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Acoustic waves are omnipresent in modern life and are well described by the linearized
equations of fluid dynamics. Once generated, linear acoustic waves carry and collect
information about their source and the environment through which they propagate, and
this information may be retrieved by analyzing recordings of these waves. Because of
this, acoustics is the primary means for imaging and remote sensing in otherwise opaque
environments, such as the Earth’s oceans and crust and the interior of the human body.
For these information-retrieval tasks, acoustic fields are nearly always interrogated within
their recorded frequency range or bandwidth. However, this frequency-range restriction is
not general; acoustic fields may also carry hidden information at frequencies outside their
bandwidth that can be revealed by analyzing the quadratic products of a pair of complex
frequency-domain field amplitudes having different frequencies. The two unique quadratic
field products, known as the frequency-difference and frequency-sum autoproducts, can be
utilized for remote sensing at the difference and sum of the two constituent frequencies,
respectively, even if these difference and sum frequencies lie outside the recorded field’s
bandwidth. Despite some fundamental limitations, forming and analyzing the autoproducts
enables a variety of acoustic remote sensing applications that were long thought to be
impossible. In particular, analysis of the frequency-difference autoproduct allows the
detrimental effects of sparse-array recordings, random scattering, and other unknown
source-to-receiver propagation effects to be suppressed when the recorded acoustic field
has sufficient bandwidth. Examples and applications from laboratory and ocean propa-
gation experiments are provided that involve frequencies from a few Hertz to more than
100 kHz and propagation distances from tens of centimeters to more than 100 km.

DOI: 10.1103/PhysRevFluids.3.110506

I. INTRODUCTION

Acoustics is the small fluctuation theory of fluid dynamics. Acoustic fields in unconfined
environments take the form of traveling waves that carry and collect information about the source
from which they were generated, and the environment through which they have propagated,
respectively. Air- and water-borne acoustic waves permeate modern life as the primary means
for human communication and ocean exploration, respectively. When extended beyond Newtonian
fluids to soft and solid materials, acoustic waves are the preferred means for imaging within the
human body, for nondestructively inspecting structures, for finding natural resources within Earth’s
crust, and for understanding and monitoring Earth’s geophysical activity.

The classical equations of acoustics in a fluid are readily derived from the continuity equation,
Euler’s equation, and the thermodynamic relationship(s) for the fluid through simplification and
linearization [1]. The resulting first-order partial-differential equations may be combined into a
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single inhomogeneous equation for the (real) time-domain acoustic pressure field, p(r, t):

∇2p(r, t ) − 1

c2(r)

∂2

∂t2
p(r, t ) = −s(t )δ(r − rs ). (1)

Here, r is the three-dimensional coordinate, t is time, c(r) ≡ [(∂p/∂ρ)s]1/2 is the speed of sound, ρ

is the fluid density, the undisturbed fluid is presumed to be compressible and stationary with uniform
density, and the acoustic source is assumed to be compact and omnidirectional. Although dipole,
quadrupole, and extended fluid-dynamical acoustic sources are possible, this omnidirectional point-
source assumption is common in acoustic remote sensing. Interestingly, Eq. (1) also applies to com-
pression waves in isotropic solids when c(r) is obtained from the appropriate equation of state [2].

Because Eq. (1) is a linear equation, its solutions, p(r, t), are often analyzed as a continuous
superposition of sinusoidal disturbances with varying temporal frequency ω. Applying a Fourier
transform to Eq. (1) moves acoustic analysis to the frequency domain where the governing equation
is the inhomogeneous Helmholtz equation:

∇2p(r,ω) + ω2

c2(r)
p(r, ω) = −S(ω)δ(r − rs ). (2)

Here, P(r,ω), the Fourier transform of p(r, t), is a complex-valued function that depends on location
and frequency and is commonly referred to as the complex field or complex amplitude, and S(ω) is
the Fourier transform of the source waveform s(t). The Helmholtz equation is a linear equation, so
a sum of a particular solution and one or more homogeneous solutions is also a solution. However,
a product of Helmholtz equation solutions at two different in-band frequencies may unexpectedly
mimic or retain some or all of the characteristics of a Helmholtz equation solution at the difference or
sum frequencies. This solution-product property is exact for plane waves in a uniform environment,
and it can persist—with some limitations—for more general wave fields, too [3]. Its mathematical
origins, experimental validation, and its utilization for unique acoustic remote sensing results are the
primary topics of this article. For simplicity, only quadratic wave-field products are considered here.
Extensions to cubic, quartic, and higher-order field products are clearly possible but are beyond the
scope of this article.

Analytical or numerical Fourier transforms are routinely employed to switch between the time
domain, the realm of acoustic measurements, and the frequency domain, the preferred realm of
acoustic analysis. Thus, results for both p(r, t) and P(r,ω) are presented here, with the former
appearing as experimental recordings and the latter occupying a pivotal place in mathematical
definitions, developments, and comparisons. In the frequency domain, the frequency range through
which an acoustic field has nonnegligible amplitude is known as the field’s bandwidth. Here, again
for simplicity, acoustic fields are presumed to have a single well-defined bandwidth of nonzero
extent: �L � ω � �H , where �L and �H are the low- and high-frequency limits. The frequencies
within and outside of this bandwidth are referred to as in-band and out-of-band frequencies,
respectively, with the out-of-band frequencies further divided into below-band and above-band
frequency ranges (see Fig. 1).

