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Gas turbines and rocket engines sometimes suffer from violent oscillations caused
by feedback between acoustic waves and flames in the combustion chamber. These are
known as thermoacoustic oscillations and they often occur late in the design process. Their
elimination usually requires expensive tests and redesign. Full scale tests and laboratory
scale experiments show that these oscillations can usually be stabilized by making small
changes to the system. The complication is that, while there is often just one unstable
natural oscillation (eigenmode), there are many possible changes to the system. The
challenge is to identify the optimal change systematically, cheaply, and accurately. This
paper shows how to evaluate the sensitivities of a thermoacoustic eigenmode to all possible
system changes with a single calculation by applying adjoint methods to a thermoacoustic
Helmholtz solver. These sensitivities are calculated here with finite-difference and finite-
element methods, in the weak form and the strong form, with the discrete adjoint and
the continuous adjoint, and with a Newton method applied to a nonlinear eigenvalue
problem and an iterative method applied to a linear eigenvalue problem. This is a detailed
comparison of adjoint methods applied to thermoacoustic Helmholtz solvers. MATLAB

codes are provided for all methods and all figures so that the techniques can be easily
applied and tested. This paper explains why the finite difference of the strong form
equations with replacement boundary conditions should be avoided and why all of the
other methods work well. Of the other methods, the discrete adjoint of the weak form
equations is the easiest method to implement; it can use any discretization and the boundary
conditions are straightforward. The continuous adjoint is relatively easy to implement but
requires careful attention to boundary conditions. The summation by parts finite difference
of the strong form equations with a simultaneous approximation term for the boundary
conditions is more challenging to implement, particularly at high order or on nonuniform
grids. Physical interpretation of these results shows that the well-known Rayleigh criterion
should be revised for a linear analysis. This criterion states that thermoacoustic oscillations
will grow if heat release rate oscillations are sufficiently in phase with pressure oscillations.
In fact, the criterion should contain the adjoint pressure rather than the pressure. In
self-adjoint systems the two are equivalent. In non-self-adjoint systems, such as all but
a special case of thermoacoustic systems, the two are different. Finally, the sensitivities of
the growth rate of oscillations to placement of a hot or cold mesh are calculated, simply
by multiplying the feedback sensitivities by a number. These sensitivities are compared
successfully with experimental results. With the same technique, the influence of the
viscous and thermal acoustic boundary layers is found to be negligible, while the influence
of a Helmholtz resonator is found, as expected, to be considerable.
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I. INTRODUCTION

Rockets and jet engines have unrivaled power to weight ratios and are therefore ideal for
aerospace applications. They are designed to operate in steady flow, in the sense that the time
average flow is the same as the ensemble average flow. Sometimes, however, heat release rate oscil-
lations lock into acoustic oscillations so violently that they cause excessive heat transfer, structural
vibration, and even catastrophic failure [1]. These are known as thermoacoustic oscillations.

The thermoacoustic mechanism is similar to that of a piston engine but with an acoustic wave
taking the place of the piston: When more heat release rate occurs during moments of high pressure
and less heat release rate occurs during moments of low pressure, more work is done during the
expansion phase of the acoustic cycle than is absorbed during the compression phase, causing
oscillations to grow [2]. A complete analysis can be found in [3] (p. 226), where Chu writes that
“if m′ [mass injection] is in phase with p′ [acoustic pressure], or F ′ [momentum injection] with u′
[acoustic velocity] or Q′ [fluctuating heat release rate] with T ′ [acoustic temperature] then energy
will be continuously fed into the disturbance.” This quote will be reexamined in Sec. VIII in light
of the results in this paper.

A key component in this mechanism is the heat release rate’s response to acoustic perturbations.
As the ratio of air to fuel in gas turbines is increased in order to reduce nitrous oxide emissions,
flames tend to become more responsive to acoustics [1]. As a consequence, thermoacoustic
oscillations are increasingly problematic for gas turbines. Worse still, their behavior is exceedingly
sensitive to small parameter or shape changes [4]. Oscillations therefore tend to reappear during the
later stages of testing and are rarely predicted reliably by component tests and analysis [5–7].

The goal of rocket and gas turbine manufacturers is to design an engine that is linearly stable
to thermoacoustic oscillations over the entire operating regime. Currently, this is achieved through
(i) extensive testing, which is expensive, (ii) the avoidance of certain engine operating regimes,
which reduces flexibility, and (iii) the retrofitting of passive dampers such as Helmholtz resonators,
which add weight and modes of failure [6,8]. A systematic method to identify optimal stabilization
strategies will speed up development, eliminate dangerous operating points, and either determine
the optimal placement of passive dampers or remove the need for them entirely. Such a method
can exploit three convenient facts: First, the requirement is for linear (rather than nonlinear)
stability, meaning that the tools of linear analysis can be used; second, no more than a handful
of thermoacoustic modes are ever unstable; third, usually many parameters of the system can be
altered. The challenge is therefore to identify the most influential parameters for each mode and
how they should be changed optimally to stabilize the system.

An ideal solution is to develop a faithful model of the thermoacoustic system’s linear behavior
and then to combine linear stability analysis [9] with adjoint methods [10]. The stability analysis
identifies the handful of unstable eigenvalues. The adjoint methods then show, in a single calculation
for each eigenvalue, how each eigenvalue is affected by every parameter in the system. While
this sensitivity could be calculated with finite-difference calculations, this would require a single
calculation for each parameter, which is too expensive. This gradient information enables efficient
optimization through, for example, change of boundary conditions, change of flame shape, change
of geometry, or optimal addition of feedback devices such as Helmholtz resonators.

Different families of linear thermoacoustic models exist in the literature: (i) Galerkin methods,
in which the acoustic perturbation is projected onto a basis set, which is usually the pure acoustic
modes of the system; (ii) traveling wave methods (known as network models), in which the acoustics
are expressed as traveling waves; and (iii) Helmholtz methods, in which the Helmholtz equation
with heat release is solved in the frequency domain using finite difference, finite volume, or finite
element for spatial discretization. The Galerkin method is easy to write in adjoint form [11,12]
but has convergence problems [13] and is not straightforward to apply in complex geometries. The
traveling wave method is relatively easy to write in adjoint form [4,14] but is restricted to simple
acoustics. Nevertheless, this method is extensively used in industry and is a promising route to
early application of adjoint methods in thermoacoustics. For example, adjoint-based optimization
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is applied in [15] to stabilize all the modes of a traveling wave model of a laboratory burner and in
[16] to stabilize all the modes of a traveling wave model of an annular combustor, using the adjoint
version of an industrial code, LOTAN [17,18].

This paper shows how to derive the adjoints for Helmholtz solvers with finite-difference and
finite-element discretizations, in the weak form and the strong form, with different boundary
implementations, with the discrete adjoint and the continuous adjoint, and with a Newton method
applied to a nonlinear eigenvalue problem and an iterative method applied to a linear eigenvalue
problem. The methods are described in one spatial dimension, but the principles scale readily to two
and three dimensions.

Reference [19] contains an outline of the mathematical principles required for adjoint Helmholtz
solvers with active iteration, but no numerical implementation or results. Since then there have
been some applications of adjoint Helmholtz solvers in the literature: (i) to optimize acoustic
damper placement [20], (ii) to speed up uncertainty quantification [21,22], and (iii) to investigate the
effects of asymmetry in annular combustors [23]. Adjoints have been applied (in collaboration with
the author) to the three-dimensional finite-volume-based thermoacoustic solver AVSP [24]. The
Supplemental Material of [4] contains rudimentary direct and adjoint codes for a Galerkin method,
a traveling wave method, a finite-difference Helmholtz solver, and a finite-element Helmholtz solver
in order to demonstrate extreme sensitivity in thermoacoustics. The codes in [4] contain only Dirich-
let boundary conditions, the discrete adjoint, and the Newton method. The current paper is a paper
on thermoacoustic Helmholtz solvers containing (i) the summation by parts (SBP) finite-difference
formulation with a simultaneous approximation term (SAT); (ii) Neumann and frequency-dependent
Robin boundary conditions for all types of discretizations; (iii) details of the numerical methods;
(iv) comparisons of all methods and explanations of the sources of numerical problems; (v) physical
interpretations of the base state sensitivities, structural sensitivities, and receptivities; (vi) the con-
clusion that Rayleigh’s criterion needs to be revised for non-self-adjoint systems; (vii) optimization
using base state sensitivities; (viii) estimation of the influence of neglected phenomena using
feedback sensitivities; and (ix) estimation of the influence of retrofitted components using feedback
sensitivities. The presentation is pedagogical and contains numerical details that the experienced
reader can skip. MATLAB codes are provided for the four discretizations, all boundary conditions,
both types of adjoint, and both types of solution methods so that the reader can apply the techniques
easily and experience firsthand some of the benefits and pitfalls of the different approaches.

II. MODEL

A. Governing equations for mass, momentum, and energy

In this section all equations are dimensional and are written in terms of pressure p, density ρ,
temperature T , entropy ς , and velocity u. Each total quantity (denoted by a circumflex) is comprised
of a mean (denoted by an overline) and an acoustic fluctuation (denoted by a tilde). Following [25],
the behavior of a single-component gas is modeled by the equation of state, the definition of entropy
for a perfect gas, and transport equations for mass, momentum, and entropy of the total quantities

p̂

ρ̂
= rgT̂ , (1a)

ς̂ − ςref = cp ln
T̂

Tref
− rg ln

p̂

pref
, (1b)

Dρ̂

Dt
= −ρ̂∇ · û, (1c)

ρ̂
Dû
Dt

= −∇p̂, (1d)

ρ̂
Dς̂

Dt
= rg

p̂
ˆ̇qh, (1e)
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where cp is the specific heat capacity at constant pressure, rg is the specific gas constant, and ˆ̇qh

is the heat release rate per unit volume, which is nonzero over some region h(x). Small-amplitude
acoustic fluctuations (ũ, p̃, ρ̃, ς̃ , T̃ ) are considered, superimposed onto a zero Mach number steady
base flow (p, ρ, ς, T ). Following [3] (see Sec. III therein), the acoustic equations are further
perturbed by adding fluctuating mass injection per unit volume per unit time εδ ˜̇m, fluctuating body
force per unit volume εδf̃ , and fluctuating heat release rate per unit volume per unit time εδ ˜̇q.
These perturbations, when suitably combined, can describe any physical perturbation to the system
(Sec. VI). The linearized equations for the acoustic fluctuations are

p̃

p
− ρ̃

ρ
− T̃

T
= 0, (2a)

ς̃ = cp

T̃

T
− rg

p̃

p
, (2b)

∂ρ̃

∂t
+ ũ · ∇ρ + ρ∇ · ũ = 0 + εδ ˜̇m, (2c)

ρ
∂ũ
∂t

+ ∇p̃ = 0 + εδf̃, (2d)

∂ς̃

∂t
+ ũ · ∇ς = rg

p
( ˜̇qh + εδ ˜̇q ). (2e)

If the gas is perfect then (1b) implies that ∇(ln ρ + ς/cp ) = (∇ ln p)/γ , which is zero because p is
uniform because the flow has zero Mach number. Combining this with (2a) and (2b) and substituting
into (2c) divided by ρ plus (2e) divided by cp gives the acoustic equations for mass and energy (3b)
and momentum (2d) and (3a):

∂ũ
∂t

+ 1

ρ
∇p̃ = εδf̃

ρ
, (3a)

1

γ

∂

∂t

(
p̃

p

)
+ ∇ · ũ = εδ ˜̇m

ρ
+ γ − 1

γ

( ˜̇qh

p
+ εδ ˜̇q

p

)
. (3b)

B. Heat release model

The heat release model is a distributed n-τ model adapted from [25]. The local heat release rate
perturbation per unit volume ˜̇qh(x, t ) is proportional to the velocity ũ in a reference direction ŵ
integrated over a measurement region w(x) some time τ (x) earlier,

˜̇qh(x, t ) = ηh(x)
∫

�

w(x̆)ŵ · ũ(x̆, t − τ (x))dx̆, (4)

where h(x) is a distribution of heat release in space such that
∫
�

h(x)dx = 1 and w(x) is a
distribution of measurement in space such that

∫
�

w(x)dx = 1. The integral
∫
�

˜̇qh(x)dx has units
J s−1 and the velocity ũ has units m s−1, so the constant η has units J m−1.

It is useful to express η in terms of the magnitude of the flame transfer function (FTF). If
w(x) is set to a Dirac δ function at xw and τ (x) is uniform in space and ũw ≡ ŵ · ũ then (4)
becomes

∫
�

˜̇qh(x, t )dx = ηũw(xw, t − τ ). The FTF is nondimensional and has magnitude |FTF| =
|(∫

�
˜̇qhdx)/Q̇h|/|ũw(xw )/u|, where Q̇h ≡ ∫

�
q̇hdx is the mean heat release rate. Therefore,

|η| =
∣∣ ∫

�
˜̇qhdx

∣∣
|ũw(xw )| = |FTF|Q̇h

u
(5)

with units J m−1, as expected.
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C. Nondimensionalization

For dimensional consistency between the base state sensitivity (Sec. V) and the feedback
sensitivity (Sec. VI), three new variables are defined:

˜̇mρ ≡
˜̇m

ρ
, f̃ρ ≡ f̃

ρ
, ˜̇qp ≡

˜̇q

p
. (6)

The velocity ũ is eliminated by subtracting the divergence of (3a) from the time derivative of (3b).
The specific volume is defined as v ≡ ρ−1 and the thermal expansion factor as ζ ≡ (γ − 1)/γ .
The equations are nondimensionalized with the length of the combustion chamber Lc, the ambient
pressure pa , and the speed of sound in the ambient fluid (γpa/ρa )1/2. The pressure is uniform, so
p = pa throughout. The reference density is pa/c

2
a , which means that the nondimensional ambient

density is γ . The nondimensional governing equation is

1

γ

∂2p̃�

∂t2� − ∇� · (v�∇�p̃�) = ∂

∂t�
εδ ˜̇m�

ρ − ∇� · εδf̃�
ρ + ζ

(
∂

∂t�

˜̇q �
h

p� + ∂

∂t�
εδ ˜̇q �

p

)
, (7a)

where

˜̇q �
h

p� = η�

p� h�(x�)
∫

�

w�(x̆�)ũ�(x̆�, t� − τ �(x�))dx̆�. (7b)

D. Reduction to one dimension

The analysis in the rest of this paper is performed in one spatial dimension on x ∈ [0, 1]. The
results are compared with experiments on a Rijke tube with cross-sectional area Sc. All properties
are assumed to be uniform over the cross section. In (4), the heat release rate distribution in
three-dimensional (3D) space h(x) is replaced with h(x)/Sc, where h(x) is the heat release rate
distribution in 1D space, defined such that

∫ 1
0 h(x)dx = 1. The 1D nondimensional governing

equation is

1

γ

∂2p̃�

∂t2� − d

dx�

(
v� dp̃�

dx�

)
= ∂

∂t�
εδ ˜̇m�

ρ − d

dx�
εδf̃�

ρ + ζ

(
∂

∂t�

˜̇q �
h

p� + ∂

∂t�
εδ ˜̇q �

p

)
, (8a)

where

˜̇q �
h

p� = η�

p�S�
c

h�(x�)
∫ 1

0
w�(x̆�)ũ�(x̆�, t� − τ �(x�))dx̆�. (8b)

A nondimensional heat release factor is then defined as n� ≡ η�/p�S�
c .

