn(ν). (18)

Here, ζ = (cosh η − ν)1/2 and Pn(ν) is the Legendre polynomial of degree n. In the region between
the spheres (marked by index e in what follows),

ϕe
n(η) = Ae

n exp[(n + 1/2)(η − ηp )] + Be
n exp[(n + 1/2)(ηd − η)] + ϕ∞

n (η),

f e
n (η) = Ce

n exp[(n + 1/2)(η − ηp )] + De
n exp[(n + 1/2)(ηd − η)],

ψe
n (η) = Ee

n exp[(n + 1/2)(η − ηp )] + Fe
n exp[(n + 1/2)(ηd − η)] + ψ∞

n (η), (19)

where Ae
n . . . F e

n are unknown coefficients, and

ϕ∞
n (η) = − E33c

√
2 exp[−(n + 1/2)|η|],

ψ∞
n (η) = ± E33c

√
2(2n + 1) exp[−(n + 1/2)|η|]. (20)

The terms with ηp and ηd are introduced into Eq. (16) for normalization purposes. The upper sign
in Eq. (20) applies for η > 0, the lower sign for η < 0. The contribution of ϕ∞

n (η) and ψ∞
n (η) to the

fluid velocities Eq. (17) is to produce the unperturbed flow field v∞(x); the additional contribution
due to the coefficients Ae

n . . . F e
n generates the velocity perturbation vanishing at x → ∞.

Because of the bispherical-coordinate singularity η = −∞ inside the drop (at the pole z =
−c, ρ = 0), only the terms proportional to exp[(n + 1/2)η] are left in the expressions for the
internal flow field:

ϕi
n(η) = Ai

n exp[(n + 1/2)(η − ηp )] + ϕ∞
n (η),

f i
n (η) = Ci

n exp[(n + 1/2)(η − ηp )],

ψi
n(η) = Ei

n exp[(n + 1/2)(η − ηp )] + ψ∞
n (η), (21)

with unknown coefficients Ai
n, Ci

n and Ei
n; index i marks the values for the flow inside the drop.

Equations (17)–(21) produce flows automatically satisfying the Stokes equation μ∇2v = ∇p, but
the continuity equation ∇ · v = 0 between the spheres and inside the drop requires

5Ce
n − neηpCe

n−1 + (n + 1)e−ηpCe
n+1 + n(n − 1)eηpAe

n−1 + (n + 1)(n + 2)e−ηpAe
n+1

− 2n(n + 1)Ae
n + (2n + 1)Ee

n − neηpEe
n−1 − (n + 1)e−ηpEe

n+1 = 0, (22)

5De
n − ne−ηd De

n−1 + (n + 1)eηd De
n+1 + n(n − 1)e−ηd Be

n−1 + (n + 1)(n + 2)eηd Be
n+1

− 2n(n + 1)Be
n − (2n + 1)Fe

n + ne−ηd F e
n−1 + (n + 1)eηd F e

n+1 = 0, (23)
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5Ci
n − neηpCi

n−1 + (n + 1)e−ηpCi
n+1 + n(n − 1)eηpAi

n−1 + (n + 1)(n + 2)e−ηpAi
n+1

− 2n(n + 1)Ai
n + (2n + 1)Ei

n − neηpEi
n−1 − (n + 1)e−ηpEi

n+1 = 0, (24)

for all n � 0.
Using recurrent relations between Legendre functions, the fluid velocity continuity ve = vi on

the drop surface yields

ϕi
n(ηd ) − ϕe

n(ηd ) = 1

sinh ηd

(
Zn−1

2n − 1
− Zn+1

2n + 3

)
, n � 1, (25)

and

�fn = 1

sinh ηd

[
nZn−1

2n − 1
+ (n + 1)Zn+1

2n + 3
− Zn cosh ηd

]
, n � 0, (26)

where, for brevity,

Zn = ψi
n(ηd ) − ψe

n (ηd ), �fn = f i
n (ηd ) − f e

n (ηd ). (27)

Based on Eqs. (19), (21), and (25)–(27), the internal coefficients Ai
n, Ci

n, Ei
n can be expressed via

the external Ae
n . . . F e

n coefficients and Zm(n − 1 � m � n + 1). Substituting such expressions into
Eq. (24) and combining the result with Eq. (22) replaces the continuity equation for the internal flow
by a more manageable form:

5De
n − neηd De

n−1 + (n + 1)e−ηd De
n+1 + n(n − 1)eηd Be

n−1 + (n + 1)(n + 2)e−ηd Be
n+1

− 2n(n + 1)Be
n + (2n + 1)Fe

n − neηd F e
n−1 − (n + 1)e−ηd F e

n+1

+ 2

sinh ηd

[
nZn−1

2n − 1
+ (n + 1)Zn+1

2n + 3
−

(
cosh ηd + sinh ηd

2n + 1

)
Zn

]
= 0, (28)

where the internal flow coefficients are present only through Zm.
To implement the remaining boundary conditions on the drop surface, consider the relative fluid

velocity ṽd = ve − V d of the carrier fluid near the sphere η = ηd . This velocity is still represented
by Eqs. (17)–(20), with ψe

n (η) replaced by

ψ̃d
n (η) = ψe

n (η) − Vd

√
2 exp[(n + 1/2)η]. (29)

The boundary condition of zero tangential relative velocity ṽd
ξ = 0 yields

f e
n+1 cosh η + ψ̃d

n+1 sinh η

2n + 3
− f e

n−1 cosh η + ψ̃d
n−1 sinh η

2n − 1

+ cosh η

[
(n − 1)ϕe

n−1

2n − 1
+ (n + 2)ϕe

n+1

2n + 3

]
− ϕe

n = 0, (30)

at η = ηd, n � 1.
The final boundary condition on the drop surface connects the relative normal fluid velocity

in the outward normal direction to the pressure jump across the interface, which can be written as
ṽd