Remote sensing is the act of fully or partially recovering source and environmental information
embedded in an acoustic field by analyzing field recordings made at one or more locations.
Across the various fields and applications of acoustic remote sensing, the range of possible signal
frequencies spans 10 orders of magnitude, but many important applications are currently only
possible within a fixed range of frequencies because acoustic source, acoustic propagation, or
environmental characteristics beyond that frequency range are unfavorable. Thus, after nearly a
century of development, existing signal processing techniques in acoustics (and beyond) confine
remote sensing to in-band frequencies. However, such confinement is not a general limitation.
Acoustic fields are shown herein to be richer with information so that the possibilities for acoustic
remote sensing are actually more extensive. The purpose of this article is to demonstrate the validity
of these contentions about acoustic fields and their utilization for remote sensing. In particular, it
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FIG. 1. Time- and frequency-domain representations of acoustic field waveforms. Acoustic recordings are
made in the time domain (left) but are often transferred via a Fourier transform to the frequency domain
(right) for analysis. The frequency range where the field has nonnegligible complex amplitude is the field’s
bandwidth. In-band and out-of-band frequencies fall within and outside the field’s bandwidth, respectively,
with out-of-band frequencies occurring both below and above the field’s in-band frequency range.

is shown herein that non-zero-bandwidth acoustic fields carry hidden out-of-band information that
can be revealed though analysis of quadratic (or higher) products formed from P(r,ω) [3,4], and that
this hidden information can be leveraged to produce successful remote source localization results
that are not possible with conventional means [5–9].

The procedure for revealing the information hidden in acoustic fields is inspired by the
nonlinear triad interactions that occur in turbulent flow [10,11]. The nonlinearity inherent in the
Navier-Stokes equations can combine two spatial Fourier wave components with different wave
numbers k±(|k+| > |k–|) to cascade to higher-wave-number components when the original
wave numbers are at least partially aligned (|k+ + k–| > |k±|), or to backscatter to
lower-wave-number components when the original wave numbers are at least partially antialigned
(|k+ + k–| < |k±|). In an acoustic field, the dispersion relationship derived from Eq. (1),
|k|2 = ω2/c2, links each (spatial) wave number with a (temporal) frequency. Thus, at each
point in space, an intentionally formed quadratic product of complex amplitudes, P (r, ω±), from
the same location in the acoustic field but at two different frequencies, ω± = ω ± �ω/2, should
generate higher- and lower-frequency field components, in a manner akin to heterodyning, when the
two fields’ wave numbers are aligned and antialigned, respectively. Interestingly, such alignment
or antialignment is possible between the wave components that comprise an acoustic field by
forming the field product without or with complex conjugation of the lower-frequency field. Such
intentionally formed acoustic-field products, referred to herein as autoproducts, have been found
to contain out-of-band information hidden in the in-band acoustic field. However, the autoproducts
also contain undesired quadratic-product artifacts that must be accounted for or suppressed in order
to reveal their out-of-band information.

The remainder of this article is divided into four sections. Section II provides the mathematical
basis and formulation for how out-of-band field information can be revealed from in-band field
recordings. Section III illustrates the procedure using theoretical and experimental results for
a simple half-space environment (a.k.a. Lloyd’s mirror). Section IV provides comparisons of
conventional in-band and unique below-band remote unknown-source localization results in three
imperfectly known environments: a laboratory water tank with strong random scattering, and
shallow and deep ocean waveguides having unknown sound-speed and boundary fluctuations. In
each case, the acoustic field is recorded with a linear array of transducers and the remote localization
is attempted in the plane defined by the source and the array. In all three cases, the conventional
(in-band) approach fails to localize the source, while the below-band results, which sacrifice
resolution in favor of robustness, are successful. Section V summarizes the research reported here,
and provides the conclusions drawn from it.
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II. FORMULATION

The starting point for revealing an acoustic field’s hidden out-of-band information is the
construction of the two unique quadratic products of the linear complex acoustic field, P(r,ω),
at two different frequencies, ω+ and ω–. These two field products are referred to herein as the
frequency-difference (AP�) and frequency-sum (AP�) autoproducts, and are defined by

AP�(r, ω,�ω) ≡ p(r, ω+)p∗(r, ω−), (3a)

and

AP� (r, ω,�ω) ≡ p(r, ω+)p(r, ω−). (3b)

Here, the asterisk denotes a complex conjugate, �ω = ω+ − ω– is the difference frequency, and
�ω = ω+ + ω– = 2ω is the sum frequency. The frequency-difference and -sum autoproducts may
be notionally associated with the turbulent backscatter and cascade processes mentioned in the
penultimate paragraph of Sec. I. The two autoproducts satisfy inhomogeneous Helmholtz equations
at the difference and sum frequencies, respectively [3], with a modified source term at the true source
location and, when the in-band field is composed of multiple waves, an additional distributed-source
term.