E. Modal decomposition to the frequency domain

The star that designated nondimensional variables is now dropped and a modal decomposition is
performed by substituting p̃(x, t ) = p(x, s)est and ũ(x, t ) = u(x, s)est . The momentum equation
(3a), in the absence of forcing and in one dimension, becomes sρu = −dp/dx, so the heat release
term (8b) becomes

q̇h

p
= n(e−sτ (x) )h(x)

∫ 1

0
−1

s

w

ρ
(x̆)

dp

dx
(x̆)dx̆. (9)

This is substituted into (8a), the remaining substitutions with est are performed, and wρ ≡ w/ρ is
defined, leading to

s2

γ
p − d

dx

(
v
dp

dx

)
= −ζn(e−sτ (x) )h(x)

∫ 1

0
wρ (x̆)

dp

dx
(x̆)dx̆ + sεδṁρ − d

dx
εδfρ + ζ sεδq̇p. (10)
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F. Definition of an inner product

An inner product is defined between two functions f (x) and g(x) spanning x ∈ [0, 1]:

〈f, g〉 ≡
∫ 1

0
f ∗(x)g(x)dx. (11)

G. Expression as an eigenvalue problem

The terms in ε are now removed and will be reintroduced in Sec. VI. Equation (10) can then be
written as

G(s)p ≡ (A(s) − s2C)p = 0, (12a)

where

A ≡ d

dx

(
v

d

dx

)
− ζn(e−sτ )h

〈
w∗

ρ,
d

dx

〉
, (12b)

C ≡ 1/γ. (12c)

Equation (12) is satisfied for eigenvalues s with corresponding right eigenvectors p.

III. SOLVING THE DIRECT PROBLEM

In this paper, and in the corresponding MATLAB programs, the governing equations (12) are
solved numerically with four different discretizations: (i) a finite-difference method applied to the
strong form of (12) with replacement boundary conditions, labeled FDS, (ii) a finite-element method
applied to the weak form of (12), labeled FEW; (iii) a finite-difference method applied to the weak
form of (12), labeled FDW; and (iv) a summation by parts finite-difference method applied to the
strong form of (12) with a simultaneous approximation term for the boundary conditions, labeled
SBP. A finite-volume discretization has been applied to this problem in [22]. This section contains
numerical details, even though they are straightforward, because they have implications for the
adjoint problem.

A. Finite-difference method applied to the strong form (FDS)

A finite-difference spectral method adapted from [26] is applied to the strong form of the
governing equations (12). The function p(x) is represented by a polynomial of order N . In addition,
N + 1 Gauss-Lobatto-spaced collocation points are defined at x = xi , in the domain x ∈ [0, 1].
Following the convention in [26], these are ordered backward from xN+1 at x = 0 to x1 at x = 1.
The function p(x) is expressed as the sum of N + 1 Chebyshev polynomials. The coefficients of
this sum are defined uniquely by the N + 1 values of p(xi ). These values are held in the (N + 1)
column vector p. When the polynomial representing p(x) is differentiated, its order reduces by 1
and therefore the polynomial representing p′(x) can be defined uniquely by the values of p′(x)
at N collocation points. A unique difference matrix D is defined such that p′ = Dp. D has size
(N + 1) × (N + 1) and gives p′ at the N + 1 collocation points, but has rank N because only N

values are required to define p′(x) uniquely.
The integral

∫ 1
0 p dx is given by mT p, where m is a column vector containing the weighting

associated with each collocation point. These are calculated with Clenshaw-Curtis quadrature (see
[26], Chap. 12). A diagonal matrix M is defined, which contains the elements of m along the
diagonal. For reasons described in Sec. IV B, it is convenient to premultiply the discretized forms of
(12) by M. This preconditioning does not affect the eigenvalues s or the right eigenvectors p. With
this preconditioning, the discretized form of (12) is

G(s)p ≡ (A(s) − s2C)p = 0, (13a)
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where

A ≡ MDVD − Mζn(e−sτ )hwT
ρ MD, (13b)

C ≡ M/γ, (13c)

where e−sτ is an (N + 1) × (N + 1) matrix containing e−sτ (xi ) along the diagonal, h is an N + 1
column vector containing h(xi ), wρ is an N + 1 column vector containing wρ (xi ), and V is an (N +
1) × (N + 1) matrix containing v(xi ) along the diagonal. In the MATLAB programs, the collocation
points x, differentiation matrix D, mass matrix M, density profile V, and heat release properties
h(x), wρ (x), and τ (x) are created with mat_FD.m. Matrices A and C in (13) are assembled within
mat_AC_FDS_DA.m.

Equation (12) is a second-order ordinary differential equation for p and therefore requires two
boundary conditions. It is solved on the domain x ∈ [0, 1] with boundary conditions on p at x = 0
(upstream) and x = 1 (downstream). These boundary conditions are either homogeneous Dirichlet,
p = 0, homogeneous Neumann, p′ = 0, or Robin: p′ = −kup at x = 0 and p′ = +kdp at x = 1.
(The difference in sign arises because the surface normal at x = 0 has the opposite sign from that at
x = 1.) The constant k = s(ρ/γ )1/2(R − 1)/(R + 1), where R is the acoustic reflection coefficient.
Homogenous Dirichlet boundary conditions could be applied at x = 1 by removing the top row and
left column of A and C. This has the advantage that A and C regain full rank but the practical
disadvantage when coding that the matrices change size. Instead, in this paper, the replacement
method is used: Homogenous Dirichlet boundary conditions are applied at x = 1 by setting the
top row and left column of A and C to zero and then setting the top left element of A to 1. The
same procedure is applied at x = 0 by altering the bottom rows and right columns of A and C.
Homogenous Neumann boundary conditions are applied by (i) replacing the top or bottom rows of
A by the top or bottom rows of D and (ii) entering zero into the top left or bottom right elements
of C. Robin boundary conditions (p′ = kp) are applied by following steps (i) and (ii) above and
then subtracting kd from the top left element of A or −ku from the bottom right element of A. These
boundary conditions are implemented in fun_bcs_strong.m. For all of these boundary conditions,
the top and bottom rows of A can be multiplied by arbitrary (nonzero) constants cd and cu without
affecting the eigenvalue s or right eigenvector p. This has implications for the left eigenvector
and adjoint eigenfunctions (Sec. IV B and Fig. 3). The generalized matrix eigenvalue problem
A(s)p = s2Cp is solved numerically (Sec. III E). Here C is noninvertible due to the zeros added
when the boundary conditions are applied. This creates two infinite eigenvalues, with corresponding
eigenfunctions, which are discarded.

B. Finite-element method applied to the weak form (FEW)

Using the inner product (11), the governing equation (12) is multiplied by a test function z, which
can be complex and rearranged via integration by parts into the weak form

〈z, (A(s) − s2C)p〉 =
[
z∗v

dp

dx

]1

0

−
〈
dz

dx
, v

dp

dx

〉
−

〈〈〈
z, ζn(e−sτ )h

〈
w∗

ρ,
dp

dx

〉〉〉〉
−

〈
z,

s2

γ
p

〉
= 0.

(14)

In order to discretize (14), restrictions are now placed on the differentiability of z and p. Here N + 1
grid points are defined at x = x1,i , equispaced from x = 0 to x = 1. The functions z(x) and p(x)
are defined to be piecewise linear (P1), with values zi and pi at the N + 1 grid points at x1,i . These
are held as column vectors z1, p1, and x1. The derivatives z′(x) and p′(x) are therefore piecewise
constant (P0) functions, which are discontinuous at x1,i . It is convenient to define N new grid points
x0,i at the mean points between x1,i and to hold the values z′

i and p′
i of these P0 functions at the

N grid points at x0,i . These are held as column vectors z′
0, p′

0, and x0. A difference matrix D01 is
defined such that p′

0 = D01p1. A mean matrix M01 is defined such that x0 = M01x1. Further, D01
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and M01 map P1 functions to P0 functions and so have N rows and N + 1 columns. They therefore
both have rank N , as did the difference matrix D in Sec. III A.

The inner product 〈f, g〉 between two P1 functions is evaluated exactly by fH M11g, where M11

is an (N + 1) × (N + 1) tridiagonal matrix. The inner product 〈f, g〉 between two P0 functions is
evaluated exactly by fH M00g, where M00 is an N × N diagonal matrix. The inner product 〈f, g〉
between a P0 and a P1 function is evaluated exactly by fH M01g, where M01 is an N × (N + 1)
matrix. In this formulation, M01 = M00M01. Equation (14) can then be written in matrix form as

zH
1 G11(s)p1 ≡ zH

1 (A11 − s2C11)p1 = 0, (15a)

where

A11 ≡ −DH
01M00V00D01 − M11ζn(e−sτ1 )h1wT

ρ0M00D01, (15b)

C11 ≡ M11/γ, (15c)

where V00 is an N × N matrix containing v(x0,i ) along the diagonal, e−sτ1 is an (N + 1) × (N + 1)
matrix containing e−sτ (x1,i ) along the diagonal, h1 is an N + 1 column vector containing h(x1,i ), and
wρ0 is an N column vector containing wρ (x0,i ). In the MATLAB programs, the points, differentiation
matrices, and mass matrices are created with mat_FE.m. Matrices A11 and C11 are assembled with
mat_AC_FEW_DA.m.

The boundary conditions are applied via the boundary term in (14). For homogeneous Neumann
boundary conditions p′ = 0, this term is zero and no further action is required. For Robin boundary
conditions, this term is z∗vdkdp at x = 1 and −z∗vu(−ku)p at x = 0. These are applied by adding
vdkd to the top left element of A11 and vuku to the bottom right element of A11. Neumann and
Robin boundary conditions are therefore defined without involving any arbitrary constants. Dirichlet
boundary conditions are applied using the method described in Sec. III A, which does involve
an arbitrary constant. These boundary conditions are implemented in fun_bcs_weak.m. Equation
(15) must be satisfied for arbitrary z1 and so reduces to solving the generalized matrix eigenvalue
problem A11p1 = s2C11p1. The vector z1 contains N + 1 elements, so there are N + 1 equations
with which to calculate the N + 1 unknowns in the vector p1 and the problem is well posed if
A11 has rank N + 1. This is satisfied unless there are Neumann boundary conditions at both ends,
in which case there is also a solution with a zero eigenvalue and a uniform eigenvector, which is
discarded. For each Dirichlet boundary condition, there is an infinite eigenvalue and corresponding
eigenvector, which is discarded.

C. Finite-difference method applied to the weak form (FDW)

The finite-difference scheme described in Sec. III A can also be applied to the weak form (14).
Equation (14) can be written in matrix form as

zH Gp ≡ zH (A − s2C)p = 0, (16a)

where

A ≡ −DH MVD − Mζn(e−sτ )hwT
ρ MD, (16b)

C ≡ M/γ, (16c)

where the matrices are those from the finite-difference method (Sec. III A) and the boundary
conditions are those from the finite-element method (Sec. III B). Matrices A and C are assembled
with mat_AC_FDW_DA.m.

D. Summation by parts finite-difference method applied to the strong form (SBP)

In Sec. IV B it will be shown that the finite-difference method applied to the strong
form equations with replacement boundary conditions (FDS), described in Sec. III A, produces
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oscillations in the adjoint eigenvectors near the boundaries. This is because the FDS method is
not dual consistent. One way to achieve a dual consistent method is to approximate the spatial
derivatives with central-finite-difference operators that satisfy a SBP formula and then implement
the boundary conditions with the SAT method [27–30].

Equation (12) requires a first derivative matrix D1 representing d/dx and a second derivative
matrix with a nonhomogeneous coefficient D(v)

2 representing d/dx[v(x)d/dx]. This second deriva-
tive matrix could be formed by applying the first derivative twice (see [31], pp. 506–507), but this
leads to a wide stencil and, unless implemented carefully, to spurious oscillations. Alternatively, the
second derivative matrix can be formed with a narrow stencil in which v(xi ) is embedded within
the stencil (see [32], Appendix B). This narrow stencil avoids these spurious oscillations. Both D1

and D(v)
2 must satisfy the SBP formula: D1 must be expressible as D1 = M−1Q, where Q + QT =

diag(+1, 0, . . . , 0,−1) when x is ordered from +1 to 0; similarly, D(v)
2 must be expressible

as D(v)
2 = M−1(−Y(b) + ṼS), where M is the mass matrix diag(0.5, 1, . . . , 1, 0.5) × dx, Y(v) is

akin to a central-difference second-order derivative matrix, weighted by v(xi ), as described next,
Ṽ = diag(−vd, 0, . . . , 0, vu), and S approximates the first derivative operator at the boundaries.

In this paper, the second-order accurate central-difference scheme of Ref. [32] (see Appendix B
therein) is applied, which satisfies a SBP formula. The matrix Y(v), which is denoted by M (b) in
[32], can be written as DH

01M00V00D01, where D01 and M00 are identical to the matrices used in the
finite-element method (FEW) in Sec. III B. The matrix V00 is an N × N diagonal matrix containing
[v(xi ) + v(xi+1)]/2 along the diagonal, i.e., the mean of the base density evaluated at adjacent grid
points. To an excellent approximation, V00 can be replaced by V00, which is an N × N diagonal
matrix containing v[(xi + xi+1)/2] along the diagonal, i.e., the base density evaluated at the mean
of adjacent grid points. With this approximation, the SBP form of the strong form finite-difference
equations (12) is

G(s)p ≡ (A − s2C)p = 0, (17a)

where

A ≡ −DH
01M00V00D01 + ṼS − Mζn(e−sτ )hwT

ρ MD1, (17b)

C ≡ M/γ, (17c)

where e−sτ1 is an (N + 1) × (N + 1) matrix containing e−sτ (x1,i ) along the diagonal, h is a N + 1
column vector containing h(x1,i ), and wρ is an N + 1 column vector containing wρ (x1,i ). In
the MATLAB programs, the points, differentiation matrices, and mass matrices are created with
mat_SBP.m. Matrices A and C are assembled with mat_AC_SBP_DA.m.