η = 2γ [F i − Fe] (with γ = k/c). After some algebra using Eqs. (15), (17), and (18) and recurrent
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relations between Legendre functions, this condition results in

ψ̃d
n − n

2n − 1

[
f e

n−1 sinh η + ψ̃d
n−1 cosh η

] − n + 1

2n + 3

[
f e

n+1 sinh η + ψ̃d
n+1 cosh η

]
+ sinh η

[
n(n − 1)ϕe

n−1

2n − 1
− (n + 1)(n + 2)ϕe

n+1

2n + 3

]
= 2γ

[
�fn cosh η − n

2n − 1
�fn−1 − n + 1

2n + 3
�fn+1

]
(31)

at η = ηd, n � 0.
Near the solid particle surface η = ηp, it is again convenient to introduce the relative fluid

velocity ṽp = ve − V p. This velocity is still represented by Eqs. (17)–(20), with ψe
n (η) replaced

by

ψ̃p
n (η) = ψe

n (η) − Vp

√
2 exp[−(n + 1/2)η]. (32)

The no-slip boundary condition ṽp = 0 yields two final equations:

ϕe
n + 1

sinh η

(
ψ̃

p

n+1

2n + 3
− ψ̃

p

n−1

2n − 1

)
= 0 at η = ηp, n � 1 (33)

and

f e
n + 1

sinh η

[
ψ̃p

n cosh η − nψ̃
p

n−1

2n − 1
− (n + 1)ψ̃p

n+1

2n + 3

]
= 0 at η = ηp, n � 0. (34)

Relations Eqs. (22), (23), (26), (28), (30), (32), (33), and(34), complemented by the definitions
Eqs. (19), (20), (29), and (32), present a compact form of eight difference equations for the solution
vector Xn = (Ae

n, B
e
n, C

e
n,D

e
n, Ee

n, F
e
n , Zn,�fn). Moving the inhomogeneous terms to the right-

hand side, these equations can be written in a general form as

αn Xn−1 + βn Xn+1 + γ n Xn+1 = Vp g1
n + Vd g2

n + E33 g3
n, (35)

for n � 1; the vectors g1
n, g2

n, g3
n represent three different cases when the flow is due to particle/drop

translation in a quiescent liquid, or due to the ambient flow with the drop and particle at rest. At
n = 0, Eqs. (30) and (33) are not applicable and are replaced by Be

0 = 0 and Ae
0 = 0, respectively,

which extends the system (35) to n = 0, thus allowing one to start the forward sweep of the Thomas
algorithm for Eq. (35). The regularity condition Xn → 0 (at n → ∞) then selects the unique
solution of Eq. (35) by backward substitutions.

The hydrodynamic forces acting on the particle (Fp) and drop (Fd ) along the z axis are

Fp = −8πμc
√

2
∞∑

n=0

Ee
n exp[−(n + 1/2)ηp], Fd = −8πμc

√
2

∞∑
n=0

Fe
n exp[(n + 1/2)ηd ]. (36)

It is very convenient that the forces Eq. (36) can be computed without knowing the solution vector
Xn. Namely, the forward sweep for system Eq. (35) from n = 0 allows us to express the partial
sums (35) to n = N as QN XN + RN , with recurrent calculation of matrices QN and vectors RN .
As N → ∞, QN XN does not contribute, and so the forces are simply computed as limN→∞ RN .
This approach (first used by Zinchenko [19]) also provides automatic convergence control for
bispherical-coordinate series solutions, which is especially beneficial at small surface separations
when many terms in the series may be required.

When k = 0, the present algorithm has been tested at arbitrary separations, with perfect
agreement, against known bispherical-coordinate solutions for two impermeable spheres moving
along the line-of-centers, including calculation of the resistance coefficients (Cooley and O’Neill
[20]) and the A(s)-mobility function (Lin, Lee, and Sather [18]). For finite drop permeabilities and
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TABLE I. Stokes drag correction factor for a solid particle approaching a porous membrane-covered drop
along the line of centers for k/ap = 0.1 and extreme size ratios λ = ap/ad .

h/ap λ = 0.1 λ = 0.01 λ = 0.001 λ = 0 [12]

2 1.420 1.488 1.496 1.496
1 1.768 1.851 1.860 1.859
0.5 2.213 2.296 2.305 2.302
0.1 2.853 2.895 2.900 2.890

the drop-particle distance r → ∞, perfect agreement was observed with the analytical formula for
the hydrodynamical force on an isolated drop:

Fd = −6πμadVd

10(k/ad ) + 1

10.5(k/ad ) + 1
. (37)

The force on a solid particle moving towards a planar permeable membrane with a prescribed
velocity (the problem solved by Goren [12]) can be also approached by the present algorithm as an
extreme case when the size ratio λ = ap/ad → 0 with fixed surface clearance h relative to ap and
fixed k/ap. In Table I, the correction factor to Stokes drag is shown for k/ap = 0.1 (corresponding
to Goren’s parameter γ r = 10), different values of h/ap, and several small values of λ. The results
for λ = 0.1, 0.01, and 0.001 were obtained in the present work; the λ = 0 data are from Goren [12];
as λ → 0, excellent agreement is observed. The present algorithm is not directly applicable at λ = 0
and would eventually become ill-conditioned in this limit.

Excellent agreement was also observed between our numerical values of the mobility function
A(s) and the far-field asymptotic form (see Eq. (42) below) when s → ∞; surface separation of just
a few particle/drop radii is sufficient to make Eq. (42) a very accurate approximation.