Both source terms generate artifacts in the autoproduct fields. The artifacts from the modified
source term must be accounted for in acoustic remote sensing, and are typically important near
and down-range from large in-band field amplitude gradients. The artifacts in the autoproduct fields
from the distributed source term can be partially or fully suppressed by bandwidth averaging [3,4].
Appropriate bandwidth averages, denoted by angle brackets, are given by

〈AP�〉(r,�ω) = 1

��

∫ �c+ ��
2

�c− ��
2

AP�(r, ω,�ω)

S(ω+)S∗(ω−)
dω, (4a)

〈AP�〉(r,�ω) = 1

��

∫ ��

0

AP� (r, ω,�ω),

S(ω+)S(ω−)
d(�ω), (4b)

where �C = (�L + �H )/2 defines the in-band center frequency, and �� = �H − �L − �ω and
�� = min(2�H − �ω,�ω − 2�L) define the signal bandwidths available for averaging AP�

and AP� , respectively. Note that �� and �� take on the maximum value of �H − �L at
�ω = 0 and �ω = 2�C , respectively. Here, even though the full difference- and sum-frequency
bandwidths (0 � �ω � �H − �L and 2�L < �ω < 2�H , respectively) may include some in-
band frequencies, �ω and �ω are still termed out-of-band for convenience.

As defined above in Eq. (3), the autoproducts are simple quadratic field products. However,
when integrated, as in Eq. (4), they share features with other better-known concepts and topics. In
particular, when Eqs. (3a) and (4a) are collected together, the integration over ω causes 〈AP�〉 to
become a signal-spectrum-normalized frequency-domain autocorrelation function. However, when
Eqs. (3b) and (4b) are collected together, the integration over �ω causes 〈AP�〉 to be an entirely
different type of integrated spectral product. In addition, the frequency-difference autoproduct
is also related by single Fourier transforms to the Wigner-Ville transform and the ambiguity
function from the field of bilinear time-frequency analysis [12,13]. The shifting to lower and
higher frequencies is also an attribute of the parametric array [14]; however, the out-of-band
frequencies generated by the parametric array exist due to hydrodynamic and thermodynamic
nonlinearities induced by high-amplitude waves from a local oscillator, whereas autoproducts are
created through an intentional multiplication of linear-field complex amplitudes after the field is
recorded. A quadratic product of complex field amplitudes at a pair of frequencies is reminiscent
of the mutual coherence function in statistical optics [15,16], and the formative concepts for
�k-radar [17–19]. However, unlike these related concepts and techniques, autoproducts do not
require ensemble averaging, and phase information is retained in the final quantities of interest.
Overall, the autoproducts defined in Eq. (3) differ from these better-known concepts and topics in
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that they do not require an ensemble of complex field samples, additional Fourier transforms, high
amplitude sound, a local frequency reference, or specialized signal broadcasts.

The bandwidth-averaged autoproducts may mimic genuine acoustic fields at the chosen differ-
ence (�ω) or sum (�ω) frequency and their capacity for such field mimicry is illustrated in Sec. III.
They are defined in Eq. (4) for this illustration purpose only, and are not used for the source local-
ization results presented in Sec. IV because they involve the source signal spectrum, S(ω), which
is unknown for a remote unknown source. However, the source-signal-spectrum normalizations
in Eq. (4) cause the frequency-averaged autoproducts to mimic the Green’s-function solutions of
Eq. (2) when S(ω) = 1 at the difference and sum frequencies, G�(r) and G� (r), respectively.
And, for the illustrations provided in Sec. III, these Green’s functions are readily obtained from
Lord Rayleigh’s method of images using an appropriately modified boundary condition. Boundary
condition modifications may be necessary when matching true fields to autoproducts because the
quadratic products cause the reflection coefficient felt by an autoproduct field to differ from that
felt by the in-band acoustic field from which they are obtained [3,4]. And, as a final point, the
field mimicry possible with the frequency-averaged autoproducts cannot be extended to predict
the characteristics of acoustic fields co-existing in the same environment at different frequencies
because the response of a linear time-invariant system (the acoustic environment) in separate,
non-overlapping frequency bands can be totally unrelated. Alternatively stated in musical terms, the
relatively high-frequency sound from a flute cannot be used to mimic the lower-frequency sound
produced by a trombone when both instruments are played at the same time in the same concert hall
but at different locations on the stage. However, the frequency-difference autoproduct would allow
the flute’s sound to be processed in the trombone’s musical register to localize the flute.

In the next section, direct comparisons of autoproducts and out-of-band fields are shown. To
facilitate these comparisons, a normalization must be performed since autoproducts and ordinary
acoustic fields have different units (pressure-squared versus pressure). The normalization used here
is

(. . .)norm = (. . .)

[
1

V

∫
V

|(. . .)|2dV

]−1/2

, (5)

where (. . .)norm denotes the normalized version of the field quantity ( …), and V is the spatial region
of interest. After normalization, the figure of merit considered here for how closely two fields align
is the spatial cross-correlation coefficient, χ , defined by

χ�,� ≡ Re

{
1

V

∫
V

(〈AP�,�〉)(r)norm(G∗
�,� (r))norm

dV

}
, (6)

where the “�” and “�” subscripts denote quantities associated with the frequency-difference and
frequency-sum autoproducts, respectively, and the frequency argument of the bandwidth-averaged
autoproducts has been dropped for clarity and conciseness. The cross-correlation coefficient χ is
constrained, −1 � χ � +1, with a perfect match of normalized fields within V corresponding
to χ = 1, and a perfect lack of correlation corresponding to χ = 0. In addition, 2(1 − χ ) is the
normalized mean-square difference between a bandwidth-averaged autoproduct and the out-of-band
field it mimics.