Robin and Neumann boundary conditions are applied by adding a SAT to the top and bottom
rows of A:

A ← A − diag(0, . . . , 0, 1)(−kuvuI + ṼS) − diag(1, 0, . . . , 0)(−kdvdI + ṼS). (18)

This is adapted from [31] [see Eq. (A.3) therein] and [32] [see Eq. (3.7) therein]. Weak Dirichlet
boundary conditions can be applied with Eq. (3.8) of [32] or equivalently by giving ku and kd large
magnitudes.

E. Iteration procedures

The nonlinear matrix eigenvalue problems (13)–(17) are solved iteratively using two procedures,
both of which are applied within fun_Helm.m. The first is a Newton method applied to the nonlinear
eigenvalue problem |G(s)| = 0, using Jacobi’s formula for the derivative of a determinant of a
matrix:

sj+1 = sj − |G|/(d|G|/ds )j = sj − 1/[tr(G−1dG/ds )]j . (19)
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TABLE I. Dimensional quantities, reference quantities, and nondimensional quantities for the Rijke tube
in [33] and a simplified model of a H2/LOx rocket engine.

Rijke tube Rocket engine

Dimensional quantities
ρ (kg m−3) 1.22 ρ (kg m−3) 2.17
p (Pa) 1.00 × 10+5 p (Pa) 1.00 × 10+7

Lc (m) 1.00 Lc (m) 1.00
Sc (m2) 1.73 × 10−3 Sc (m2) 5.03 × 10−1

η (J m−1) 2.80 × 10+1 η (J m−1) 2.00 × 10+8

τ (s) 1.50 × 10−3 τ (s) 1.00 × 10−4

Xw (m) 0.200 Xw (m) 0.060
Lw (m) 0.025 Lw (m) 0.020
Xh (m) 0.250 Xh (m) 0.700
Lh (m) 0.025 Lh (m) 0.100
ρu (kg m−3) 1.220 ρu (kg m−3) 2.165
ρd (kg m−3) 0.850 ρd (kg m−3) 2.165

Reference quantities
Lref (m) 1.00 Lref (m) 1.00
pref (Pa) 1.00 × 10+5 pref (Pa) 1.00 × 10+7

uref (m s−1) 339 uref (m s−1) 2506

Nondimensional quantities
γ 1.40 γ 1.36
Ru −0.975 + 0.050i Ru +0.999 + 0.000i

Rd −0.975 + 0.050i Rd +0.695 + 0.000i

n 0.161 n 39.789
τ 0.508 τ 0.251
Xw 0.200 Xw 0.060
Lw 0.025 Lw 0.020
Xh 0.250 Xh 0.700
Lh 0.025 Lh 0.100
ρu 1.400 ρu 1.360
ρd 0.975 ρd 1.360

This is rendered more stable by performing a QR decomposition on G. No relaxation is used. Once
the eigenvalue s has been found to sufficient tolerance, the eigenvector is the null space of G(s).

The second is the active iterative method described in Sec. IV.B of [25]. From a starting
point, labeled s0, subsequent solutions, labeled sj , are obtained by solving the generalized linear
eigenvalue problem A(sj−1)p = s2

j Cp in which the frequency-dependent terms in A have been
evaluated at sj−1. This process is repeated J times. No relaxation is used. The eigenvector is
calculated alongside the eigenvalue using fun_eig_nearest.m. In both cases there are several
possible solutions and the converged solution depends on the choice of s0. In this paper chamber
modes [9] are being modeled, so it is appropriate to start from one of the natural acoustic modes of
the chamber. This mode is specified by the user in fun_param_dim.m.

F. Results

The methods in this paper are demonstrated on (i) a model of the electrically heated Rijke tube
in [33] and (ii) a simplified model of a rocket engine. For the Rijke tube, n is small and the peaks of
wρ (x) and h(x) are close, which causes the system to be nearly self-adjoint. For the rocket engine,
n is large and the peaks of wρ (x) and h(x) are widely separated, which causes the system to be
strongly non-self-adjoint. It is instructive to compare the two. The dimensional quantities, reference
quantities, and nondimensional quantities are listed in Table I. The distributions of ρ(x), h(x), and
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FIG. 1. Distributions of density ρ(x ), heat release region h(x ), and measurement region wρ for (a) the
Rijke tube in [33] and (b) a simplified model of a H2/LOx rocket engine. The dimensional, reference, and
nondimensional quantities are in Table I.

wρ (x) are shown in Fig. 1. The dimensional quantities are held in fun_param_dim.m and converted
to reference quantities and nondimensional quantities in fun_param_nondim.m. The distributions
are calculated in fun_rh.m, fun_h.m, and fun_wr.m.

The first eigenmode of each test case is shown in Fig. 2, calculated with the finite-difference
method of the strong form (FDS), the finite-element method (FEW), the finite-difference method
of the weak form (FDW), and the summation by parts finite-difference method of the strong form
(SBP) using the nonlinear (nonlin) and linear (linear) iteration procedures. For presentation,
the eigenfunctions have been normalized such that

∫
p2dx = 1. In each plot there are eight lines,

which all lie on top of each other, showing that the eigenfunctions are identical to the eye. Studying
the eigenvalues reveals that the two iteration procedures (linear and nonlin) converge to the
same eigenvalues for each spatial discretization. The eigenvalues depend slightly on whether the
Robin boundary conditions are enforced through replacement (FDS) or not (FEW, FDW, and SBP).
Enforcing them through replacement is more accurate, with a boundary error of order 10−12 for
FDS, as compared to a boundary error of order 10−3 for FDS, FEW, and FDW. This boundary error is
displayed by toggling show_boundary_error in fun_Helm.m.

IV. SOLVING THE ADJOINT PROBLEM

A. Definition of the adjoint eigenfunction and the left eigenvector

Equation (12) is the direct continuous eigenvalue problem in the strong form. Using the inner
product (11), this can be premultiplied by a function p†(x):

〈p†,G(s)p〉 ≡ 〈p†, (A(s) − s2C)p〉 = 0. (20)

For a given eigenvalue s, the corresponding direct eigenfunction p(x) satisfies (20) for arbitrary
p†(x) and the corresponding adjoint eigenfunction p†(x) satisfies (20) for arbitrary p(x). This is
the definition of the adjoint eigenfunction p†(x).

There is an equivalent definition for the discretized problem. The corresponding generalized
matrix eigenvalue problem (13) is premultiplied by a column vector zH :

zH G(s)p ≡ zH (A(s) − s2C)p = 0. (21)

For a given eigenvalue s, the corresponding right eigenvector p satisfies (21) for arbitrary z and
the corresponding left eigenvector z satisfies (21) for arbitrary p. This is the definition of the left
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SBP DA nonlin s = 0.001924 + 3.425247i
SBP DA linear s = 0.001924 + 3.425247i
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FEW DA nonlin s = 0.461786 + 4.038140i
FEW DA linear s = 0.461786 + 4.038139i
FDW DA nonlin s = 0.461979 + 4.038162i
FDW DA linear s = 0.461979 + 4.038162i
SBP DA nonlin s = 0.461817 + 4.038056i
SBP DA linear s = 0.461817 + 4.038056i

FIG. 2. Direct pressure p and velocity u eigenfunctions calculated with four different spatial discretizations
(FDS, FEW, FDW, and SBP ) and two iteration procedures (nonlin and linear) for the (a) Rijke tube and
(b) model rocket engine, for N = 100. All eight lines lie on top of each other and all eigenvalues are the same
to the requested tolerances. This figure was created with Fig_002.m. The agreement between the methods can
be improved by increasing N .

eigenvector z. By taking the Hermitian of (21), it is easily shown that the left eigenvectors of
the direct problem (A − s2C) are the right eigenvectors of the adjoint problem (AH − s∗2CH ).
This identity can be used if a matrix eigenvalue solver does not compute the left eigenvectors
automatically.

B. Discrete adjoint of the strong form (FDS_DA and SBP_DA)

The discretized form of (20) is

p†H MGp ≡ p†H M(A − s2C)p = 0, (22)

where p† contains the values of the adjoint eigenfunction p†(xi ) at the collocation points and M is
the mass matrix. In Secs. III A and III D, the discretized forms of A and C in (12) were premultiplied
by M to create A and C in (13) and (17). This ensures that the left eigenvectors of the discretized
problem, z in (21), are the values of the adjoint eigenfunction p†(xi ) in (20) at the collocation
points.
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The advantage of finding the adjoint eigenfunction through this approach, which is known as the
discrete adjoint approach, is that the direct and adjoint problems use the same matrices A and C
and therefore contain the same discretization and truncation errors and have the same eigenvalues to
machine precision. Another advantage is that the boundary conditions are already embedded within
A and C and do not need to be evaluated separately. The disadvantage is that, when Neumann or
Robin boundary conditions are applied by replacing rows in A and C, as done for FDS in Sec. III A,
(i) the left eigenvector takes an arbitrary value at the wall and (ii) the left eigenvector oscillates
around the boundary, for as many grid points as there are in the stencil in the difference matrix
D. This disadvantage can be avoided by ensuring that the A matrix satisfies a summation by parts
formula and that the boundary conditions are applied with the simultaneous approximation term, as
described in Sec. III D for SBP.

The first disadvantage of the FDS_DA method arises because Dirichlet, Neumann, and Robin
boundary conditions are imposed by replacing the bottom row of A with the boundary condition
on p and setting the bottom right element of C to zero. This causes C to become noninvertible,
which results in a right eigenvector with an infinite eigenvalue. This eigenmode is discarded. For
all types of boundary condition, the bottom row of A can be multiplied by an arbitrary constant cu

without affecting the eigenvalues s or the right eigenvectors p (i.e., the thick blue lines in Fig. 2 do
not depend on cu). The arbitrary constant does, however, affect the corresponding left eigenvectors
z. For Dirichlet boundary conditions, the arbitrary constant only affects one left eigenvector: that
which is discarded because it has an infinite eigenvalue. All the physical left eigenvectors are
unaffected. For Neumann and Robin boundary conditions, however, every left eigenvector depends
on the arbitrary constant. This can be seen in Fig. 3, which shows the adjoint eigenfunctions
calculated with this method (the dark blue line) and the methods described in Secs. IV C and IV D
(the remaining seven colored lines). The supplementary file Sup_001.m [34] plots the direct and
adjoint eigenfunctions at different values of cu. This shows that the direct eigenfunction is unaffected
by cu while the adjoint eigenfunction at the boundary is strongly affected by cu. This problem can
be anticipated by examining (20) and recalling that A contains d2/dx2. Therefore, if one attempts
to find solutions for p† and p in the same function space, the inner product is formed between
two functions in different function spaces, i.e., with different numbers of degrees of freedom. In
this case, this means that p can be found unambiguously, but that p† can be found only up to two
arbitrary constants, which in this case are cu and cd . This disadvantage is not serious because it does
not affect the base state or feedback sensitivities (Sec. V C).

The second disadvantage of the FDS_DA method arises because, in p†H MG in (22), the left
eigenvector acts on the columns (rather than the rows) of G. The matrix G contains D, which is
a difference matrix in which row i performs a difference scheme to evaluate d/dx at point i, which
has a clear physical meaning. When p†H acts on column j of D, however, the result is the sum
of the contribution of point j to every difference scheme. This has no physical meaning unless a
central-difference scheme is used consistently at every point, in which case DH = D and p†H acting
on column j of D gives dp†/dx at point j . In general, however, there is no need for the difference
schemes in each row to be consistent with each other, i.e., there is no need for D to be Hermitian.
(For example, a central-difference scheme must shift to a downwind scheme as its stencil impinges
on the upstream boundary.) If the difference schemes in each row are not consistent with each other
then the value of p†H acting on column j of D contains contributions from different difference
schemes. In practice this leads to oscillations appearing in p† if p† is not zero at the boundary
(i.e., when non-Dirichlet boundary conditions are applied). These oscillations occur around the
boundaries for as many grid points as are in the stencil of the difference scheme. For the Chebyshev
difference scheme used in this paper, D is a full matrix with a different difference scheme in each
row. These oscillations therefore extend into the whole domain, as can be seen for FDS_DA in Fig. 3.
Their amplitude, but not their shape, depends on the value at the boundary and therefore on cu

and cd .
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FIG. 3. Adjoint pressure p† eigenfunctions calculated with four different spatial discretizations (FDS, FEW,
FDW, and SBP) with either the discrete adjoint method DA or the continuous adjoint method CA for the (a)
Rijke tube and (b) model rocket engine, for N = 100. The bottom two frames show a close-up around the
boundaries, revealing oscillations in the discrete adjoint of the finite difference of the strong form equations
with replacement boundary conditions (FDS_DA). For the rocket engine, the CA and DA eigenfunctions and
eigenvalues differ slightly from each other because wρ is not quite zero at the boundary (order 10−3), so the
neglected term in (24) has a slight influence. This figure was created with Fig_003.m. By running this with
larger N , one can check that the eigenvalues are the same to the requested tolerance.

C. Discrete adjoint of the weak form (FEW_DA and FDW_DA)

The continuous equations (12) can be integrated by parts once to give the weak form (14). When
discretized, this becomes (15) and (16). The left eigenvectors of (15a) and (16a), z, are the adjoint
eigenfunctions p†(xi ) evaluated at the collocation points xi . These are arranged in the column vector
p†. This approach has all the advantages of the discrete adjoint in the strong form but does not have
its disadvantages. First, this is because p† acts on DH , rather than D. Second, this is because s,
p, and p† are defined uniquely, without involving any arbitrary constants. (An arbitrary constant is
involved in imposing Dirichlet boundary conditions but this only affects the discarded eigenmode.)
Alternatively, this outcome can be anticipated by examining (14) and noting that each inner product
is between functions that exist in the same function space. This means that p† and p can be found
unambiguously, without involving arbitrary constants.
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D. Continuous adjoint in the strong form

Having defined the adjoint eigenfunction in (20), the test function z in (14) is now replaced with
the adjoint eigenfunction p† and Eq. (14) is integrated by parts a second time to give the strong form
of the continuous adjoint equations

〈p†, (A − s2C)p〉 =
[
p†∗v

dp

dx
− v

dp†∗

dx
p − wρ〈p†, ζn(e−sτ )h〉p

]1

0

+ 〈(A† − s∗2C†)p†, p〉 = 0,

(23a)

where

A†p† ≡ d

dx

(
v∗ dp†

dx

)
+

(
dw∗

ρ

dx

)
〈ζn(e−sτ )h, p†〉, (23b)

C† ≡ 1/γ ∗. (23c)

Equation (23) must be satisfied for arbitrary p. The inner product term in (23a) provides the
continuous adjoint equations (A† − s∗2C†)p† = 0. The eigenvalue of the adjoint problem is the
complex conjugate of that of the direct problem. The boundary term in (23a) provides the boundary
conditions for the adjoint eigenfunction p† in terms of those for the direct eigenfunction p.
For homogeneous Dirichlet boundary conditions on p, the boundary term requires homogeneous
Dirichlet boundary conditions on p†, by inspection. For Robin boundary conditions dp/dx = kp,
each boundary must satisfy

p†∗vk − v
dp†∗

dx
− wρ〈p†, ζn(e−sτ )h〉 = 0. (24)

If the measurement function wρ smoothly tends to zero at the boundary then this simply requires
dp†/dx = k∗p†, which are Robin boundary conditions on p†. However, if wρ does not smoothly
tend to zero at the boundary then the boundary condition on p† requires information about p† in the
entire domain, through the inner product 〈p†, ζn(e−sτ )h〉. Solving this is difficult and it is therefore
wise to move the boundary to ensure that wρ smoothly tends to zero at the boundary. (This effect
can be seen particularly clearly by comparing the CA and DA eigenvalues for the model rocket when
the measurement location Xw is moved close to the inlet.)