Solution of Problem 2. For this nonaxisymmetrical problem, our bispherical-coordinate solution
is based on Dean-O’Neill’s flow representation (which was widely used in prior work to handle two
particle motions/rotations normal to the centerline [21]):

vρ =
(ρ

c
F + χ + ψ

)
cos θ, vθ = (χ − ψ ) sin θ, vz =

(z

c
F + 2�

)
cos θ, p = μ

2F

c
cos θ,

(38)

with the series expansions

F = ζ

∞∑
n=1

fn(η)P 1
n (ν), � = ζ

∞∑
n=1

ϕn(η)P 1
n (ν),

ψ = ζ

∞∑
n=0

ψn(η)Pn(ν), χ = ζ

∞∑
n=2

χn(η)P 2
n (ν). (39)

Here, P m
n (ν) = (1 − ν2)m/2dmPn(ν)/dνm is the associated Legendre function. The expressions for

fn(η), ϕn(η), ψn(η) and χn(η) between the spheres and inside the drop are analogous to those
in Eqs. (16) and (18) with new coefficients An,Bn etc., and ambient-flow representation slightly
different from Eq. (17). Additional Gn and Hn coefficients represent the χ -functions. The continuity
equations between the spheres and inside the drop, and boundary conditions on the drop and particle
surfaces are reduced to the tridiagonal system of equations of the type Eq. (32) for an extended
solution vector Xn (which now includes ten unknown sequences of coefficients). The details are
cumbersome and outlined in the Appendix. As in the solution of Problem 1, the hydrodynamical
forces and torques are conveniently computed as convergent recurrent sequences (at N → ∞)
generated on the forward sweep of the Thomas algorithm; backward substitutions to obtain Xn

are not required.
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In Problem 2, the effect of drop membrane permeability on the mobility B (and underlying
resistance coefficients) was found to be quite weak, even at small surface separations. This result
is most likely due to assumed high anisotropy of the porous membrane material covering the
drop surface, which allows filtration in the normal direction only and has no slip in the tangential
direction.

B. Far-field expressions

In the case of two solid spheres, far-field expressions for the mobility functions A and B were
derived by Batchelor and Green [5], based on the solution for a single sphere freely suspended in a
linear flow, and the Faxen law. The present case, however, is more difficult for far-field analysis.
First, the pressure and velocity disturbances due to a single drop of radius ad covered with a
permeable membrane have more complex forms:

p(r ) = −5κa3
d

n · E · n
r3

(40)

and

û(r ) = −5

2
κa3

d

(n · E · n)n
r2

+ a5
d

r4

[
−E · n + 5

2
(n · E · n)n

]
, (41)

as for impermeable spheres, where r is the radius vector from the sphere center to the observation
point, n = r/r , but with the introduction of an additional parameter:

κ = 21(k/ad ) + 2

25(k/ad ) + 2
= 21λK∗/(1 + λ) + 2

25λK∗/(1 + λ) + 2
. (42)

Second, the classical Faxen law for a solid sphere freely suspended in an unbounded (generally,
nonlinear) Stokes flow is not applicable to a drop covered by a porous membrane and must be
replaced by

U = u0 + 1
6a2

dη(∇2u)0, (43)

with

η = 12(k/ad ) + 1

10(k/ad ) + 1
= 12λK∗/(1 + λ) + 1

10λK∗/(1 + λ) + 1
. (44)

Here, U is the drop center velocity acquired in the ambient flow u; index 0 denotes the values of
u and its Laplacian calculated at the drop center, in the absence of the drop. A straightforward
(although lengthy) way to derive Eqs. (37)–(41) is to use Lamb’s general form for Stokes flow
solutions outside and inside the drop.

In other respects, derivation of far-field forms for the mobility functions follows Batchelor and
Green [5], resulting in

A = 20
(κ + λ3)

(1 + λ)3

1

s3
− 16[3(1 + λ5) + 5λ2(κ + λη)]

(1 + λ)5

1

s5
+ O

(
1

s6

)
(45)

and

B = 32[1 + λ5 + 5λ2(κ + λη)/3]

(1 + λ)5

1

s5
+ O

(
1

s8

)
. (46)

For an impermeable drop (K∗ = 0, κ = η = 1), Eqs. (42) and (43) agree with Batchelor and
Green [5].
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C. Near-field expressions

When the two spheres are in close contact, lubrication theory may be used to determine the
relative mobility function along the line-of-centers, A(s), except for moderate and large values of
K∗, when the lubrication resistance becomes too small due to permeation. When in near contact, the
two spheres are pushed together by the imposed linear flow and experience a contact force [9]. For
uniaxial extensional flow, the component of the contact force acting along the line-of-centers is [9]

Fc = −6πμa2γ̇
(1 + λ)2

λ
C1(3 cos2 θ − 1), (47)

where C1 is the limiting value of (1 − A(s))/G(s) as s → 2, and G(s) is the mobility function along
the line-of-centers under the action of an equal and opposite force on the two spheres, as defined by
Batchelor and Green [5]. The sign is reversed for compressional flow, and a similar expression holds
for shear flow - except the angular dependence on the right-hand-side of Eq. (47) is modified [9].
Note that the constant C1 = [1 − A(s)]/G(s) in the contact limit s → 2 has an O(1) value, even
though both 1 − A and G → 0 in this limit for rigid spheres.