III. FIELDS AND AUTOPRODUCTS IN A HALF-SPACE ENVIRONMENT

A direct test of the claim that the frequency-averaged autoproducts mimic out-of-band acoustic
fields was undertaken in a simple half-space environment (Lloyd’s mirror) where P(r,ω) is well
known from theory and is readily measured in a laboratory water tank, too [4]. A schematic
of the experimental set up and the range-depth (r , z) coordinate system are shown in Fig. 2.
The air-water interface (z = 0) provided a flat reflecting surface with a reflection coefficient of
−1 for sound within the water. The broadcast transducer was located at depth d = 200 mm
and emitted a 50-μs Gaussian-enveloped sinusoidal pulse with an in-band frequency range from
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FIG. 2. Schematic and coordinate system for a two-path laboratory water tank experiment intended to
demonstrate that out-of-band field information is hidden within in-band signal recordings. A nominally omni-
directional acoustic source located at (r, z) = (0, d = 200 mm) broadcasted a 40–110 kHz pulse. The receiver
was placed at 161 locations on a vertical line segment from z = 0 (the water surface) to a depth of 400 mm at
fixed horizontal distance of r = 325 mm.

�L/2π = 40 kHz to �H /2π = 110 kHz. This bandwidth included 99.9% of the signal energy. The
field measurements reported here were made on a vertical line segment (0 � z � 400 mm) at a
source-to-receiver horizontal distance of r = 325 mm. The receiver was moved with a vertical
traverse in 1 mm steps for 0 � z � 100 mm and in 5 mm steps for 100 � z � 400 mm. The
experimental recordings were collected at a rate of 2.0 mega-samples per second per channel. The
recorded signals were time windowed to only include contributions from the direct and reflected
paths. This meant zeroing out all data recorded more than 0.6 to 0.7 ms after the source broadcast.
Standard numerical Fourier transform techniques were used to switch these windowed time-domain
data to the frequency domain. At each receiver depth, the experiment was repeated three times for
a total of 483 recordings. The signal spectrum S(ω) was determined from a coherent average of
the measured direct-path pulse from all receiver depths where the direct- and reflected-path pulses
were well-separated. In addition, small overall geometrical and sound-speed corrections were made
within the known ranges of experimental uncertainties to increase the correlation of the measured
and theoretical in-band fields.

The following analytical fields from this simple two-path environment were then compared to
the measured field and its autoproducts. The theoretical in-band Green’s function for the Lloyd’s
mirror environment is

G(r, z, ω) = P (r, z, ω)

S(ω)
= eiωτ1

r1
− eiωτ2

r2
, (7)

where i is the imaginary root, r2,1 = [r2 + (z ± d )2]1/2 are the reflected and direct ray-path lengths,
respectively, τ1,2 = r1,2/c are the corresponding travel times, and the final term represents the
reflected path. When Eq. (7) is inserted in Eqs. (3) and (4), the following theoretical bandwidth-
averaged autoproducts are found:

〈AP�〉(r, z,�ω) = ei�ωτ1

r2
1

+ ei�ωτ2

r2
2

− 2
ei�ω(τ1+τ2 )/2

r1r2
cos(�c�τ )sinc

(
�c�τ

2

)
, (8a)

〈AP�〉(r, z,�ω) = ei�ωτ1

r2
1

+ ei�ωτ2

r2
2

− 2
ei�ω(τ1+τ2 )/2

r1r2
sinc

(
���τ

2

)
, (8b)

where �τ = τ2 − τ1 is the difference in travel times, and sinc(x) = sin(x)/x. The first two terms
in Eqs. (8a) and (8b) arise from same-path products (direct-direct and reflected-reflected). The final
term in Eqs. (8a) and (8b) arises from cross-path products (direct-reflected and reflected-direct,
simplified to a single term).
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G(r,z,ω): ––, Measurements:

<APΔ>(r,z,Δω): ––, G(r,z,ω) w/ plus sign: …., Measurements:

<APΔ>(r,z,Δω): ––, G(r,z,ω) w/ plus sign: …., Measurements:

<APΣ>(r,z,Σω): ––, G(r,z,ω) w/ plus sign: …., Measurements:

<APΣ>(r,z,Σω): ––, G(r,z,ω) w/ plus sign: …., Measurements:
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FIG. 3. Comparisons of measured and theoretical fields as a function of depth for the experimental setup
shown in Fig. 2. In all panels, the amplitudes are normalized using Eq. (5), with V as the vertical line segment
from depth = 0 to depth = 400 mm, and the measurements are shown with red “×”s. The measured field and
theoretical in-band field (black curve) from Eq. (7) at 75 kHz are shown in (a). The measured autoproducts are
shown with theoretical autoproducts (black curves), and theoretical out-of-band fields from Eq. (7) with a plus
sign between terms (blue-dotted curves) for below-band frequencies of �ω/2π = 5 kHz in (b) and 30 kHz in
(c), and for above band frequencies of �ω/2π = 150 kHz in (d) and 185 kHz in (e). The dashed vertical lines
show the depth below which autoproducts should match out-of-band fields in the Fig. 2 environment. All five
panels have the same horizontal axes and vertical axes and show excellent matches between the various curves
and measured data.