The continuous approach has the advantage that the adjoint eigenfunction p† can unambiguously
be calculated in the same function space as the direct eigenfunction p without the use of arbitrary
constants. It has two slight disadvantages. First, the boundary conditions have to be evaluated
and implemented separately, which can be challenging and error prone. Second, the direct and
adjoint problems can have different discretizations, different truncation errors, and different solution
algorithms. This means that the direct and adjoint eigenvalues are not identical to machine
precision. This precludes the use of stringent convergence tests to debug the continuous adjoint
code (Sec. V F). It may be convenient to write a discrete adjoint code in order to debug a continuous
adjoint code, which was the approach taken in [35].

The continuous approach also provides a physical interpretation of the adjoint variable. The heat
release term of the direct equation (12b) can be integrated by parts once to give

Ap = d

dx

(
v
dp

dx

)
+ ζn(e−sτ )h

〈
dw∗

ρ

dx
, p

〉
(25)

if, as is likely, h = 0 at the boundaries. The acoustic terms (the first terms) in (23b) and (25) are the
same. This is expected because acoustic equations are self-adjoint in the absence of damping and
forcing. The heat release terms (the second terms) in (23b) and (25) are mirror images of each other.
In the direct equation (25), the amplitude of the forcing is determined by the integral of the pressure
and the gradient of the measurement function w′

ρ , while its position is determined by the heat release
function (e−sτ )h(x). In brief, this term is influenced by the measurement region and influences the
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heat release region. In the adjoint equation (23b), the amplitude of the forcing is determined by the
integral of the adjoint pressure and heat release function, while its position is determined by the
gradient of the measurement function. In brief, this term is influenced by the heat release region and
influences the measurement region. This shows that the system becomes more non-self-adjoint the
more that (e−sτ )h differs from w′

ρ . This difference is caused by the spatial separation of the peaks
of h(x) and w(x), and the time delay τ (x). This has physical implications (Sec. VIII). Note also
that if the measurement region is a Dirac δ, w(x) = δ(x − xref ), as is often the case in practical
implementations, then the heat release term in the above adjoint equation contains the derivative of
a Dirac δ. It is then advisable to integrate this term by parts so that this becomes the evaluation of
dp/dx at xw. In this paper, xw is expanded to a measurement region in order to avoid this.

E. Implementation of the continuous adjoint equations *_CA

A column vector w′
ρ is defined to contain dwρ/dx at the collocation points. The discretized

forms of (23) are

G†(s)p† ≡ (A†(s) − s∗2C†)p† = 0, (26)

where, for the finite difference of the strong form (mat_AC_FDS_CA.m),

A† ≡ MDVD + Mζnw′
ρhH (e−s∗τ ∗

)M, (27a)

C† ≡ M/γ ; (27b)

for the finite element of the weak form (mat_AC_FEW_CA.m),

A†
11 ≡ −DH

01M00V00D01 + M11ζnw′
ρ1hH

1 (e−s∗τ ∗
1 )M11, (28a)

C†
11 ≡ M11/γ ; (28b)

for the finite difference of the weak form (mat_AC_FDW_CA.m),

A† ≡ −DH MVD + Mζnw′
ρhH (e−s∗τ ∗

)M, (29a)

C† ≡ M/γ ; (29b)

and for the finite difference of the strong form obeying a summation by parts formula and with the
simultaneous approximation term (mat_AC_SBP_CA.m),

A† ≡ −DH
01M00V00D01 + ṼS + Mζnw′

ρhH (e−s∗τ ∗
)M, (30a)

C† ≡ M/γ. (30b)

The boundary conditions are applied in the same way as for the direct equations, but with the
complex conjugates of ku and kd for Robin boundary conditions.

F. Iteration procedures

For the discretized direct systems (13)–(17), the left eigenvector z in (21) contains the values
of the adjoint eigenfunction at the grid points p†(xi ) in (20) as explained in Secs. IV B and IV C.
For the Newton method, this left eigenvector is found by calculating the null space of GH . For
the active iteration method, this left eigenvector is calculated alongside the right eigenvector using
fun_eig_nearest.

For the continuous adjoint equations (27)–(30), solutions are found in the same ways as for the
direct problem: (i) the Newton method applied to the nonlinear eigenvalue problem |G†(s)| = 0 and
(ii) the active iteration method applied to the sequence of linear eigenvalue problems A†(sj−1)p† =
s∗2
j C†p†. In each case, the values of the adjoint eigenfunction at the grid points p†(xi ) in (20) are

the components of the right eigenvector p†.
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G. Results

Figure 3 shows the adjoint eigenfunctions calculated with the discrete (DA) and continuous (CA)
adjoint approaches for the finite difference in the strong form (FDS), the finite element (FEW), the
finite difference in the weak form (FDW), and the summation by parts finite difference (SBP). For
presentation, they have been normalized such that

∫ 1
0 p†2

dx = 1. From a computational point of
view, the main point is that all the methods give the same results but the discrete adjoint of the
finite difference of the strong form (FDS_DA) gives arbitrary values at the boundary and oscillations
around the boundary, as described in Sec. IV B. From a physical point of view, Fig. 3 shows that
the adjoint pressure eigenfunction p† changes abruptly at the measurement region, while the direct
pressure and velocity eigenfunctions p and u in Fig. 2 change at the heat release region. These
features can be anticipated by comparing (23b) with (25) and show clearly that the problem is not
self-adjoint. The adjoint eigenfunctions are used to calculate the base state sensitivities (Sec. V), the
feedback sensitivities (Sec. VI), and the receptivities (Sec. VII).

V. BASE STATE SENSITIVITY ANALYSIS

In this section, the theory and numerics of the base state sensitivity analysis is described for the
continuous framework (Sec. V A) and the discrete framework (Sec. V B) in the FDS, FEW, FDW, and
SBP formulations. The physical interpretation of the base state sensitivities is in Sec. VIII C.

A. Base state sensitivities in the continuous framework

The direct equation (12) is an eigenvalue problem G(s)p = 0, possibly with boundary conditions
that depend on s. If the operator G(s) is perturbed to G + εδG then each eigenvalue shifts to s +
εδs and its corresponding direct eigenfunction to p + εδp. The governing equations must still be
satisfied, so (

G(s) + εδs
dG

ds
+ εδG

)
(p + εδp) + O(ε2) = 0. (31)

This is correct for nondegenerate eigenvalues. The sensitivity of degenerate eigenvalues requires a
different approach [36]. Considering terms at order ε gives

Gδp + δs
dG

ds
p + (δG)p = 0. (32)

Using the inner product (11), this expression is premultiplied by the corresponding adjoint
eigenfunction, which is defined such that 〈p†,Gf 〉 = 0 for any f , and rearranged to

δs = 〈p†, (δG)p〉
α

, (33a)

where

α ≡
〈
p†,−dG

ds
p

〉
=

〈
p†,−

(
∂G

∂s

∣∣∣∣
k

+ dk

ds

∂G

∂k

∣∣∣∣
s

)
p

〉
. (33b)

The final term in (33b) accounts explicitly for frequency-dependent Robin boundary conditions.
From (12), ∂G/∂s|k = ζn(τe−sτ )h〈w∗

ρ, d/dx〉 − 2sC. In order to make k appear explicitly in (33b),
the equation is integrated by parts to obtain (dk/ds) × (∂/∂k) of (14). Then dp/dx in the boundary
term is replaced with kp. Then this is differentiated with respect to k. If w∗

ρ = 0 at the boundaries,
which is good practice because of (24), the final expression for α is

α = −
〈
p†, ζn(τe−sτ )h

〈
w∗

ρ,
dp

dx

〉
− 2sC

〉
− p†

uvu

dku

ds
pu − p†

dvd

dkd

ds
pd, (34)

where the final two terms are required only for frequency-dependent Robin boundary conditions.
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The numerator of (33a) is considered next. The operator G depends on the base state variables
v(x), n, τ (x), h(x), and wρ (x), described generically as b(x), and the Robin boundary conditions
ku and kd , described generically as k. If these base state variables are each perturbed by ε then the
numerator of (33) is found by setting z = p† in (14) and perturbing each base state variable to give

〈p†, (δG)p〉 = + p†∗
d (δvd )kdpd + p†∗

dvd (δkd )pd + p†∗
u(δvu)kupu + p†∗

uvu(δku)pu

−
〈
dp†

dx
, (δv)

dp

dx

〉
−

〈〈〈
p†, ζ (δn)(e−sτ )h

〈
w∗

ρ,
dp

dx

〉〉〉〉

−
〈〈〈
p†, ζn(−s(δτ )e−sτ )h

〈
w∗

ρ,
dp

dx

〉〉〉〉
−

〈〈〈
p†, ζn(e−sτ )(δh)

〈
w∗

ρ,
dp

dx

〉〉〉〉

−
〈〈〈
p†, ζn(e−sτ )h

〈
(δw∗

ρ ),
dp

dx

〉〉〉〉
. (35)

(Note that the upstream boundary terms are positive because the upstream surface normal points in
the negative x direction.) If the base state perturbation δb or δk is known a priori then the eigenvalue
shift δs is found by substituting δb or δk into (35). If the base state perturbation is not known a priori
then it is useful instead to define the sensitivities ∂s/∂k and ∂s/∂b(x) such that

∂s

∂k
δk ≡ lim

ε → 0
s(k + εδk) − s(k)

ε
≡ δs, (36)

∫ 1

0

∂s

∂b
(x)δb(x)dx ≡ lim

ε → 0
s(b(x) + εδb(x)) − s(b(x))

ε
≡ δs. (37)

These sensitivities give the influence of δk at the boundary and δb(x) at every point in space.
They are defined without complex conjugation, unlike the inner product (11), so the corresponding
MATLAB code is easier to read. Equating (36) and (37) with the relevant terms in (35) leads to the
algebraic expressions for the base state sensitivities in the top left quadrant of Table II. This process
also gives the sensitivity to local density changes at the boundary, but this has little relevance and is
not recorded here. These sensitivities are calculated with the MATLAB code fun_ds_CA.m and are
the same for all four discretizations. They are shown in Fig. 4 for the four discretizations (FDS_CA,
FEW_CA, FDW_CA, and SBP_CA).

B. Base state sensitivities in the discrete framework

In the discrete framework, all boundary conditions are embedded within the matrix G and so do
not need to be considered separately. An analysis similar to (31) and (32), but for matrices with left
and right eigenvectors p† and p, gives

δs = p†HδGp
α

(38)

where

α ≡ p†H
(

dG
ds

)
p.

In the discrete framework the base state perturbation is a column vector δb and the sensitivity of
s is defined as the row vector ∂s/∂b such that

δs = (∂s/∂b)δb. (39)

For the discretized equations in the strong form (13), the sensitivities with respect to the base state
variables are given in the top right quadrant of Table II and are coded into mat_AC_FDS_DA.m.
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TABLE II. Base state sensitivities derived in the continuous framework (33), discretized strong form,
discretized weak form, and SBP SAT discretized strong form. The inner product α is defined in (33b) and
(38). Expressions within curly brackets {◦} and the inner product 〈◦, ◦〉 are numbers. Expressions within
parentheses (◦) or square brackets [◦] are functions of x in the continuous framework and row vectors in
the discrete frameworks. The symbol � denotes element by element multiplication of two row vectors.

Base state
sensitivity Continuous (*_CA) Discretized strong form (FDS_DA)

{∂s/∂ku} p†∗
uvupu/α p†∗

ucupu/α

{∂s/∂kd} p†∗
dvdpd/α −p†∗

dcdpd/α

(∂s/∂v) −( dp†

dx
)∗( dp

dx
)/α (p†H MD) � (Dp)T /α

{∂s/∂n} −〈p†∗, ζ (e−sτ )h〉〈w∗
ρ,

dp

dx
〉/α −{p†H Mζ (e−sτ )h} × {wT

ρ MDp}/α
(∂s/∂τ ) (p†∗)[ζns(e−sτ )h]〈w∗

ρ,
dp

dx
〉/α (p†H M) � [ζns(e−sτ )h]T × {wT

ρ MDp}/α
(∂s/∂h) −(p†∗)[ζn(e−sτ )]〈w∗

ρ,
dp

dx
〉/α −[p†H Mζn(e−sτ )] × {wT

ρ MDp}/α
(∂s/∂w∗

ρ ) −〈p†∗, ζn(e−sτ )h〉( dp

dx
)/α −{p†H Mζn(e−sτ )h} × (MDp)T /α

Base state
sensitivity Discretized weak form (FEW_DA and FDW_DA) SBP SAT (SBP_DA)

{∂s/∂ku} p†∗
uvupu/α p†∗

uvupu/α

{∂s/∂kd} p†∗
dvdpd/α p†∗

dvdpd/α

(∂s/∂v) −(p†H
1 DH

01M00 ) � (D01p1)T /α −(p†H DH
01M00 ) � (D01p)T /α

{∂s/∂n} −{p†H
1 M11ζ (e−sτ1 )h1} × {wT

ρ0M00D01p}/α −{p†H Mζ (e−sτ )h} × {wT
ρ MD1p}/α

(∂s/∂τ ) (p†H
1 M11) � [ζns(e−sτ1 )h1]T × {wT

ρ0M00D01p1}/α (p†H M) � [ζns(e−sτ )h]T × {wT
ρ MD1p}/α

(∂s/∂h) −[p†H
1 M11ζn(e−sτ1 )] × {wT

ρ0M00D01p1}/α −[p†H Mζn(e−sτ )] × {wT
ρ MD1p}/α

(∂s/∂w∗
ρ ) −{p†H

1 M11ζn(e−sτ1 )h1} × (M00D01p1)T /α −{p†H Mζn(e−sτ )h} × (MD1p)T /α

For the discretized equations in the weak form (15), the sensitivities with respect to the base state
variables are given in the bottom left quadrant of Table II and are coded into mat_AC_FEW_DA.m
and mat_AC_FDW_DA.m. For the discretized equations in the strong form using a summation by
parts formula with a simultaneous approximation term, the sensitivities are given in the bottom
right quadrant of Table II and are coded into mat_AC_SBP_DA.m. They are plotted in Fig. 4.