The contact force pushing the spheres together is balanced by a lubrication force resisting their
relative approach:

FL = 6πμa2Vpdf (Pm)/h0, (48)

where Vpd is the relative velocity of the particle toward the drop along the line-of-centers, h0

is the gap thickness separating the surfaces of the drop and particle at their noses (i.e., at the
line-of-centers), and Pm = ak/h2

0 = K∗(a/h0)2 is a modified dimensionless permeability. The
function f (Pm) is the ratio of the lubrication force with permeation to that for solid spheres
without permeation. It becomes unity as Pm → 0 (rigid, impermeable spheres) and tends to zero as
Pm → ∞ (large permeation), as described below. Balancing the two forces yields

Vpd = h0γ̇ (1 + λ)2

λf (Pm)
C1(3 cos2 θ − 1). (49)

Then, using Eq. (2) for the relative velocity and taking the component inward along the line-of-
centers,

Vpd = −V pd · r/r = [1 − A(s)](r/r ) · E · r. (50)

Noting that E · r = (γ̇ x1, γ̇ x2,−2γ̇ x3) for uniaxial extension, and setting r ≈ ad + ap for near
contact, equating these two expressions for Vpd then yields

1 − A(s) = C1(s − 2)(1 + λ)2

2λf (Pm)
(51)

for s − 2 � 1. An identical result is achieved for shear flow and more general linear flows. However,
this analysis applies only for K∗ � 1, since larger values of K∗ allow for the imposed flow to push
the spheres together without a lubrication resistance. This feature is further discussed and quantified
later in the paper.

Lubrication theory for the similar problem of a sphere moving toward (or away from) a flat,
permeable membrane under the action of a finite force was described by Ramon et al. [14]. Here,
we outline the approach for the present problem with a goal of determining the dimensionless
lubrication force function, f (Pm), and showing how it may be deduced from the results of Ramon
et al. [14]. A close-up of the lubrication region is shown schematically in Fig. 3. The spherical
surfaces of the particle and drop may be approximated by paraboloids in the region of near contact:

zp = h0 + r2/2ap, zd = −r2/2ad, (52)
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FIG. 3. Schematic of the lubrication region of close contact between a particle and a membrane-covered
drop.

where h0 is the minimum separation and it is assumed that neither surface is deformed by the
lubrication pressure. Then, the gap profile is

h(r, t ) = zp − zd = h0 + r2/2a, (53)

with a = apad/(ap + ad ) the reduced radius.
When ρVpdh0/μ � 1 and h0/a � 1, the radial component of the Navier-Stokes equation

reduces to

∂2vr

∂z2
= 1

μ

dp

dr
, (54)

which can be integrated twice to give locally parabolic flow:

vr (r, z) = 1

2μ

dp

dr
(z − zp )(z − zd ), (55)

using the boundary conditions of no tangential velocity on both surfaces and noting that the dynamic
pressure is a function of r but not z from the axial component of the Navier-Stokes equation. The
equation of continuity is then integrated across the gap to yield

Vpd − k

μ
p = − 1

12μr

d

dr

[
rh3 dpd

dr

]
, (56)

using the boundary conditions Vz = −Vpd on the particle surface and Vz = −kp/μ on the drop
surface (it is presumed that p ≈ 0 inside the drop, as the flow is relatively weak inside) for K∗ � 1.

The appropriate length scales are h0 and
√

ah0 in the axial and radial directions, respectively,
and the pressure scale is μaVpd/h2

0. Equation (54) is then nondimensionalized using these
scales, resulting in an equation equivalent to that given by Ramon et al. [14] and containing the
dimensionless permeability Pm = ak/h2

0, where Pm = β/24 from their notation. For Pm � 1, as
may be expected during the initial stages of close approach when h0 is not so small and permeation
is weak (kpd/μ � Vpd ), yielding the classical solution for solid spheres:

p0
d (r ) = 3μaVpd/(h0 + r2/2a)2 for Pm → 0. (57)

This result may be integrated over the lubrication area to give the lubrication force

F 0
L = 2π

∫ ∞

0
p0

d (r )rdr = 6πμa2Vpd/h0, (58)

where the upper limit of r = O(a) is replaced by ∞, since r scales as
√

ah0 in the gap and pd (r )
decays to zero for r � √

ah0. The superscript “0” in Eqs. (57) and (58) refers to the leading-order
solution for impermeable, solid spheres. Ramon et al. [14] showed that a series solution with
additional terms may be found for small modified permeability:

f (Pm) = 1 − Pm + 3
2 Pm2 + O(Pm3), Pm � 1, (59)
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where f (Pm) = FL(Pm)/F 0
L and the lubrication pressure with permeation is

FL ≈ 2π

∫ ∞

0
pd (r )rdr, (60)

with pd (r ) the numerical or asymptotic solution of Eq. (56).
In the opposite limit of Pm � 1, as would be expected as contact is approached, the permeation is

large and so the pressure is relatively small, scaling as pd ∼ μVpd/k → 0 as Pm → ∞. A matched-
asymptotic expansion is then needed to determine the form of pd (r ) for small but nonzero Pm−1 =
h2

0/(ak) and, hence, the lubrication force [14]:

f (Pm) =
√

2

3
Pm−1/2 − 1

4
Pm−1 +

√
3

96
√

2
Pm−3/2 + O(Pm−2), Pm � 1. (61)

The leading term, which dominates in the limit of the solid sphere touching the membrane, was
also found numerically by Goren [12] and verified by Nir [13]. Of practical significance is that the
lubrication force remains finite as contact occurs, so that the spheres make contact with a finite
velocity due to the permeation. Combining Eq. (48) with the leading term of Eq. (61), along with
the definition Pm = K∗(a/h0)2, gives

FL = 6πμaVpd

(
2

3K∗

)1/2

as h0/a → 0. (62)

Of particular interest for the current application, the relative mobility along the line-of-centers from
Eq. (48) becomes

1 − A(s) = C1(3K∗/2)1/2 for s → 2, (63)

thus reaching a constant value (albeit small for typical K∗ � 1) as contact is approached. It is
anticipated that these expressions will be accurate only for K∗ � O(10−3), so that (2/(3K∗))−1/2 �
1 and there is an appreciable lubrication resistance to the hydrodynamic forces acting on the rest of
the sphere surfaces to push them together.