The same-path terms in Eq. (8) are similar, but not identical, to the field in Eq. (7) evaluated at
�ω or �ω; thus, they can potentially correlate strongly with an out-of-band acoustic field when
the additional (artifact) denominator factors of r1 and r2 in Eq. (8) do not vary significantly in the
region of interest [3]. Additionally, the reflected-reflected terms in Eq. (8) both carry a positive sign,
while the reflected-path term in Eq. (7) carries a negative sign. This sign difference arises because
the quadratic products rectify the surface’s −1 reflection coefficient. Consequently, the autoproduct
fields in Eq. (8) appear to mimic genuine out-of-band acoustic fields in a Lloyd’s mirror environment
having a surface reflection coefficient of +1.

The cross-path terms in Eq. (8) are not present in Eq. (7). Thus, they permit or inhibit the
autoproducts’ potential mimicry of genuine fields, depending on their magnitude compared to the
same-path terms. The cross-path terms’ magnitudes are controlled by the sinc functions in Eq. (8),
and should be relatively small when ��,��τ � 2π . However, when the receiver depth z is small,
�τ may approach zero. Thus, the autoproducts’ mimicry of out-of-band fields may be reduced at
shallow receiver depths.

Comparisons of the real parts of theoretical and measured normalized Green’s functions are
shown as functions of the measurement depth in the five panels of Fig. 3 at the signal’s center
frequency of �C/2π = 75 kHz (a), at below-band frequencies of �ω/2π = 5 kHz (b) and 30 kHz
(c), and at above-band frequencies of �ω/2π = 150 kHz (d) and 185 kHz (e). All five panels have
the same horizontal (depth from 0 to 400 mm) and vertical (normalized amplitudes from −2.5
to +2.5) axis ranges, and all show the measurements as red “x”s. In Fig. 3(a), the black curve is
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Eq. (7) evaluated using the minus sign shown. In Figs. 3(b)–3(e), the black curves are the appropriate
versions of Eq. (8), and the blue dotted curves are Eq. (7) evaluated with a plus sign between the two
terms. The vertical dashed lines in Figs. 3(b)–3(e) are located at the depth where ��,��τ = 2π in
each case; an autoproduct is not expected to mimic its counterpart out-of-band field to the left of
these dashed lines.

All parts of Fig. 3 show excellent matching between the various fields, and this matching persists
at frequencies and source-array ranges not shown here [4]. Figure 3(a) illustrates the quality of the
in-band matching, χ = 0.986, found between Eq. (7) and the measurements. This correlation value
is maintained within a few percent throughout the in-band frequency range (40 kHz to 110 kHz).
The remaining panels of Fig. 3 illustrate the quality of the out-of-band matching found between
the autoproducts and Eq. (7) with a plus sign between terms. Here, all possible cross correlations
between autoproducts and theoretical fields are above 0.972, even when V is conservatively chosen
to be the entire line segment from z = 0 to 400 mm. This minimum correlation rises to 0.987 when
the shallow receiver depths to the left of the vertical lines in Figs. 3(b)–3(e) are excluded. The
remaining mismatch between the normalized autoproducts and out-of-band fields is attributed to
quadratic-product and experimental artifacts. Overall, the results shown in Fig. 3 indicate that a
measured acoustic field with a 40-to-110 kHz bandwidth can be used to produce field information
at frequencies outside that range.

IV. CONVENTIONAL AND FREQUENCY-DIFFERENCE SOURCE LOCALIZATION

If the autoproducts’ carry out-of-band acoustic-field information, then they should provide
novel results and capabilities when interrogated using conventional remote sensing techniques.
This section provides three such examples where the frequency-difference autoproduct is used for
localization of a remote unknown source in an acoustic environment with unknown complications.

Although the source-to-receiver propagation scenario is nearly identical to that described in the
prior section, the emphasis and information flow in a source-localization effort are different. Here
the source’s waveform and location are unknown, but the acoustic field is recorded simultaneously
at multiple locations, rj , allowing AP� to be constructed at these locations, too. Although there are
many acoustic-source localization schemes [20], the most common and versatile frequency-domain
approaches—plane-wave beamforming, spherical-wave beamforming, and matched field processing
(MFP)—involve spatially correlating the measured P-field with a computed field (w) at the same
frequency [21]. For MFP, the computed field is typically a Green’s function with a hypothesized
source location, rt , that is scanned throughout the region of interest in search of the location(s)
where the measured and computed fields show high correlation. These high-correlation locations
are presumed to be possible source locations. For the present purposes, the process is generically
described by

B(rt ) =
〈∣∣∣∣∣

N∑
j=1

(P (rj , ω))norm(w∗(rj , rt , ω))norm

∣∣∣∣∣
2〉

, (9)

where B(rt ) is the normalized in-band cross-correlation magnitude-squared and, when plotted,
is known as an ambiguity surface when rt (the search coordinate) involves two or more spatial
coordinates; N is the number of locations where the complex field P (rj , ω) is known; w(rj , rt , ω)
is the computed field; the angle brackets indicate an average through the in-band frequency range;
and the normalization of P and w ensure 0 � B(rt ) � 1. B can be interpreted as the likelihood
that rt is a true source location and is commonly reported in decibels (dB) as 10log10[B(rt )]. To
evaluate Eq. (9), the w-field computations may involve the well-known algebraic forms for plane
or spherical waves, or multi-dimensional numerical propagation simulations that include reflection,
refraction, diffraction, and multipath propagation [21]. In ideal circumstances, the resolution and
performance provided by source localization schemes based on Eq. (9) improve when ω and N
increase. Unfortunately, ideal circumstances are seldom realized in practice and source localization
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schemes based on Eq. (9) often fail because: simple w-fields may not match the measured P-fields
when the acoustic propagation is complicated; sophisticated propagation computations of w require
extensive and accurate environmental information that may not be available; and the number and
spacing of field measurement locations may be too few or too large, respectively.