In the finite-element framework, the base state sensitivities are the same types of function as their
respective base state variable. Therefore, ∂s/∂h1 and ∂s/∂τ1 are P1 while ∂s/∂wρ0 and ∂s/∂v0 are
P0. For the weak form equations and the strong form equations in SBP SAT form, vuku is added
to the bottom right element and vdkd is added to the top left element of A. The corresponding
sensitivities to ku and kd are given in Table II. For the strong form equations with replacement
boundary conditions, a Robin upstream boundary condition is imposed by replacing the bottom row
of A with the bottom row of D, then adding ku to the bottom right element, and multiplying the
whole row by an arbitrary constant cu. For the downstream boundary condition, a similar procedure
is used but kd is subtracted from the top left element and the arbitrary constant is cd . The inclusion of
cu and cd in ∂s/∂ku and ∂s/∂kd means that ∂s/∂ku and ∂s/∂kd are calculated exactly (as shown in
Fig. 4), even though the boundary values of the left eigenvector p†

u and p†
d depend on the arbitrary

constants cu and cd .

C. Problems with the base state sensitivities in the discrete strong form

Examination of the expressions in Table II reveals subtle features of the sensitivities derived
from the discretized strong form equations with replacement boundary conditions FDS_DA. The
first feature is that, although δv and δwρ contain N + 1 independent elements, their corresponding
sensitivities ∂s/∂v and ∂s/∂wρ contain only N independent elements. This can be seen in Table II:
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(a)
FDS_DA FDS_CA
FEW_DA FEW_CA
FDW_DA FDW_CA
SBP_DA SBP_CA
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0

0.02

0.04

0 0.2 0.4 0.6 0.8 1
0

0.05

0 0.2 0.4 0.6 0.8 1
0

5

FDS DA ∂s/∂n = +0.178439− 0.023278i
FDS CA ∂s/∂n = +0.178439− 0.023278i
FEW DA ∂s/∂n = +0.178385− 0.023319i
FEW CA ∂s/∂n = +0.178382− 0.023338i
FDW DA ∂s/∂n = +0.178439− 0.023278i
FDW CA ∂s/∂n = +0.178439− 0.023278i
SBP DA ∂s/∂n = +0.178323− 0.023277i
SBP CA ∂s/∂n = +0.178327− 0.023253i
FDS DA ∂s/∂ku = +0.000553− 0.000668i
FDS CA ∂s/∂ku = +0.000553− 0.000668i
FEW DA ∂s/∂ku = +0.000553− 0.000668i
FEW CA ∂s/∂ku = +0.000553− 0.000668i
FDW DA ∂s/∂ku = +0.000553− 0.000668i
FDW CA ∂s/∂ku = +0.000553− 0.000668i
SBP DA ∂s/∂ku = +0.000553− 0.000668i
SBP CA ∂s/∂ku = +0.000553− 0.000668i
FDS DA ∂s/∂kd = +0.000702− 0.000839i
FDS CA ∂s/∂kd = +0.000702− 0.000839i
FEW DA ∂s/∂kd = +0.000702− 0.000839i
FEW CA ∂s/∂kd = +0.000702− 0.000839i
FDW DA ∂s/∂kd = +0.000702− 0.000839i
FDW CA ∂s/∂kd = +0.000702− 0.000839i
SBP DA ∂s/∂kd = +0.000702− 0.000838i
SBP CA ∂s/∂kd = +0.000702− 0.000838i

(b)
FDS_DA FDS_CA
FEW_DA FEW_CA
FDW_DA FDW_CA
SBP_DA SBP_CA
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50

FDS DA ∂s/∂n = +0.018691 + 0.022693i
FDS CA ∂s/∂n = +0.018715 + 0.022716i
FEW DA ∂s/∂n = +0.018677 + 0.022686i
FEW CA ∂s/∂n = +0.018712 + 0.022723i
FDW DA ∂s/∂n = +0.018691 + 0.022693i
FDW CA ∂s/∂n = +0.018715 + 0.022716i
SBP DA ∂s/∂n = +0.018688 + 0.022698i
SBP CA ∂s/∂n = +0.018735 + 0.022736i
FDS DA ∂s/∂ku = −2.984076 + 2.894226i
FDS CA ∂s/∂ku = −2.983423 + 2.891128i
FEW DA ∂s/∂ku = −2.983221 + 2.892682i
FEW CA ∂s/∂ku = −2.981437 + 2.885780i
FDW DA ∂s/∂ku = −2.984076 + 2.894225i
FDW CA ∂s/∂ku = −2.983415 + 2.891133i
SBP DA ∂s/∂ku = −2.985267 + 2.894484i
SBP CA ∂s/∂ku = −2.985075 + 2.891926i
FDS DA ∂s/∂kd = +1.201426− 2.116687i
FDS CA ∂s/∂kd = +1.204851− 2.113137i
FEW DA ∂s/∂kd = +1.202273− 2.115615i
FEW CA ∂s/∂kd = +1.208283− 2.109138i
FDW DA ∂s/∂kd = +1.201426− 2.116687i
FDW CA ∂s/∂kd = +1.204850− 2.113128i
SBP DA ∂s/∂kd = +1.201761− 2.117325i
SBP CA ∂s/∂kd = +1.206799− 2.112346i

FIG. 4. Absolute values of the base state sensitivities (∂s/∂τ , ∂s/∂h, ∂s/∂wρ , ∂s/∂v, ∂s/∂n, ∂s/∂ku, and
∂s/∂kd ) calculated with the discrete adjoint method (DA) and continuous adjoint method (CA) for four spatial
discretizations (FDS, FEW, FDW, and SBP) and for the (a) Rijke tube and (b) model rocket engine, for N = 100.
All lines except FDS_DA lie on top of each other and all sensitivities to n, ku, and kd are the same to the requested
precision. This figure was created with Fig_004.m. Higher precision can be achieved by increasing N .
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The matrix D represents d/dx and therefore has rank N , meaning that ∂s/∂v is element by element
multiplication of two row vectors containing N independent elements and ∂s/∂wρ is the product
of a scalar with a vector (MDp)T containing N independent elements. This does not cause any
problems and is analogous to the fact that, in the finite-element formulation, ∂s/∂v0 and ∂s/∂wρ0

are P0 functions.
The second feature is due to the fact that, for non-Dirichlet boundary conditions in the FDS_DA

framework, the left eigenvector p† oscillates, as explained in Sec. IV B and shown in the bottom
frames of Fig. 3. For ∂s/∂τ , ∂s/∂h, and ∂s/∂v, which contain p† outside an inner product, these
oscillations propagate into the sensitivities. The dependence on cu and cd disappears, however,
because they appear in both the numerator and denominator of (38). The supplementary file
Sup_002.m [34] plots the FDS_DA base state sensitivities at different values of cu, confirming that
the oscillations persist but do not depend on cu. These oscillations do not appear in ∂s/∂wρ , because,
for this sensitivity, p† is multiplied by h within an inner product and is then applied equally to every
point in space.

The third feature is an extension of the second and is due to p†H MD in the ∂s/∂v term. For
reasons described in Sec. IV B, the action of p†H on D for non-Dirichlet boundary conditions
creates oscillations in ∂s/∂v. The fourth feature is due to the way that the boundary conditions are
implemented in FDS. The top and bottom rows of A are replaced with the boundary conditions,
which removes the influence of the boundary values of h and τ and forces the corresponding
sensitivity to be zero at the boundaries. These problems can all be avoided by using the continuous
adjoint method, the discretized strong SBP SAT form, or one of the discretized weak form methods.

D. Relationship between the continuous and the discrete frameworks

In the continuous framework (37) the sensitivity ∂s/∂b is calculated with respect to variations
in a continuous function δb. In the discrete framework (39) the sensitivity ∂s/∂b is calculated
with respect to variations at a grid point δb. The two are related by equating (37) with (39):
δs = ∫

(∂s/∂b)δb dx = (∂s/∂b)δb. If (∂s/∂b)cont is defined to be a row vector containing the value
of ∂s/∂b at the grid points xi then, for arbitrary δb,

(∂s/∂b)contM = ∂s/∂b. (40)

Equivalently, the value of the continuous sensitivity at a grid point (∂s/∂b)cont is given by
(∂s/∂b)M−1. When dimensional, the dimensions of ∂s/∂b are [s][b]−1, while the dimensions of
(∂s/∂b)cont are [s][b]−1L−�, where � is the spatial dimension of the problem (1, 2, or 3). The
MATLAB function fun_Helm.m returns ∂s/∂b when the discrete adjoint is requested and (∂s/∂b)cont

when the continuous adjoint is requested.

E. Propagating sensitivities through the active iteration method

In the active iteration method, the nonlinear eigenvalue problem (12) is solved as a sequence
of linear eigenvalue problems, as described in Sec. III E. At the j th iteration, the operator A in
(12) is labeled Aj and depends on sj−1 through the time delay term esj−1τ and the Robin boundary
conditions ku(sj−1) and kd (sj−1). The change in the operator Aj is therefore caused not only by a
perturbation to the base state variables at that iteration but also by the shift in the eigenvalue at the
previous iteration, acting through (esj−1τ ), ku, and kd . To obtain the base state sensitivity exactly, this
eigenvalue shift must be propagated through the iterations. The eigenvalue shift at the j th iteration
is given by

δsj =
∫ 1

0

∂sj

∂b(x)

∣∣∣∣
sj−1

δb(x)dx + ∂sj

∂sj−1

∣∣∣∣
b(x)

δsj−1, (41)
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where

∂sj

∂sj−1

∣∣∣∣
b(x)

= 1

2sj

(
〈p†

j , (∂A/∂s)j−1pj 〉
〈p†

j , Cpj 〉

)
≡ ξj . (42)

The eigenvalue shift at the final iteration δsJ is found by applying (41) recursively back to δs0,
which is zero:

δsJ =
J∑

j=1

χj

∫ 1

0

∂sj

∂b(x)

∣∣∣∣
sj−1

δb(x) dx with χj ≡
{

1 for j = J∏J−1
j ξj for j = 1 to J − 1.

(43)

Moving the summation into the integral gives the base state sensitivity of sJ in terms of the base
state sensitivities of each iteration sj , which are listed in Table II:

∂sJ

∂b(x)
=

J∑
j=1

χj

∂sj

∂b(x)

∣∣∣∣
sj−1

. (44)

The quantity χj , which can be calculated during the forward iteration, gives the influence of the
j th iteration on the final eigenvalue sJ . For a well-converged solution, χJ is much greater than
all the other χj and, to a good approximation, δsJ is given by δsj at the final iteration. This is of
practical interest because it reduces the number of direct and adjoint eigenfunctions that need to
be stored in order to obtain an accurate base state sensitivity. Another convenient point is that the
discrete adjoint codes can be debugged (Sec. V F) by considering just two iterations (i.e., before
convergence), which speeds up code development.

F. Debugging the discrete base state sensitivities with a Taylor test

The eigenvalue shift δs for a given base state δb can be calculated via the finite difference:
δs = s(b + δb) − s(b). If the eigenvalue is analytic with respect to the perturbation, this eigenvalue
shift can also be expressed as a Taylor expansion

δs = ∂s

∂b
δb + 1

2

∂2s

∂b2
(δb)2 + O(δb)3. (45)

In the discrete framework, the left and right eigenvectors p† and p, respectively, are calculated
to machine precision from the same matrix. The first-order sensitivity ∂s/∂b in (39) is therefore
calculated to machine precision. The difference between δs calculated with a finite-difference
method and δs calculated with the adjoint method must therefore increase in proportion to (δb)2

and higher orders. If it increases in proportion to δb then there is a bug in the code. This is a
stringent and helpful test for debugging. This is implemented in the MATLAB function fun_TT.m.

VI. FEEDBACK SENSITIVITY

In this section, the feedback sensitivity is defined (Sec. VI A) and then the theory and numerics
are described for the continuous framework (Sec. VI B) and the discrete framework (Sec. VI C), in
the FDS, FEW, FDW, and SBP formulations. The physical interpretation of the feedback sensitivities is
in Sec. VIII B.

A. Linear modeling of passive feedback devices

All feedback devices can be modeled in terms of their feedback from u and/or p into the mass,
momentum, and/or energy equations. The feedback can be local in space and time, which would be
typical for control via a passive device, or nonlocal, which would be typical for feedback control
with a noncolocated sensor and actuator. In this paper, only local feedback will be considered,
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FIG. 5. Absolute values of the feedback sensitivities (∂s/∂ṁρ,u, ∂s/∂ṁρ,p , ∂s/∂fρ,u, ∂s/∂fρ,p , ∂s/∂q̇p,u,
and ∂s/∂q̇p,p) calculated with the discrete adjoint method (DA) and continuous adjoint method (CA) for four
spatial discretizations (FDS, FEW, FDW, and SBP) for the (a) Rijke tube and (b) model rocket engine, for N = 100.
All lines lie on top of each other except FDS_DA, which oscillates. These results were created with Fig_005.m.

described by the functions δṁρ,u, δṁρ,p, δfρ,u, δfρ,p, δq̇p,u, δq̇p,p, such that the feedback terms in
(10) are local linear functions of u and p:

δṁρ = δṁρ,uu + δṁρ,pp, (46a)

δfρ = δfρ,uu + δfρ,pp, (46b)

δq̇p = δq̇p,uu + δq̇p,pp. (46c)

The change δA to the linear operator A in (12b) is found by substituting (46) into (10).