The mobility function for relative motion normal to the line-of-centers, B(s), approaches a
nonzero constant of O(1) as the spheres touch, even in the absence of permeation. The rate of
approach to this constant as the gap becomes small is slow [5]:

B(s) ∼ B0 + B1

ln[1/(s − 2)]
+ O

(
1

{ln[1/(s − 2)]}2

)
. (64)

The constants B0 and B1 are functions of the size ratio, λ = ap/ad . As seen in the Results and
Discussion section, they are also weak functions of the dimensionless permeability, K∗ = k/a.

IV. RESULTS AND DISCUSSION

A. Mobility Functions

Figure 4 shows the relative mobility function along the line-of-centers, plotted as 1 − A(s)
versus the dimensionless separation s − 2 for size ratios λ = 1 and 1/2 and several values of the
dimensionless permeability. A log-log plot is used to emphasize the behavior at small separations.
Note that 1 − A(s) is the dimensionless relative velocity of the two spheres toward each other,
with A(s) accounting for the hydrodynamic interactions that reduce the relative velocity from that
of the undisturbed flow. For s − 2 � 1, the far-field expression given by Eq. (45) is an accurate
representations of the numerical results, and there is only a small effect of permeation. The effect of
permeation on the mobility remains small for separations s − 2 � 3(K∗)1/2, with K∗ � 1.

When s − 2 � 3(K∗)1/2, permeation becomes important. The 1 − A values for K∗ > 0 then
level out and reach a constant value 1 − A0 as the dimensionless gap, s − 2, becomes small, in
contrast to the impermeable case, K∗ = 0, for which 1 − A continues to decrease in proportion to
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FIG. 4. Mobility function along the line-of-centers for a spherical solid particle approaching a spherical
permeable drop due to a linear flow field. The solid curves are numerical results using bispherical coordinates,
the dashed curves are the far-field results for impermeable spheres using Eq. (45), and the dotted lines are the
near-field results using Eq. (51) for K∗ � 1.

s − 2 as the gap becomes small. The asymptotic prediction of Eq. (63) for touching is in excellent
agreement with the numerical results for 1 − A0 when K∗ � 10−3 (as is typically expected in
practice), but then begins to deviate for larger dimensionless permeabilities because there is no
longer a significant lubrication resistance to close approach, as required by Eq. (51) and, hence,
Eq. (63).

The quantity C1 introduced in Eq. (47) is the ratio of the relative mobility due to an external
flow pushing two nearly touching spheres together to that when the spheres are pulled together by
an equal and opposite force. Table II shows C1 to be a strong function of the size ratio but only
a weak function of the permeability. The latter is because permeation has the same effect on the
near-contact lubrication force in the two cases, but a slightly different effect on the hydrodynamic
forces on the sphere surfaces away from the lubrication region. In contrast, the numerical values of
1 − A0 in Table II show a strong dependence on the permeability, as expected from Eq. (63). Note
that the mobility functions for the impermeable case are unchanged when λ is replaced by 1/λ (due
to a simple relabeling of the two spheres), but not when permeation is present for only one sphere.
The difference is small, however, for K∗ � 1. The function f (Pm), also required for the near-field
Eqs. (51) and (63), is the ratio of the lubrication force with permeation to that without permeation. It
is determined by numerical solution of the dimensionless form of Eq. (55), via superposition of two
initial-value problems, with the results shown in Fig. 5 and also as the inset to Fig. 3 of Ramon et al.
[14]. Remarkably, the asymptotic expansions of Ramon et al. [14] for Pm � 1 and Pm � 1 nearly
overlap, thus almost covering the full range of modified permeabilities, Pm = ak/h2

0. In particular,
(59) is accurate within 2% for Pm < 0.2 and Eq. (61) is accurate within 2% for Pm > 0.6.

Figure 6 shows the relative mobility function normal to the line-of-centers, plotted as 1 − B(s)
versus s − 2 for different radius ratios and permeabilities. The far-fields expansions are again
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TABLE II. Numerical values of the constants use in near-field expressions for the two-sphere relative
mobility functions in linear flows.

λ K∗ C1 1 − A0 C1(3K∗/2)1/2 B0 B1

0.25 0 0.7125 0 0 0.809 −1.60
0.25 10−6 0.7126 0.00087 0.00087 0.705 −0.73
0.25 10−5 0.7128 0.00273 0.00276 0.685 −0.675
0.25 10−4 0.7136 0.00852 0.00874 0.6622 −0.624
0.25 10−3 0.7162 0.02596 0.02774 0.6345 −0.585
0.25 0.01 0.7260 0.07522 0.08892 0.6055 −0.560
0.25 0.10 0.7697 0.1941 0.29810 0.5769 −0.525

0.5 0 1.518 0 0 0.549 −1.16
0.5 10−6 1.518 0.00185 0.00186 0.5033 −0.789
0.5 10−5 1.517 0.00580 0.00588 0.4938 −0.755
0.5 10−4 1.517 0.01793 0.01858 0.4832 −0.726
0.5 10−3 1.515 0.05341 0.05868 0.4707 −0.695
0.5 0.01 1.511 0.1459 0.1851 0.4576 −0.671
0.5 0.10 1.506 0.3252 0.5833 0.4481 −0.657

0.75 0 1.933 0 0 0.4197 −0.772
0.75 10−6 1.933 0.00236 0.00237 0.4145 −0.735
0.75 10−5 1.933 0.00738 0.00749 0.4116 −0.718
0.75 10−4 1.931 0.02271 0.02365 0.4089 −0.707
0.75 10−3 1.927 0.06700 0.07463 0.4067 −0.703
0.75 0.01 1.914 0.1784 0.2344 0.4046 −0.698
0.75 0.10 1.876 0.3743 0.7266 0.4053 −0.698