When the maxima of B(rt ) indicate true source locations, the approach described by Eq. (9) is
considered successful. However, mismatch between P and w arising from wave-front differences
and/or imperfect environmental knowledge may prevent localization success. In general, mismatch
problems increase with increasing frequency and source-receiver range. For example, prior water-
tank experiments suggest that acoustic ray-path lengths must be known to better than one third of
an acoustic wavelength for beneficial field matching [22]. In the ocean, where wavelengths from
fractions of a meter to tens of meters and source-receiver ranges from several to several hundred
kilometers are of interest, the requisite environmental knowledge is not generally available. In
addition, when the acoustic wavelength is small compared to the source-receiver distance in a
complicated environment, the necessary w-field computations may be excessively time consuming.

The frequency-difference autoproduct provides a potential remedy for the field-mismatch and
field-computation-time problems since it can provide below-band wave-field information at fre-
quencies where mismatch and computations are less problematic. To implement this remedy, two
changes to Eq. (9) are needed. First, the measured field should be replaced by AP� from Eq. (3);
and second, the computed field should be evaluated at the below-band frequency �ω:

B�(rt ,�ω) =
〈∣∣∣∣∣

N∑
j=1

(AP�(rj ,�ω))norm(w∗(rj , rt ,�ω))norm

∣∣∣∣∣
2〉

. (10)

Here, �ω may be chosen within 0 � �ω � �H − �L to achieve the desired level of robustness to
field mismatch and reduction in computational cost while maintaining a sufficient level of resolution.
In short, the schemes embodied in Eqs. (9) and (10) provide a user-adjustable trade-off between the
in-band frequency range (�L � ω � �H ), where higher resolution is possible but field-mismatch
and computational expense may be problematic, and the lower difference-frequency range, where
resolution is lower but field-mismatch and computational expense are reduced as well.

The final analytical step in Eqs. (9) and (10) is a signal-bandwidth average that is undertaken to
improve the robustness of the localization results by ensuring that B(rt ) and B�(rt ,�ω) are based
on the entire recorded signal, and not just a single frequency or single pair of frequencies. However,
it should be noted that Eq. (10) does not involve the signal-bandwidth-averaged autoproduct defined
in Eq. (4a). Instead, the signal-bandwidth average in Eq. (10) occurs after AP� and w∗ have been
multiplied together, the sum over array elements has been completed, and the magnitude-squared
operation has been performed.

Direct comparisons between in-band source localization results from Eq. (9) and below-band
localization results from Eq. (10) are provided in the following three subsections for: (A) a
laboratory water-tank experiment that included strong random scattering, (B) a shallow ocean
experiment that included random scattering from internal waves and multipath propagation caused
by reflecting surfaces [6,8], and (C) a deep ocean experiment that included random scattering from
internal waves and multipath propagation caused by reflecting surfaces and refraction. In all three
cases, the experiments were conducted in water where the nominal sound speed is c = 1500 m/s;
the signal was broadcast by a single source and recorded with a linear receiving array; and remote
source localization was attempted in the plane defined by the source and the array. Measured and
computed time-domain waveforms or wave-fronts, corresponding to P (rj , ω) and w(rj , rt , ω), are
shown along with localization results from Eqs. (9) and (10).

A. Laboratory water tank

These experiments were conducted in a quiescent cylindrical water tank (1.07 m diameter and
0.90 m water depth) with a nominally omni-directional source, 12 receiving hydrophones, and 18
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FIG. 4. A picture looking through the water surface of the water-tank experimental setup. The source is
the black sphere in the lower left quadrant of the picture at the end of the bronze pole. The receivers appear
in a diagonal row near the top of the picture. The 18 distributed white spheres (air-filled ping-pong balls) are
scatterers that complicate the source-to-array propagation and thereby hinder in-band source localization from
the array-recorded signals alone.

scatterers (air-filled ping-pong balls) all located at mid-water-column. Figure 4 shows a picture
of the setup looking through the water surface. The source is the black sphere at the end of the
bronze pole in the left half of the picture. It was positioned 40 cm from the receiving array and
10 cm to the left of the array’s center. If either localization scheme is successful, this location
should be highlighted by the extreme value of B and/or B�. The receivers appear in a diagonal
row near the top of the picture with the first (last) receiver positioned closest to the picture’s left
(right) edge. The distributed white spheres are the scatterers. Their placement and properties are
considered unknown when computing w(rj , rt , ω) for use in Eqs. (9) and (10). The source signal
was a 250-μs Gaussian-windowed pulse with an in-band frequency range from 150 to 200 kHz.
The signal recordings were time windowed before processing to exclude reflections from the water
surface and tank walls.

When taken together, the array geometry, the unknown scatterers, and the in-band frequency
range create a challenging in-band localization scenario. At the center frequency of the signal pulse,
the spacing between receivers is 6.0 wavelengths. This is substantially larger than the ideal Nyquist
spacing of one-half wavelength, making this a sparse receiving array that is likely to produce strong
side-lobe ambiguities in its correlation output. Additionally, the scatterers are strong because of their
large relative diameter (4.7 center-frequency wavelengths) and the great acoustic contrast between
air and water. Thus, they are expected to significantly alter the recorded P-fields compared to the
computed w-fields.