B. Feedback sensitivity in the continuous framework

The feedback causes a change δA in the operator (12b). The sensitivity of the eigenvalue s to this
change is found from the numerator of (33), noting that δG = δA:

〈p†, (δA)p〉 = 〈p†, sδṁρ,uu〉 + 〈p†, sδṁρ,pp〉 +
〈
dp†

dx
, δfρ,uu

〉
+

〈
dp†

dx
, δfρ,pp

〉

− [p†δfρ,uu + p†δfρ,pp]1
0 + 〈p†, sζ δq̇p,uu〉 + 〈p†, sζ δq̇p,pp〉. (47)

In (47), the δfρ,u and δfρ,p terms have been integrated by parts. Their boundary terms can be
calculated but are of little value and are dropped from the subsequent analysis. The eigenvalue
shift can be found if the feedback mechanism is known a priori. It is more useful, however,
to obtain the influence of local feedback at every point in space ∂s/∂l(x) defined such that
δs ≡ ∫

(∂s/∂l)δl d(x), where δl represents the functions δṁρ,u, δṁρ,p, δfρ,u, δfρ,p, δq̇p,u, or δq̇p,p.
The feedback sensitivities are listed in Table III and are shown in Fig. 5 (FDS_CA, FEW_CA, FDW_CA,
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and SBP_CA). These four lines all lie on top of each other, showing that there are no numerical
problems when deriving the feedback sensitivities in the continuous framework.

C. Feedback sensitivity in the discretized strong form equations

For the finite-difference method applied to the strong form Sec. III A, the feedback causes a
change δA in the matrix A [Eq. (13b)] such that

δA = sM(δṀρ,u)U + sM(δṀρ,p ) − MD(δFρ,u)U − MD(δFρ,p )

+ sζM(δQ̇p,u)U + sζM(δQ̇p,p ), (48)

where U ≡ −VD/s and δṀρ,u is a matrix containing the values of δṁρ,u(xi ) along the diagonal.
(The other δ matrices are similarly defined.) The eigenvalue shift is then given by (38) with
δG = δA. The feedback sensitivity in the discrete framework (δs/δl) is a row vector such that
δs = (∂s/∂l)δl. The value of the continuous sensitivity at a grid point point (∂s/∂l)cont is given by
(∂s/∂l)M−1. These feedback sensitivities are listed in Table III and shown in Fig. 5 (FDS_DA). The
problems described in Sec. V C carry through to the feedback sensitivities.

D. Feedback sensitivity in the finite-element framework

In order to implement the feedback terms in the finite-element framework, it is necessary to
consider whether each local feedback function δl(x) should be a P0 or P1 function. The direct
and adjoint eigenfunctions p and p†, respectively, are P1 functions, while u and dp†/dx are P0
functions. In (47), the inner products containing δṁρ,p and δq̇p,p are formed between two P1
functions, so δṁρ,p and δq̇p,p are P1 functions. Similarly, the inner product containing δfρ,u is
formed between two P0 functions, so δfρ,u is a P0 function. The remaining three inner products
contain both P0 and P1 functions and, because inner products can be formed between P0 and P1
functions using the M01 matrix, one could define δṁρ,u, δfρ,p, and δq̇p,u to be either P0 or P1
functions. Their corresponding feedback sensitivities ∂s/∂ṁρ,u, ∂s/∂fρ,p, and ∂s/∂q̇p,u, however,
have to be P0 functions. This is because M01 has rank N and its application to a P1 function
removes one degree of freedom. Consequently, the feedback sensitivities are element by element
multiplication of two row vectors with N degrees of freedom and have to be P0 functions. It is then
convenient (although not essential) to define δṁρ,u, δfρ,p, and δq̇p,u to be P0 functions as well. With
these definitions, the feedback causes a change δA11 in the matrix A11 in (15b) such that

δA11 = M10s(δṀρ,u,00)U00 + M11s(δṀρ,p,11) + DH
01M00(δFρ,u,00)U00

+ DH
01M00(δFρ,p,00)M01 + M10sζ (δQ̇p,u,00)U00 + M11sζ (δQ̇p,p,11), (49)

where U00 ≡ −V00D01/s. There is a neater way to write the δFρ,p,00 term in (49). The matrices M00

and δFρ,p,00 are both diagonal, so their order can be swapped. Then M00M01 can be replaced with
M01, as described in Sec. III B. The term then becomes DH

01δFρ,p,00M01. These feedback sensitivities
are listed in Table III and shown in Fig. 5 (FEW_DA). The weak form of the finite-difference
framework is identical (FDW_DA). These lines lie on top of the other sensitivities, showing that there
are no numerical problems when the equations are expressed in the weak form.

E. Feedback sensitivity in the SBP SAT framework

The feedback sensitivities for the finite-difference method applied in the strong SBP SAT form
are a combination of the FDS and FEW forms. They are shown in Table III and plotted in Fig. 5
(SBP_DA). There are no numerical problems for this method.
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FIG. 6. Absolute values of the receptivity of the eigenvalue to periodic injection of ṁρ (x )esf t into the mass
equation (2c), fρ (x )esf t into the momentum equation (2d), and q̇p (x )esf t into the energy equation (2e), where
sf is an imaginary number equal to the angular frequency of forcing. From (6), the receptivity of the eigenvalue
to mass injection into the mass equation is ṁ

†
ρ/ρ, momentum injection into the momentum equation is f†ρ/ρ,

and heat injection into the energy equation is q̇
†
p/p. These are calculated with the discrete adjoint method

(DA) and continuous adjoint method (CA) for four spatial discretizations (FDS, FEW, FDW, and SBP) for the (a)
Rijke tube and (b) model rocket engine, for N = 100. All lines lie on top of each other except FDS_DA, which
oscillates. This figure was created with Fig_006.m.

VII. RECEPTIVITIES

A general approach to receptivity via adjoint equations, which is independent of the solution
method, can be found in [37] (Sec. 3.1.1), [38], [10], and [39] (Sec. 2.5). The most relevant result
from [39] is for constant amplitude forcing of a stable system. The system in this paper is forced
with periodic injection of ṁρ (x)esf t into the mass equation (2c), fρ (x)esf t into the momentum
equation (2d), and q̇p(x)esf t into the energy equation (2e), where sf is an imaginary number equal
to the angular frequency of forcing. Reference [39] [Eq. (17) therein] shows that the system’s
linear response has contributions from all eigenfunctions pk and is at the forcing frequency sf .
For mass injection, the amplitude of the contribution from eigenfunction pk is proportional to
〈p†

ks
∗, ṁρ〉/(sf − sk ), where sk is the eigenvalue of pk . The contribution from eigenfunction pk

is therefore greater (i) the closer sf is to sk and (ii) the more the spatial structure of the forcing
ṁρ projects onto the function p

†
ks

∗, which is labeled the receptivity ṁ
†
ρ,k (x). [This receptivity is the

term to the left of u in the expression for (∂s/∂ṁρ,u) in Table III.] Similarly, the expressions for the
receptivities to momentum and heat injection are f†ρ,k = dp

†
k/dx and q̇

†
p,k = p†

ks
∗ζ , respectively.

Reference [39] [Eq. (18) therein] also shows that, for constant amplitude forcing of a system with
one unstable eigenmode k, the system’s linear response has frequency or growth rate sk and spatial
structure pk . As before, the magnitude of the response is greater (i) the closer sf is to sk and (ii) the
more the spatial structure of the forcing ṁρ projects onto the receptivity ṁ

†
ρ,k (x).

The absolute values of the receptivities |ṁ†
ρ |, |f†ρ |, and |q̇†

p| are shown in Fig. 6 for the dominant
mode of the Rijke tube and rocket engine models. These show where the system is most receptive
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to open loop forcing. This will be interpreted physically in Sec. VIII A. As expected, there are no
numerical problems for the continuous adjoints (*_CA) and for the discrete adjoints constructed
from the weak form (FEW_DA and FDW_DA), but there are severe oscillations for the discrete adjoints
constructed from the strong form with replacement boundary conditions (FDS_DA).

VIII. PHYSICAL INTERPRETATION

A. Receptivities

The most convenient starting point for physical interpretation are the receptivities |ṁ†
ρ |, |f†ρ |,

and |q̇†
p| in Fig. 6. Using the relations in (6), the sensitivity of the eigenvalue to generic periodic

injections of mass into the mass equation ṁ† equals ṁ
†
ρ/ρ. Similarly, f† = f†ρ/ρ and q̇† = q̇

†
p/p.

Table III shows that the receptivity of the energy equation q̇† is proportional to the adjoint pressure
eigenfunction p†. In other words, extra heat addition has most influence on the eigenvalue when it is
applied to regions in which the adjoint pressure is highest. This can be anticipated from the fact that
the adjoint equation (23b) is forced with a term proportional to 〈ζn(e−sτ )h, p†〉. In the self-adjoint
case, this becomes equivalent to Rayleigh’s criterion [2]. The receptivity of the mass equation ṁ† is
proportional to vp†. This is similar to q̇† but includes the fact that mass injection has most influence
in regions of lower density.

The receptivity of the momentum equation f† is proportional to vdp†/dx, which has a clear
physical explanation. The heat release term in the adjoint equation (23b) acts in the measurement
region (where dw∗

ρ/dx = 0), which results in dp†/dx being largest in this region (Fig. 3). This
term therefore reveals that momentum injection has most influence in the measurement region, the
more so when the density is smaller (v larger) because momentum injection will then cause a larger
change in velocity. This describes the unsurprising feature that the eigenvalue is strongly receptive
to interference with the velocity in the measurement region.

B. Feedback sensitivities

The feedback sensitivities in Fig. 7 show the real and imaginary components of the absolute
values of |∂s/∂l| shown in Fig. 5. These are the products of the direct eigenfunctions p and u (Fig. 2)
with the receptivities ṁ

†
ρ , f†ρ , and q̇

†
p (Fig. 6). The real component of ∂s/∂l is the influence of local

in-phase feedback on the growth rate (positive denotes destabilizing). The imaginary component is
the influence on the frequency.

For the Rijke tube, which is nearly self-adjoint, the real components (thin dark red lines) of
∂s/∂ṁρ,p, ∂s/∂fρ,u, and ∂s/∂q̇p,p are large and positive. This shows that if mass injection is in
phase with pressure, if momentum injection is in phase with velocity, or if energy injection is in
phase with pressure (and hence temperature) then the growth rate of oscillations will increase.
The most influential positions of such devices are the high-amplitude regions in Fig. 7. This is a
restatement of p. 226 of Ref. [3]: “if m′ [mass injection] is in phase with p′ [acoustic pressure], or
F ′ [momentum injection] with u′ [acoustic velocity] or Q′ [fluctuating heat release rate] with T ′
[acoustic temperature] then energy will be continuously fed into the disturbance.”

For the rocket engine, which is strongly non-self-adjoint, the real components (thin dark red
lines) of ∂s/∂ṁρ,p, ∂s/∂fρ,u, and ∂s/∂q̇p,p are large, but not always positive. Upstream of the
measurement region (Xw = 0.06), the growth rate of oscillations will decrease if mass injection
is in phase with pressure, if momentum injection is in phase with velocity, or if heat injection is
in phase with temperature. This differs from Chu’s statement [3] because, as shown in Sec. VII,
the receptivities of the mass, momentum, and energy equations need to be formed with the adjoint
pressure p† rather than the direct pressure p. For the rocket, p† differs considerably from p. For
comparison, the feedback sensitivities when the receptivities are formed with the direct pressure
p are also shown in Fig. 7 (thick light blue and red lines). The real components (thick light red
lines) of these (incorrect) versions of ∂s/∂ṁρ,p, ∂s/∂fρ,u, and ∂s/∂q̇p,p are always positive, as
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FIG. 7. Real and imaginary components of the feedback sensitivities in Fig. 5, calculated with discrete
adjoint (DA) of the finite-element method (FEW) for the (a) Rijke tube and (b) model rocket engine, for N = 100.
The wider lines show the same sensitivities calculated when the adjoint pressure p† is replaced by the direction
pressure p, i.e., as if the system were self-adjoint. There is little difference for the Rijke tube, which is weakly
non-self-adjoint, but a large difference for the rocket engine, which is strongly non-self-adjoint. This figure
was created with Fig_007.m.

expected from Chu’s statement. Further, for the Rijke tube, they are almost identical to the correct
feedback sensitivities because the Rijke tube is nearly self-adjoint. This conclusion carries over into
the Rayleigh criterion, which states that the acoustic energy grows over a cycle if

∮
pq dt exceeds

the damping. In a linear stability analysis, p in the Rayleigh criterion should be replaced with the
receptivity of the energy equation q̇†, which is proportional to the adjoint pressure p† rather than
the direct pressure p. This makes a significant difference in strongly non-self adjoint systems.

C. Base state sensitivities

The base state sensitivities in Fig. 8 show the real and imaginary components of the absolute
values in Fig. 4. The sensitivity of the eigenvalue to changes in h(x) has the shape of the adjoint
pressure eigenfunction p† and amplitude ζne−sτ

∫
wρ (dp/dx)dx. In physical terms, the shape

follows that of the receptivity of the energy equation and the amplitude is large if the measurement
function wρ is large in regions in which the velocity is large. If τ varies in space, then this sensitivity
oscillates in space. The sensitivity to changes in τ (x) is significant only in the heat release region
h(x) > 0. The sensitivity to changes in the measurement region wρ has the shape of the direct
velocity and amplitude 〈p†, ζne−sτ h〉. In physical terms it is proportional to the local velocity in the
measurement region and to the Rayleigh integral formed with the adjoint pressure. The base state
sensitivities formed by replacing the adjoint pressure p† with the direct pressure p are shown for
comparison. As expected, there is little discrepancy for the Rijke tube, which is nearly self-adjoint,
but significant discrepancy for the rocket engine, which is strongly non-self adjoint.
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FIG. 8. Real and imaginary components of the base state sensitivities in Fig. 4, calculated with discrete
adjoint (DA) of the finite-element method (FEW) for the (a) Rijke tube and (b) model rocket engine, for N = 100.
As in Fig. 7, the wider lines show the base state sensitivities formed when the adjoint pressure p† is replaced
by the direction pressure p, i.e., if the system is assumed to be self-adjoint. This figure was created with
Fig_008.m.

IX. APPLICATIONS OF THE BASE STATE SENSITIVITIES

The base state sensitivities (Fig. 8) show, at a glance, how the growth rate and frequency of
the thermoacoustic mode are affected by changes to the base state parameters at each point in
space and by changes to the boundary conditions. This is useful for physical understanding of
how the thermoacoustic mechanism acts in a given system and can inform strategies to reduce
thermoacoustic instability. Further, these base state sensitivities can cheaply be converted into
sensitivities to the design parameters. This allows a design procedure to be automated such that
every unstable thermoacoustic mode can be stabilized by making small changes to the design
parameters. For a network model with longitudinal waves only, this procedure is demonstrated for a
laboratory burner in [15]. In this case, which was chosen for its difficulty, the seven initially unstable
modes are all stabilized by making small geometry changes. For a network model with longitudinal
and azimuthal waves only, this procedure is demonstrated for axisymmetric changes to an annular
gas turbine combustion chamber in [16]. In this case, which was chosen for its realism, the two
initially unstable modes are both stabilized by changing areas and lengths by no more than 6%.
Here the procedure is demonstrated for 1D Helmholtz solvers.