1.0 0 2.039 0 0 0.3921 −0.702
1.0 10−6 2.039 0.00248 0.00250 0.3921 −0.702
1.0 10−5 2.038 0.00777 0.00789 0.3921 −0.702
1.0 10−4 2.036 0.02389 0.02494 0.3921 −0.703
1.0 10−3 2.031 0.07022 0.07866 0.3921 −0.703
1.0 0.01 2.014 0.1850 0.2467 0.3927 −0.705
1.0 0.10 1.960 0.3774 0.7591 0.3966 −0.714

2.0 0 1.518 0 0 0.549 −1.16
2.0 10−6 1.517 0.00185 0.00186 0.5033 −0.789
2.0 10−5 1.517 0.00579 0.00588 0.4938 −0.756
2.0 10−4 1.516 0.01782 0.01857 0.4830 −0.726
2.0 10−3 1.512 0.05248 0.05856 0.4705 −0.699
2.0 0.01 1.496 0.1384 0.1832 0.4578 −0.687
2.0 0.10 1.443 0.2766 0.5589 0.4515 −0.696

accurate for s − 2 � 1, and there is very little change with permeability. The effect of permeation
on B(s) is very small for λ = 1, even at small separations. However, the effect is pronounced for
disparate sizes at small separations. In particular, the relative mobility 1 − B(s) increases with
increasing K∗, as was also seen with 1 − A(s), indicating that permeation reduces the resistance to
relative motion. The constants B0 and B1 used in Eq. (61) for the near-field expression are included
in Table II.

B. Collision efficiency

Finally, the A(s) and B(s) mobility functions were used to determine the collision efficiency
for uniaxial extensional flow (the same results apply for uniaxial compression). In addition to
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FIG. 5. Lubrication force for a solid particle interacting with a permeable drop, normalized by that for two
solid particles. The solid curve is the numerical solution, the dotted curve is from Eq. (59), and the dashed
curve is from Eq. (61).

employing Eqs. (8) and (9) directly, we used the trajectory approach of starting at the grazing
point (s = 2, θ = arctan(

√
2)) and integrated Eq. (6) backwards (decreasing θ ) until the separation

became large enough (s ≈ 5 − 10) that hydrodynamic interactions were negligible, allowing for the

FIG. 6. Relative mobility function normal to the line-of-centers for a spherical particle approaching a
permeable drop in a linear flow field. The solid curves are numerical results using bispherical coordinates,
and the dashed curve is the far-field result for impermeable spheres using Eq. (47). For each size ratio, results
are shown for K∗ = 0 (bottom curve) and 0.1 (top curve), with K∗ = 10−3 and 10−5 also included for λ = 0.5
and 0.25.
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FIG. 7. Collision efficiency of a solid, spherical particle and a permeable, spherical drop in uniaxial
extensional flow versus size ratio for different dimensionless permeabilities.

interception area to be determined along with the flux of particles through the interception area from
Eq. (3).The two methods gave the same results. Figure 7 shows the resulting collision efficiency
as a function of the size ratio and dimensionless permeability. As noted previously, the collision
efficiency is identically zero in the absence of permeation, due to the resistance to close approach
from the singular lubrication force Eq. (55). Even a small amount of permeation, however, allows

FIG. 8. Collision efficiency of a solid, spherical particle and a permeable, spherical drop in uniaxial
extensional flow versus dimensionless permeability for different size ratios.
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the spheres to make contact, resulting in surprisingly large collision efficiencies (e.g., Epd = 0.09
for K∗ = 10−6, 0.17 for K∗ = 10−4 and 0.23 for K∗ = 0.001, when λ = 1). The results for 1/λ

are nearly (but not identically) the same as for λ. When λ � 1, the small particle nearly follows
the fluids streamlines around the larger drop, and so the collision efficiency is small due to the
low fraction of streamlines that pass within one particle radius of the drop surface. Similarly, the
collision efficiency is small for λ � 1, as the small droplet is swept by the fluid streamlines around
the larger drop. Thus, there is a shallow maximum in the collision efficiency at a size ratio near
λ = 1.

Figure 8 recasts the collision efficiency for uniaxial extension or compression as a function of
the dimensionless permeability for different size ratios. The results are sigmoidal shape on this
semilog plot. The collision efficiencies slowly increase with 1/log(1/K∗) for K∗ � 10−3, then
rapidly increase for 10−3 � K∗ � 1, and level out or saturate for K∗ � 10.

V. CONCLUDING REMARKS

This work has considered the collisions of small solid particles with membrane-covered droplets
when immersed in a linear flow field under conditions of negligible inertia and Brownian motion.
The two-sphere relative mobility functions for the hydrodynamic interactions for motion along and
normal to the line-of-centers were calculated using bispherical coordinates for arbitrary separation
distance, size ratios, and membrane permeabilities. The latter is described by the dimensionless
parameter K∗ = k/a, where k is the membrane permeance (or permeability per unit thickness),
and a is the reduced radius of the two spheres. Under typical conditions, it is anticipated that
K∗ � 1. The numerical solution is supplemented by analytical expressions for large and small
separations. The mobility functions were then used in a trajectory analysis to calculate the collision
efficiency in uniaxial extension or compression, defined as the collision rate in a dilute suspension
with hydrodynamic interactions to that in their absence.

As shown previously for a sphere approaching a flat membrane [12–14], a key result is that
a nonzero relative velocity along the line-of-centers continues all the way to contact due to
permeation. This result is in contrast to rigid, impermeable spheres, for which the relative velocity
goes to zero as contact is approached due to a finite flow or force. The value of the relative mobility
function along the line-of-centers is 1 − A = (3K∗/2)1/2 at touching for K∗ � 1, in agreement with
lubrication theory [14]. As a consequence, the collision efficiency with permeation is nonzero, while
that without permeation is zero (unless other effects, such as surface roughness or van der Waals
attractions are included in the analysis). The collision efficiencies are surprisingly large, in the range
of 0.1–0.5 for K∗ = 10−6–0.1 for particles and drops of equal size, even though permeation is only
important at small separations (where lubrication pressure in the narrow gap pushes fluid across the
membrane).