Measured and computed time-domain signals for this experiment are shown in Figs. 5(a) and
5(b), respectively. The vertical axis on both plots combines recorded signal values and receiver
numbers, from 1 (the top time trace) to 12 (the lowest time trace). The recorded amplitude and pulse-
envelope variations seen in the measured signals are the result of scattering and shadowing from the
18 scatterers. The computed signals are based on ideal free-space propagation and do not include
the scatterers, but are provided for comparison to illustrate the extent of the field-mismatch in these
experiments. The localization scheme embodied in Eq. (9) amounts to correlating the measured
signals shown in Fig. 5(a) with ideal signals—like those shown in Fig. 5(b)—that originate from
different source locations.
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(a) (b)

FIG. 5. Measured (a) and ideal (b) time-domain acoustic fields for the experimental setup shown in Fig. 4
for broadcast of a 200-μs Gaussian-windowed pulse with an in-band frequency range from 150 to 200 kHz.
The measured field in (a) includes scattering while the ideal field in (b) does not.

Figure 6 shows the source localization outputs, B(rt ) and B�(rt ,�ω), using the array recordings
shown in Fig. 5(a) for rt = (x, y ) lying in the horizontal plane defined by the source and the array.
In both parts of Fig. 6, the array is located along the y axis between y = ±28 cm; the white circle
outlined in black indicates the true location of the source; the white triangle outlined in black
indicates the location of the maximum value of either B within the 1-m-by-1-m search window;
and B-values are provided with a dynamic range of 10 dB. The localization result shown in Fig. 6(a)
for the in-band scheme Eq. (9) is not successful. The actual and acoustically-determined locations
are far apart and many maxima of B occur within the search window. However, the localization
result shown in Fig. 6(b) for the below-band scheme Eq. (10) evaluated at �ω/2π = 20 kHz is
successful. There is one dominant maximum of B� and it is located within 1 cm of the true source
location.

The trade-off between resolution and suppression of the mismatch is well illustrated here. The
acoustic features in Fig. 6(a) are narrower than those in Fig. 6(b), but the field-mismatch introduced

(a) (b)

FIG. 6. Source localization correlation outputs from the recordings shown in Fig. 5(a). The source location
is marked by a white circle outlined in black. The correlation peak location is marked by a white triangle
outlined in black. The receiving array is at x = 0 and |y| � 28 cm. Panel (a) shows in-band conventional
results for B(rt ) from Eq. (9). Panel (b) shows below-band frequency-difference results for B�(rt ,�ω) using
Eq. (10) with �ω/2π = 20 kHz. The below-band result is successful (the markers overlap) while the in-band
technique is not.
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FIG. 7. Generic ocean experimental geometry showing a vertical array at r = 0, a sound source at range
r = R and depth z = Z, both in water of depth D. Sample depth-dependent sound speed profiles for the shallow
and deep ocean experiments are shown at the right.

by the scatterers dominates the in-band result. Nevertheless, the out-of-band autoproduct-based
result (using the same recordings) overcomes the field mismatch because the scatterers are weaker
at the below-band frequency (20 kHz) where their diameter is approximately half a signal center-
frequency wavelength.

B. Shallow ocean

The experiments for this subsection were conducted in a 106-m-deep, downward-refracting,
shallow-ocean waveguide off the coast of Kauai in 2011 [23]. Sound was broadcast 3 km along
an isobath from sources at different depths to a 16-element vertical receiving array deployed in
the lower two-thirds of the water column. The source signal utilized here was a 100-ms-duration
frequency sweep from 11.2 to 32.8 kHz. The nominal experimental geometry is shown in Fig. 7
along with smoothed schematic renderings of the ocean’s sound speed profile in shallow and deep
water. However, the simplicity of the Fig. 7 drawing is misleading; the actual ocean-propagation
environment was imbued with unknown complications arising from its dynamic rough surface,
water-column depth and seabed composition variations, and depth-dependent sound-speed profile
that varied in time because of oceanic internal wave heaving motions. Moreover, at the signal
center frequency (22 kHz), the nominal acoustic wavelength (λC) is just 7 cm; thus, the path-length
uncertainty (�x) requirement for beneficial correlation contributions (�x < λC/3) is unlikely to
be met over the R = 3 km source-to-array range. All these complications increase the level of field
mismatch, and when taken together, they prevent in-band source localization based on Eq. (9) from
being successful. However, the below-band approach of Eq. (10) has shown some success [6,8].