A. Design parameter sensitivities

Table II contains the base state sensitivities to the internal parameters v(x), n, τ (x), h(x), wρ (x).
In the corresponding MATLAB codes, these internal parameters are functions of external (design)
parameters Xw,Lw,Xh, Lh, τ, Ru, Rd , which are set in fun_param_dim.m. The sensitivities of the
eigenvalue with respect to the external parameters are found using the chain rule. For example, the
sensitivity with respect to the heat release location Xh, keeping all other design parameters constant,
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FIG. 9. Growth rates (color contours) and nondimensional frequencies (black line contours) for the Rijke
tube with a variable-diameter iris placed at the downstream boundary and a variable heater position (Xh, Xw ).
A quasi-Newton algorithm uses adjoint-based gradient information (white arrows) to converge to the point with
maximum growth rate at a user-defined frequency, in this case 3.2. This figure was created with Fig_009.m.
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in the continuous form and
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in the discrete form. The partial derivatives on the right-hand side are returned by fun_h.m,
fun_rh.m, and fun_wr.m. Some of the external parameters, such as the heat release position, are
known accurately. Others, such as the heat release time delay and reflection coefficients, are not. By
calculating these sensitivities, the user can discover which parameters have most influence on the
experimental measurements and therefore which need to be measured accurately. These sensitivities
are also useful for rapid uncertainty quantification, as shown for a thermoacoustic network model
in [40].

B. Gradient-based optimization with adjoints

In thermoacoustics, gradient-based shape optimization with adjoints has been applied via a
network model in [15,16]. In the current paper, realistic burner geometries cannot be considered
because the adjoint Helmholtz solver is one dimensional. Nevertheless, gradient-based optimization
of a Rijke tube with adjoints can be demonstrated. Figure 9 shows the nondimensional growth
rates (color contours) and nondimensional frequencies (black line contours) for the Rijke tube
with a variable-diameter iris placed at the downstream boundary and a variable heater position.
The reflection coefficient Rd is assumed to be a function of the iris diameter di such that Rd =
0.97 cos(πdi ) + 0.80i sin(πdi ). Here the measurement point Xw is the same as the heat release
point Xh. The gradient of sr with respect to Xh and di , as calculated with the base state sensitivity,
is shown by the white arrows. This confirms that the arrows point in the correct direction. An
optimization algorithm using a BFGS quasi-Newton algorithm with an Armijo line search and a
penalty function is used to converge from a starting point (light dot) to the point with the maximum
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X δX

Γc Sc

FIG. 10. Diagram of a Rijke tube with perimeter �c and cross-sectional area Sc containing a passive
feedback device at position X with width δX.

growth rate at a target frequency (dark dot). In this case the target frequency is 3.2. The gradient
information is used in the quasi-Newton method to estimate the inverse Hessian, which greatly
speeds up the rate of convergence compared with other algorithms.

X. APPLICATIONS OF THE FEEDBACK SENSITIVITIES

The design parameter sensitivities, which are derived from the base state sensitivities, show
the influence of small changes to a given design. However, they do not show the influence of a
qualitative change to the design, such as adding a new component. This influence can be calculated
at negligible extra cost by multiplying the feedback sensitivities by a number, as described in this
section. This is useful because many industrial gas turbines are stabilized by retrofitting passive
feedback devices such as Helmholtz resonators. The techniques in this section show the best
locations for such devices and, within the bounds of a linear analysis, can calculate their influence
on the eigenvalues. The feedback sensitivities can also be used to estimate the influence of features
such as the viscous and thermal boundary layers that exist in reality but are not included in this
model.

A. Calculating the influence of an adiabatic mesh

In the experiments of [33] on the electrically heated Rijke tube being modeled in this paper, the
shift in growth rate is measured when a mesh of width δX is introduced at position Xm (Fig. 10).
The drag force of the mesh on the flow can be considered as local instantaneous feedback from
the acoustic velocity into the acoustic momentum equation. Its influence on the growth rate and
frequency can be estimated with the feedback sensitivity ∂s/∂fρ,u. The pressure drop across the
mesh is assumed to be �p = −Kρ(u + ũ)2/2, where u is the mean velocity, ũ is the fluctuating
velocity, and K is a quasisteady pressure drop coefficient. In the experiments of [33], the mean
speed u is estimated as 0.1 m s−1 and K is estimated as 20, based on the ratio of free area to
total area of the wire mesh [41]. The total fluctuating force is therefore −ScKρuũ, where Sc is
the cross-sectional area of the tube. This acts over a volume ScδX so the fluctuating force per unit
volume is δf̃ = ρuũK/δX. Applying the definitions (6) and (46b) and moving to the frequency
domain in one spatial dimension gives δfρ,u = uK/δX. Substituting into (37), assuming uniformity
over δXm, and expressing in dimensional form (Table III with � = 1) gives

δs� =
∫ Xm+δX

Xm

1

Lref

(
∂s

∂fρ,u

)�

δfρ,udx = uK

Lref

(
∂s

∂fρ,u

(Xm)

)�

= −2.0

(
∂s

∂fρ,u

(Xm)

)�

. (52)

The growth rate shift predicted from (52) compares favorably with that measured experimentally in
Fig. 11, as a function of the position of the mesh Xm. The maximum growth rate shift of −2 rad s−1

is a useful benchmark against which to compare the growth rate shifts in the following sections.

B. Calculating the influence of a hot mesh

In the experiments of [42], the shift in growth rate is measured when a hot mesh of width δX is
introduced at position Xm. The heat transfer from the mesh to the flow can be considered as local
feedback from the acoustic velocity into the acoustic energy equation with a small time delay. Its
influence on the growth rate and frequency can be estimated with the feedback sensitivity ∂s/∂q̇p,u.
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FIG. 11. Growth rate shift caused by drag from an adiabatic mesh placed at position Xm.

The heat transfer model is assumed to be the same as that of the main hot mesh, i.e., an n-τ model
with the same time delay τ , FTF, and mean flow speed u but a different power Q̇m. This gives
ηm = Q̇m|FTF|/u. The measurement location and heat release location are both set to Xm. The
heat release per unit volume at Xm is therefore δ ˜̇q = ηmũesτ /ScδX. The dimensional shift in the
eigenvalue is

δs = Uref

Lref

ηm

pSc

esτ

(
∂s

∂q̇p,u

(Xm)

)�

= (−9.2 − 54i)

(
∂s

∂q̇p,u

(Xm)

)�

. (53)

The eigenvalue shift per unit power of the secondary heater is plotted in Fig. 12. This shows that
the largest growth rate shift due to the heat release from the secondary hot mesh exceeds that
due to the drag from the secondary hot mesh when the secondary heater power exceeds around
2.0/0.05 = 40 W. This is a useful rule of thumb when designing experiments. The comparison
with the experimental results of [42] shows an offset. This is due to a change in the base state
caused by the secondary heater, which is not considered in the current model but which has been
included in Ref. [43]. Finally, the results in this section can be checked by making the secondary
hot mesh identical to the primary hot mesh ηm = η, removing damping by setting Ru = Rd = −1,
and checking that the growth rate shift due to the secondary hot mesh is equal to the growth rate due
to the primary hot mesh when they are both in the same position. This can be checked by running
Sup_003.m [34].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.05

0

Ref. [42]

FIG. 12. Growth rate shift caused by drag from a secondary hot mesh placed at position Xm. The offset is
caused by a change to the base state induced by the secondary hot mesh [43].
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FIG. 13. Growth rate shift caused by the viscous acoustic boundary layer, estimated with the feedback
sensitivity.

C. Calculating the influence of the viscous boundary layer

The viscous acoustic boundary layer has not been included in the model. Its influence on the
eigenvalue can be estimated with the feedback sensitivity as an a posteriori check that its omission
from the model is justified. For a simple analysis, the fluctuating wall shear stress τm can be
approximated as −ρνũ/δbl , where ν is the kinematic viscosity, ũ is the free stream perturbation
velocity, and δbl (x) is the local acoustic boundary layer thickness. The acoustic boundary layer
thickness can be estimated from Stokes’ solution for oscillatory flow at angular frequency si above
a stationary boundary: δbl = 2π (2ν/si )1/2. For an element of tube with length δX and perimeter
�c, the total fluctuating force is therefore −�cδXρνũ/δbl . Following the same analysis as that in
Sec. X A gives the local eigenvalue shift per unit length of the boundary layer:

δs

δX
= − 1

Lref

�

Sc

ν

δbl

(
∂s

∂fρ,u

(X)

)�

= 1.26

(
∂s

∂fρ,u

(X)

)�

. (54)

The results are shown in Fig. 13, showing that the total decay rate due to the viscous boundary layer,
integrated along the length of the chamber, is approximately −0.61 rad s−1. The local decay rate is
largest at the ends of the tube, where the acoustic speed is largest. For comparison, the decay rate
due to acoustic radiation from the tube is around −10 rad s−1. (This can be calculated by setting
Q̇h = 0 in fun_param_dim.m.) The decay due to the viscous boundary layer is therefore around
6% of that due to acoustic radiation from the open ends of the tube, which is sufficiently small to be
neglected from the current analysis.

D. Calculating the influence of the thermal boundary layer

Similarly, the influence of the thermal boundary layer can be calculated with the feedback
sensitivity. The gas temperature is T + T̃ . The wall is assumed to be in thermal equilibrium with
the local mean flow at T . The heat transfer into the gas from an element of tube with length
δX and perimeter �c is δ ˜̇q = −(�cδX)(λ/δbl )T̃ , where δbl is the local thermal boundary layer
thickness and λ = ρνcp/Pr. The acoustic thermal boundary layer thickness is taken to be the same
as the acoustic momentum boundary layer thickness. The Prandtl number is set to Pr = 0.7 and,
by construction, Pref = p. Sound waves are isentropic so T̃ /T = (p̃/p)(γ − 1)/γ . Using the ideal
gas law p = ρrgT , the above expressions can be combined to obtain δ ˜̇q = −�cδXνp̃/Prδbl . The
thermal boundary layer is therefore modeled as a feedback term from the pressure into the energy
equation. Following analysis similar to that in Sec. X C gives the local eigenvalue shift per unit
length of the boundary layer:

δs

δX
= −Pref

Lref

�c

Sc

ν

δbl

1

Pr

1

p

(
∂s

∂q̇p,p

(X)

)�

= 1.79

(
∂s

∂q̇p,p

(X)

)�

. (55)
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FIG. 14. Growth rate shift caused by the thermal acoustic boundary layer, estimated with the feedback
sensitivity.

This produces the results in Fig. 14. It can be seen that the thermal boundary layer is slightly less
influential than the viscous boundary layer and that it has most influence at the center of the tube,
where the pressure fluctuations are largest.

E. Optimal positioning and sizing of a Helmholtz resonator

Helmholtz resonators are often used in gas turbines to damp particular frequencies. They consist
of a cavity, which is connected by a neck to the system that will be damped. Viscous dissipation and
vortex shedding at both ends of the neck extract mechanical energy from the oscillation. The closer
the oscillation is to the resonant frequency of the resonator, the larger the oscillation in the neck
is and the more acoustic oscillations are damped. In this paper, a Helmholtz resonator with mean
flow through the neck is considered because this has a linear relationship between the velocity of
air flowing into the resonator ũn and the pressure just outside the neck p̃n (see [44], Sec. 5.2.5),

ũn = p̃n

Zρc0
, (56)

where

Z = 1 − (ω/ωR )2 + i Manωnω/ω2
R

Man + iωnω/ω2
R

,

where Man is the Mach number of the mean flow in the neck, ω is the angular frequency of
oscillations, ωR is the resonant angular frequency of the resonator, and ωn = c0/(Ln + δn), where
Ln is the neck length and δn is the end correction. The dependence of ωR and ωn on the geometrical
parameters of the resonator can be found in [44] and in Fig_015.m. The resonator is driven by the
pressure oscillations and forces the mass equation. (In this paper, its influence on the momentum
and entropy equations will be neglected for simplicity.)

For a resonator with neck cross-sectional area Sn the fluctuating mass injection is −ρSnũn. This
acts at position Xn over a region δX. Here ωR is taken to be 1020 rad s−1 in a chamber for which
ω = si = 1160 rad s−1. Following an analysis similar to that in Sec. X A, the dimensional eigenvalue
shift is

δs = −Pref

Lref

Sn

Sc

1

ρc0

1

Z

(
∂s

∂ṁρ,p

(Xn)

)�

= (−46.3 + 142i)

(
∂s

∂ṁρ,p

(Xn)

)�

. (57)

This is shown in Fig. 15, which was calculated with Fig_015.m. As expected, the growth rate
shift depends strongly on ω/ωR , as can be seen by changing the Helmholtz resonator geometric
parameters in Fig_015.m. The main point to note, however, is that the Helmholtz resonator is orders
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FIG. 15. Growth rate shift of an oscillation at ω = 1160 rad s−1 due to a Helmholtz resonator with natural
frequency ωR = 1020 rad s−1, as a function of the resonator position Xn.

of magnitude more influential than a cold mesh, a hot mesh, or the viscous and thermal boundary
layers, as expected.

The optimal position of the Helmholtz resonator, which is the point at which the real component
of δs reaches a minimum, depends on the complex impedance of the Helmholtz resonator because
∂s/∂ṁρ,p is complex. In turn this depends on Man, ωn, and ωR , which depend in turn on the
resonator’s geometry. Further, the resonator’s geometry may be constrained by the geometry of the
engine. Although this leads to a technically difficult constrained optimization problem, optimization
is greatly helped by the fact that the variation of s with respect to every geometric parameter can be
calculated with the chain rule. This can be used in a gradient-based optimization algorithm.