For future work, we are interested in the case where the membrane is expandable (such as for
a water drop covered with a thin hydrocarbon layer) and there is an osmotic force that drives
permeation into the drop. In this case, the drop will expand and may engulf nearby particles, further
contributing to the collision rate. Also of interest is predicting the collision efficiency of two drops
with permeable films, as coalescence would then affect the drop-size distribution.
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APPENDIX: DETAIL OF THE BISPHERICAL-COORDINATE
SOLUTION OF PROBLEM 2

For the drop and particle in shear flow v∞(x) = (Gz, 0, 0), the functions fn(η), ϕn(η) and
ψn(η) between the spheres and inside the drop still have Eqs. (16) and (18), but the ambient flow
representation is now different:

ϕ∞
n (η) = 0, ψ∞

n (η) = ±Gc
√

2(2n + 1) exp[−(n + 1/2)|η|], (A1)

where, again, the upper sign is taken for η > 0, and the lower sign for η < 0. Additionally,

χe
n (η) = Ge

n exp[(n + 1/2)(η − ηp )] + He
n exp[(n + 1/2)(ηd − η)],

χi
n(η) = Gi

n exp[(n + 1/2)(η − ηp )]. (A2)

With so-defined coefficients, the flow incompressibility between the spheres and inside the drop
requires [21]:

5Ce
n − (n − 1)eηpCe

n−1 + (n + 2)e−ηpCe
n+1 − 2(n − 1)eηpAe

n−1 − 2(n + 2)e−ηpAe
n+1+2(2n+1)Ae

n

+ 2Ee
n − eηpEe

n−1 − e−ηpEe
n+1 − 2(n − 1)(n + 2)Ge

n + (n − 2)(n − 1)eηpGe
n−1

+ (n + 2)(n + 3)e−ηpGe
n+1 = 0, (A3)

5De
n − (n − 1)e−ηd De

n−1 + (n + 2)eηd De
n+1 + 2(n − 1)e−ηd Be

n−1 + 2(n + 2)eηd Be
n+1−2(2n+1)Be

n

+ 2Fe
n − e−ηd F e

n−1 − eηd F e
n+1 − 2(n − 1)(n + 2)He

n + (n − 2)(n − 1)e−ηd H e
n−1

+ (n + 2)(n + 3)eηd H e
n+1 = 0, (A4)

5Ci
n − (n − 1)eηpCi

n−1 + (n + 2)e−ηpCi
n+1 − 2(n − 1)eηpAi

n−1 − 2(n + 2)e−ηpAi
n+1+2(2n+1)Ai

n

+ 2Ei
n − eηpEi

n−1 − e−ηpEi
n+1 − 2(n − 1)(n + 2)Gi

n + (n − 2)(n − 1)eηpGi
n−1

+ (n + 2)(n + 3)e−ηpGi
n+1 = 0, (A5)

for all n > 1.
The velocity continuity on the drop surface yields:

�fn = 2

sinh ηd

[
(n − 1)Zn−1

2n − 1
+ (n + 2)Zn+1

2n + 3
− Zn cosh ηd

]
, n � 1, (A6)

ψi
n(ηd ) − ψe

n (ηd ) = 1

sinh ηd

[
(n + 1)(n + 2)Zn+1

2n + 3
− n(n − 1)Zn−1

2n − 1

]
, n � 0, (A7)

χi
n(ηd ) − χe

n (ηd ) = 1

sinh ηd

(
Zn−1

2n − 1
− Zn+1

2n + 3

)
, n � 2, (A8)

where

Zn = ϕi
n(ηd ) − ϕe

n(ηd ), �fn = f i
n (ηd ) − f e

n (ηd ). (A9)

Using Eqs. (A6)–(A8) and the definitions Eqs. (16), (18) (A2), and (A9), the internal coefficients
Ai

n, C
i
n, E

i
n, and Gi

n can be expressed via the external Ae
n . . . H e

n coefficients and Zm (with n − 1 �
m � n + 1). Substituting such expressions into Eq. (A5) and combining it with Eq. (A3) replace the
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continuity equation for the internal flow by

5De
n − (n − 1)eηd De

n−1 + (n + 2)e−ηd De
n+1 − 2(n − 1)eηd Be

n−1 − 2(n + 2)e−ηd Be
n+1

+ 2(2n + 1)Be
n + 2Fe

n − eηd F e
n−1 − e−ηd F e

n+1 − 2(n − 1)(n + 2)He
n

+ (n − 2)(n − 1)eηd H e
n−1 + (n + 2)(n + 3)e−ηd H e

n+1

+ 4

sinh ηd

[
(n − 1)Zn−1

2n − 1
+ (n + 2)Zn+1

2n + 3
−

(
cosh ηd + sinh ηd

2n + 1

)
Zn

]
= 0, n � 1, (A10)

where the internal flow coefficients are present only through Zm.
For convenient implementation of the remaining boundary conditions on the drop surface,

consider the fluid velocity ṽd = ve − V d − ωd × (x − xd ) of the carrier fluid near the sphere
η = ηd in the reference frame moving with the membrane; xd is the drop center. This velocity
is still represented by Eqs. (35) and (36), with ψe

n (η) and ϕe
n(η) in Eq. (16) replaced, respectively,

by

ψ̃d
n (η) = ψe

n (η) − Vd

√
2 exp [(n + 1/2)η] + ωdc

√
2(2n + 1 + coth ηd ) exp [(n + 1/2)η] (A11)

and

ϕ̃d
n (η) = ϕe

n(η) + ωdc
√

2 exp[(n + 1/2)η]. (A12)