XI. CONCLUSION

This paper showed how to implement adjoint thermoacoustic Helmholtz solvers and how to
use the results for physical understanding, gradient-based optimization, and rapid estimation of
the influence of retrofitted devices and phenomena omitted from a model. The paper compared four
discretization techniques (finite difference of the strong form with replacement boundary conditions,
finite element of the weak form, finite difference of the weak form, and summation by parts finite
difference of the strong form with a simultaneous approximation term for the boundary conditions),
two iteration techniques (a Newton method and an iterative linear method), and two adjoint
techniques (discrete adjoint and continuous adjoint), making a total of 16 combinations. MATLAB

codes were provided to implement all 16 combinations and to create every figure in the paper.
The direct and adjoint eigenmodes were combined in different ways to reveal (i) the sensitivity of

the eigenvalue to changes in the internal and external model parameters (the base state sensitivity),
(ii) the sensitivity of the eigenvalue to qualitative changes to the model that introduce local
feedback (the feedback sensitivity), and (iii) the receptivity of the system to open loop forcing
of the mass, momentum, and energy equations. The paper showed how the receptivities and base
state sensitivities aid physical understanding of the thermoacoustic mechanism and how they can
automate a design process to stabilize the system. The paper also showed how the feedback
sensitivity can be used to test model assumptions a posteriori and to identify the optimal location
of retrofitted damping devices.

Regarding numerical implications, all 16 combinations gave the same result when Dirichlet
boundary conditions on pressure were imposed. When Neumann or Robin boundary conditions
were imposed by replacing rows in the matrix operators, the discrete adjoint of the finite-difference
discretization of the strong form equations (FDS_DA) contained oscillations that propagated into
some of the base state and feedback sensitivities. The reasons for this were explained in Secs. IV B
and V C. The replacement method used for the FDS_DA method should therefore be avoided. All
the other methods work well for all boundary conditions, so the choice of method will depend on
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practical considerations, such as the methods used in any preexisting code. If there is no preexisting
code then the easiest and safest approach is to implement the direct equations in the weak form
and to use the discrete adjoint (FEW_DA and FDW_DA). This allows all discretizations to be used,
with boundary conditions that are straightforward to implement. The adjoint eigenvector is then
simply the left eigenvector of the corresponding generalized matrix eigenvalue problem. If the
direct equations in the strong form must be used and if the discrete adjoint is desired, then the
discretization must obey a summation by parts formula, with boundary conditions imposed with a
simultaneous approximation term (SBP_DA). Summation by parts simultaneous approximation term
schemes have been devised for high-order schemes on uniform grids [31,32] and on nonuniform
grids [45,46], so this is feasible, although technically more challenging than using the weak form.
When using the discrete adjoint, one must not forget the relationship between the discrete and
continuous sensitivities (Sec. V D). The continuous adjoint can be used with any discretization, but
one must pay close attention to the adjoint boundary conditions (Sec. V A).

Expressions for the base state sensitivities are in Table II and the feedback sensitivities are in
Table III. These are valid in one, two, or three dimensions. Both iteration techniques work well,
but the iterative linear method (active iteration) is more robust. If active iteration is used then the
sensitivities need to be propagated through the steps as detailed in Sec. V E. A neat advantage of the
active iteration method is that the adjoint code can be debugged using Taylor tests (Sec. V F) with a
single iteration, i.e., before the direct code has converged.

Regarding physical implications, the receptivities (Sec. VII) give physical insight into the
thermoacoustic mechanism in a given system. Comparison of the direct equation (12b) with
the continuous adjoint equation (23b) showed that the adjoint pressure eigenfunction deviates
increasingly from the pressure eigenfunction as the interaction index n increases and as the distance
between the measurement region and the heat release region increases. This was demonstrated by
comparing the Rijke tube with a simple model of a rocket engine. For this reason, the quote from
Chu [3] in Sec. I, which was derived by considering perturbations to a self-adjoint system, is not
correct for non-self-adjoint systems. Instead it is more accurate to examine the feedback sensitivities
formed, correctly, with the adjoint pressure rather than the direct pressure. For the same reason, the
generalized Rayleigh criterion should be formed with the adjoint pressure. The Rayleigh criterion
formed with the direct pressure is the special case for self-adjoint systems. The feedback sensitivities
show that the viscous and thermal boundary layers can safely be omitted from the model under the
conditions examined in this paper. They also show why a Helmholtz resonator damps oscillations
much more than an adiabatic mesh or a hot mesh.

In summary, this paper laid out the theory, numerics, and applications of adjoint thermoacoustic
Helmholtz solvers. The desirable next step is to apply these techniques to 2D and 3D Helmholtz
solvers and then to apply shape optimization in order to stabilize complex geometries such as gas
turbines. Engineering applications will impose further constraints, but these can be incorporated into
the model or into the optimization procedure. This process has the potential to speed up the design
process of gas turbines and rocket engines, whether for optimal retrofitting of damping devices or
for tweaking a current device to eliminate thermoacoustic oscillations. Given the extreme sensitivity
often found in thermoacoustic systems, and hence the strong influence of small changes, adjoint
Helmholtz solvers should be a valuable tool for gas turbine and rocket engine designers in the
future.
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APPENDIX

This Appendix provides MATLAB scripts and functions [34].
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Run_Helm.m

Read in the dimensional parameters with fun_param_dim.m.

Calculate the reference scales and nondimensional parameters with fun_nondim.m.

Set the numerical scheme, starting s, and number of iterations J .
Call fun_Helm.m.
Plot the requested output.
Perform a Taylor test if requested.

Input arguments
name values/type description/contents
discretization FDS, FEW, FDW, or SBP as for fun_Helm.m
type_of_adjoint DA or CA as for fun_Helm.m
lin_or_nonlin nonlin or linear as for fun_Helm.m
plot_type emode, bs_sens, Output to be plotted: eigenmode, base state
(optional) fb_sens, rec sensitivities, feedback sensitivities, or receptivities
TT_int (optional) cell array as for fun_Helm.m
TT_ext (optionsl) cell array as for fun_Helm.m

Example calls from the run line
>> Run_Helm(’FDS’,’CA’,’nonlin’)

>> Run_Helm(’FEW’,’DA’,’nonlin’,’emode’)

>> Run_Helm(’FDW’,’CA’,’linear’,’bs_sens’)

>> Run_Helm(’SBP’,’DA’,’linear’,’fb_sens’,{’t’},{})

>> Run_Helm(’FDW’,’DA’,’linear’,’rec’,{’all’},{’all’})

fun_Helm.m

Read in the grid-point positions and discretization matrices (FE, FE, or SBP).
Construct matrices A and C using the relevant discretization (FDS, FEW, FDW, or SBP)

and boundary conditions.
Iterate to find the left eigenvector, eigenvalue, and right eigenvector.
Read in the matrices that transform the eigenvectors into receptivities.
Wrap the outputs into the emode structure and return if no sensitivities are requested.
Calculate and return the internal sensitivities ds_int.
Calculate and return the external sensitivities ds_ext.
Perform a Taylor test if requested.

Input arguments
name values/type description/contents

discretization FDS, FEW, FDW, or SBP Type of spatial discretization
type_of_adjoint DA or CA Type of adjoint: discrete adjoint or continuous adjoint
lin_or_nonlin nonlin or linear Iteration procedure: nonlinear using a Newton

method or linear using the active iteration method
param structure The nondimensional parameters: γ , ζ , n, τ , Xw , Lw ,

Xh, Lh, Ru, Rd , ρu, ρd , kus
−1, kds

−1, cu, and cd

scheme .N .s0 .itmax The number of elements N , the starting value of s,
and the number of iterations,
J for the active iteration method

TT_int cell array The base state sensitivities to be tested, e.g.,
{’t’,’h’}, {’all’}, or {}

TT_ext cell array The external sensitivities to be tested, e.g.,
{’X_w’,’R_u’}, {’all’}, or {}
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Output arguments (fun_Helm.m)
name values/type description/contents

emode structure For DA: discretization points x; left eigenvector p†;
eigenvalue s; right eigenvector p; discrete receptivities
ṁ

†
ρ , f†ρ , and q̇

†
p; and mass matrix M

For CA: discretization points x, right eigenvector p†, and
continuous receptivities ṁ

†
ρ , f†ρ , and q̇

†
p

ds_int structure For DA: base state sensitivities (∂s/∂n), (∂s/∂ku), and (∂s/∂kd );
discrete base state sensitivities (∂s/∂τ ),
(∂s/∂h), (∂s/∂wρ ), and (∂s/∂v); discrete feedback
sensitivities (∂s/∂ṁρ,u), (∂s/∂ṁρ,p ), (∂s/∂fρ,u), (∂s/∂fρ,p ),
(∂s/∂q̇p,u), and (∂s/∂q̇p,p )
For CA: base state sensitivities (∂s/∂n), (∂s/∂ku), and
(∂s/∂kd ); continuous base state sensitivities (∂s/∂τ )cont,
(∂s/∂h)cont, (∂s/∂wρ )cont, and (∂s/∂v)cont; continuous
feedback sensitivities (∂s/∂ṁρ,u)cont, (∂s/∂ṁρ,p )cont,
(∂s/∂fρ,u)cont, (∂s/∂fρ,p )cont, (∂s/∂q̇p,u)cont, and (∂s/∂q̇p,p )cont

ds_ext structure ∂s/∂n, ∂s/∂τ , ∂s/∂Xw , ∂s/∂Lw , ∂s/∂Xh, ∂s/∂Lh,
∂s/∂Ru, ∂s/∂Rd

mat_FD.m

Generate the Gauss-Lobatto grid points x and the differentiation matrix D.
Generate the mass matrix M for the finite-difference schemes FDS and FDW.
Calculate the density at x with fun_rh.m and create the density matrix V.
Calculate the heat release at x with fun_h.m.
Calculate the measurement profile and its derivative at x with fun_wr.m.
Generate the time delay vector τ at x.

Input arguments
name values/type description/contents
param structure as for fun_Helm.m.
N N The number of elements N

Output arguments
name values/type description/contents
pos .x The vector x
mat structure The matrices D, M, and V and the vectors τ , h, wρ , and w′

ρ

110509-38



SENSITIVITY ANALYSIS OF THERMOACOUSTIC …

mat_FE.m

Generate equispaced points for P0 and P1 functions x0 and x1.
Generate the differentiation matrix D01 and mass matrices M00, M01, and M11.
Calculate the density at x0 with fun_rh.m and create the density matrix V00.
Calculate the heat release at x1 with fun_h.m.
Calculate the measurement profile at x0 with fun_wr.m.
Calculate the derivative of the measurement profile at x1.
Generate the time delay vector τ at x1.

Input arguments
name values/type description/contents
param structure as for fun_Helm.m.
N N The number of elements N

Output arguments
name values/type description/contents
pos .x0, .x1 The vectors x0 and x1

mat structure The matrices D01, M00, M01, M11, and V00 and the vectors
h1, wρ0, and w′

ρ1

mat_SBP.m

Generate N + 1 equispaced points x1 and their midpoints x0.
Generate the first-order differentiation matrix D1 and mass matrices M00, M01, and M.
Generate the first derivative operator at the boundaries S.
Generate a building block matrix for the second derivative operator: D01.
Generate building block matrices for the simultaneous approximation term: Ed , Eu, and I.
Calculate the density at x0 and x1 with fun_rh.m and create the density matrices V00 and V11.
Calculate the heat release at x1 with fun_h.m.
Calculate the measurement profile at x1 with fun_wr.m.
Calculate the derivative of the measurement profile at x1.
Generate the time delay vector τ at x1.

Input arguments
name values/type description/contents
param structure as for fun_Helm.m.
N N The number of elements N

Output arguments
name values/type description/contents
pos .x0, .x1 The vectors x0 and x1

mat structure The matrices D1, D01, M, M00, M01, V00, V11, S, Ed ,
Eu, and I and the vectors h, wρ , and w′

ρ
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mat_AC_**_DA.m

Construct the A, C, and dA/ds matrices for the direct equations in FDS (13), FEW (15), FDW (16), and SBP (17).
Apply boundary conditions with fun_bcs_strong.m or fun_bcs_weak.m.
Generate the matrices that map from p to u and from p† to the receptivities ṁ

†
ρ , F†

ρ,, and q̇
†
p .

Generate (dA/db)l and (dA/db)r for all the internal parameters b.
(These are the terms in Table II before they have been multiplied by p† and p.)
Apply boundary conditions to (dA/db)l and (dA/db)r .

Input arguments
name values/type description/contents
mat structure as for mat_FD.m, mat_FE.m, or mat_SBP.m
param structure as for fun_Helm.m.
N N The number of elements N

s s The eigenvalue s

Output arguments
name values/type description/contents
A matrix The matrix A with boundary conditions applied
C matrix The matrix C with boundary conditions applied
dAds matrix The matrix dA/ds with boundary conditions applied
T structure Matrices that convert p and p† into u and the receptivities
dA structure Matrices and vectors (dA/db)l and (dA/db)r
ds_int structure The structure in fun_Helm.m with all values set to zero

mat_AC_**_CA.m

Construct A, C, and dA/ds matrices for the continuous adjoint in FDS (27), FEW (28), FDW (29), and SBP (30).
Apply boundary conditions with fun_bcs_strong.m or fun_bcs_weak.m.
Generate the matrices that convert from p† to the receptivities ṁ

†
ρ , F†

ρ,, and q̇
†
p .

Input arguments
name values/type description/contents
mat structure as for mat_FD.m, mat_FE.m, or mat_SBP.m
param structure as for fun_Helm.m.
N N The number of elements N

conjs conjs The complex conjugate of the eigenvalue s

Output arguments
name values/type description/contents
A matrix The matrix A with boundary conditions applied
C matrix The matrix C with boundary conditions applied
dAds matrix The matrix dA/ds with boundary conditions applied
T structure Matrices that convert p† into the receptivities
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Remaining functions

name description
fun_bcs_strong.m Apply the boundary conditions to the strong form equations.
fun_bcs_weak.m Apply the boundary conditions to the weak form equations.
fun_ds_CA.m Evaluate the internal sensitivities in the continuous adjoint framework.
fun_ds_DA.m Evaluate the internal sensitivities in the discrete adjoint framework.
fun_eig_nearest.m Solve Ap = s2Cp and select the eigenmode with s closest to s0.
fun_ext_int_CA.m Evaluate the external sensitivities in the continuous adjoint framework.
fun_ext_int_DA.m Evaluate the external sensitivities in the discrete adjoint framework.
fun_h.m Set the heat release envelope h and its partial derivatives.
fun_kukd.m Calculate the Robin boundary coefficients ku and kd .
fun_nondim.m Convert the dimensional parameters to nondimensional parameters.
fun_normalize.m Normalize p such that pT Mp = 1.
fun_param_dim.m Set the dimensional parameters.
fun_rh.m Set the density profile and its partial derivatives.
fun_set_s0.m Use a traveling wave method to estimate s0 for the requested mode.
fun_TT.m Perform a Taylor test on the fields held in TT_int and TT_ext.
fun_wr.m Set the measurement envelope w and its partial derivatives.
unwrap_*.m Unwrap variables from structure ∗.
wrap_*.m Wrap variables into structure ∗.
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