The boundary condition of zero tangential relative velocity ν̃d
ξ = ν̃d

θ = 0 yields two equations:

n(n − 1)

2n − 1

[
f e

n−1 cosh η + 2ϕ̃d
n−1 sinh η

] − (n + 1)(n + 2)

2n + 3

[
f e

n+1 cosh η + 2ϕ̃d
n+1 sinh η

]
+ 2 cosh η

[
(n + 1)ψ̃d

n+1

2n + 3
+ nψ̃d

n−1

2n − 1

]
− 2ψ̃d

n = 0 at η = ηd, n � 0, (A13)

and

f e
n+1 cosh η + 2ϕ̃d

n+1 sinh η

2n + 3
− f e

n−1 cosh η + 2ϕ̃d
n−1 sinh η

2n − 1

+ 2

[
(n − 2)χe

n−1

2n − 1
+ (n + 3)χe

n+1

2n + 3

]
cosh η − 2χe

n = 0 at η = ηd, n � 2. (A14)

The permeability boundary condition on the drop surface, ν̃e
η = 2γ [F i − Fe] cos θ , used together

with ν̃θ = 0, results in

2ϕ̃d
n − n − 1

2n − 1

[
f e

n−1 sinh η + 2ϕ̃d
n−1 cosh η

] − n + 2

2n + 3

[
f e

n+1 sinh η + 2ϕ̃d
n+1 cosh η

]
+ 2

[
ψ̃d

n+1

2n + 3
− ψ̃d

n−1

2n − 1

]
sinh η

= 2γ

[
�fn cosh η − n − 1

2n − 1
�fn−1 − n + 2

2n + 3
�fn+1

]
at η = ηd, n � 1. (A15)

Near the solid particle surface η = ηp, we work, again, with the relative fluid velocity ṽp =
ve − V p − ωp × (x − xp ), where xp is the particle center. This velocity is still represented by
Eqs. (35) and (36), with ψe

n (η) and ϕe
n(η) in Eq. (16) replaced, respectively, by

ψ̃p
n (η) = ψe

n (η) − Vp

√
2 exp [−(n + 1/2)η] − ωpc

√
2(2n + 1 − coth ηp ) exp [−(n + 1/2)η]

(A16)
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and

ϕ̃p
n (η) = ϕe

n(η) + ωpc
√

2 exp[−(n + 1/2)η]. (A17)

The no-slip boundary condition ṽp = 0 gives three final equations:

f e
n + 2

sinh η

[
ϕ̃p

n cosh η − (n − 1)ϕ̃p

n−1

2n − 1
− (n + 2)ϕ̃p

n+1

2n + 3

]
= 0 at η = ηp, n � 1, (A18)

ψ̃p
n + 1

sinh η

[
n(n − 1)ϕ̃p

n−1

2n − 1
− (n + 1)(n + 2)ϕ̃p

n+1

2n + 3

]
= 0 at η = ηp, n � 0, (A19)

χe
n + 1

sinh η

(
ϕ̃

p

n+1

2n + 3
− ϕ̃

p

n−1

2n − 1

)
= 0 at η = ηp, n � 2. (A20)

Equations (A3), (A4), (A6), (A10), (A13), (A14), (A15), (A18), (A19), and (A20),
complemented by the definitions Eqs. (16), (A1), (A11), (A12), (A16), and (A17),
present a compact form of ten difference equations for the solution vector Xn =
(Ae

n, B
e
n, C

e
n,D

e
n, E

e
n, F

e
n ,Ge

n,H
e
n , Zn,�fn). This system can be written in a general form akin

to Eq. (32), with shear rate G instead of E33, and additional contributions in the right-hand side
due to particle/drop membrane rotations. The limitations Ae

0 = Be
0 = Ce

0 = De
0 = Z0 = �f0 = 0

and Ge
n = He

n = 0 (for n � 1) are used to extend this tridiagonal system to all n � 1 and start the
forward sweep Xn = Ln Xn+1 + K n of the Thomas algorithm, with recurrent calculation of matrices
Ln and vectors K n.

The hydrodynamic forces Fp, Fd (acting in the x-direction) and torques Tp, Td about the
particle/drop centers (acting in the y direction) are

Fp = −8πμc
√

2
∞∑

n=0

Ee
n exp[−(n + 1/2)ηp], Fd = −8πμc

√
2

∞∑
n=0

Fe
n exp[(n + 1/2)ηd ]

(A21)

and

Tp = − 8πμc2
√

2
∞∑

n=0

(2n + 1 − coth ηp )Ee
n exp[−(n + 1/2)ηp],

Td = 8πμc2
√

2
∞∑

n=0

(2n + 1 − coth ηd )Fe
n exp[(n + 1/2)ηd ]. (A22)

Again, the infinite series Eqs. (A21) and (A22) can be computed on the forward sweep as the
limits of recurrent sequences with automatic convergence control, thus not requiring the solution
vector Xn.

For an impermeable drop near a particle at arbitrary separations, our solution of Problem 2
was found to be in perfect agreement with known bispherical-coordinate solutions for two solid
spheres translating/rotating with prescribed velocities normal to the centerline in quiescent liquid
[21], and with related solutions for two freely suspended solid spheres in a linear flow [5,18]. For
finite drop permeabilities and very large surface separations, there was again perfect agreement with
the analytical drag formula Eq. (34). The single drop test is still meaningful, because our algorithms
for Problem 1 and Problem 2 are based on the vastly different flow representations Eqs. (14) and
(35). Finally, our numerical values for the mobility function B are very accurately described by the
far-field form Eq. (43), when the surface separation exceeds just a few particle/drop radii.
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