Sample measured and computed (ideal) matched-filter time-domain signals for this experiment
with a source depth of Z = 60.2 m are shown in Figs. 8(a) and 8(b), respectively. The plots show
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FIG. 8. Measured (a) and computed (b) time-domain impulse responses obtained from matched filtering
for the shallow-ocean experiment. The source signal utilized here was a 100-ms-duration frequency sweep
from 11.2 to 32.8 kHz. The measured impulse responses show more arrivals and the effects of scattering when
compared to the computed ones.
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FIG. 9. Source localization correlation outputs from the recordings shown in Fig. 8(a). The source location
is marked by the white circle. The receiving array at r = 0 is shown by black dots. Panel (a) provides in-band
conventional results for B(rt ) from Eq. (9). Panel (b) provides below-band frequency-difference results for
B�(rt , �ω) using Eq. (10) incoherently averaged from �ω/2π = 50 to 500 Hz. The in-band technique fails,
but below-band result is modestly successful. The 3-km periodicity in (b) is an unavoidable part of this acoustic
environment.

the arrival pattern of in-band acoustic wave fronts. The vertical axis of both plots combines recorded
signal values and receiver depths, from the shallowest receiver (the top time trace) to the deepest
receiver (the lowest time trace). The environmental information used to generate Fig. 8(b) included
the water column depth and a sound speed profile similar to that shown in Fig. 7 with a 5.2 m/s
difference between z = 0 and 106 m. Although both parts of Fig. 8 show multiple wave-front
arrivals at every depth, the arrival patterns are far from identical. In particular, the recordings in
Fig. 8(a) show a strong deep arrival between 8.5 and 10 ms and many weak scattered arrivals
throughout the plotted time window; all are absent in Fig. 8(b). In addition, the recorded signal
amplitudes in the lower half of the water column are generally larger than those shown in the
computed field.

Figure 9 shows the source localization outputs, B(rt ) and B�(rt ,�ω), using the array recordings
shown in Fig. 8(a) for rt = (range, depth) in the vertical plane defined by the source and the array.
In both parts of Fig. 9, the array is located along the vertical axis at zero range between z = 41.2 m
and 97.4 m; the white circle outlined in black indicates the true location of the source; and B-values
are provided with a dynamic range of 5 dB but with different absolute levels. The localization result
shown in Fig. 9(a) for the in-band scheme Eq. (9) is not successful. The B-values are low, and, at
best, one might only be confident that the source was in the lower half of the water column since
there are many maxima of B within the search window. However, the localization result shown in
Fig. 9(b) for the below-band scheme Eq. (10), averaged from �ω/2π = 50 to 500 Hz and corrected
to suppress cross-path product artifacts, is much more successful. There is a dominant maximum
of B� located within 90 m of the true source range and within 5.1 m of the true source depth.
The 3-km-period correlation pattern seen in Fig. 9(b) is an unavoidable artifact of this experiment’s
environment, and also occurs in source-localization simulations when field-mismatch is entirely
absent. More complete analysis of this experimental data set suggests the below-band localization
scheme can be successful in this environment up to the noted periodic limitation [6,8].

C. Deep ocean

The experiments for this subsection were conducted in the Philippine Sea in 2010 [24] and
involved a variety of sources at ranges up to several hundred kilometers broadcasting to a nearly
water-column-spanning vertical array with 149 receivers. The source signal was a 135 s frequency
sweep from 200 to 300 Hz, and it was broadcast with a variety of time separations for multiple
months to collect an ensemble of hundreds of pulse recordings. The nominal experimental geometry
is again shown in Fig. 7, but here the source depth is Z = 1066 m, the source-to-array range is
R = 129.4 km, the water column depth is D = 6 km, and the deep-water sound speed profile is
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FIG. 10. Measured (a) and computed (b) time-domain impulse responses (aka time fronts) obtained
from matched filtering for the deep-ocean experiment. The source signal utilized here was a 135-s-duration
frequency sweep from 200 to 300 Hz. The orange stripe at the top of (b) is noise from an experimental artifact.
The boundary interacting time fronts are the diagonal features that extend from the top to the bottom of both
panels. The louder refraction-guided arrivals appear as zigzags in the upper two-thirds of each panel. The
measured time fronts in (a) show less regularity and different timing than the computed time fronts in (b).

appropriate. For these experiments, the difference between the ocean surface and minimum sound
speeds was approximately 50 m/s; thus, there was considerable refraction along with ocean-surface
and seabed reflections that lead to complicated multipath sound propagation between the source
and the array. And, as in the shallow ocean, unknown spatial fluctuations in the sound speed profile,
oceanic surface and internal waves, and unknown ocean-floor depth and composition variations
caused considerable field mismatch. Furthermore, at the signal center frequency (250 Hz), the
acoustic wavelength is λC ≈ 6 m; thus, the path-length uncertainty (�x) requirement for beneficial
correlation contributions (�x < λC/3) is again unlikely to be met over the R ≈ 130 km source-to-
array range.

Sample measured and computed (ideal) matched-filter time-domain signals for this experiment
are shown in Figs. 10(a) and 10(b), respectively. The vertical axis of both plots is depth (increasing
downwards) from the ocean surface at z = 0 to the deepest receiver at z = 5.3 km, and the horizontal
axis of both plots is the acoustic travel time, 86.4 s � t � 88.4 s. The red stripe at the top of
Fig. 10(a) is noise from an experimental artifact. The environmental information used to generate
Fig. 8(b) included the water column depth and a sound speed profile, similar to that shown in Fig. 7
but measured near the vertical array.

Both parts of Fig. 10 show a complicated arrival pattern of weaker boundary-interacting arrivals
that span all depths, and stronger refracted arrivals that form sharply-pointed overlapping “v”s
between depths of 0.5 and 4 km. Although there are many similarities between the measured
and computed arrival patterns, there are a number of differences, too, but not all contribute to
field mismatch. First, there is an overall 0.3 to 0.4 s time shift between the arrival patterns in
the two figures, but this shift does not contribute to the field mismatch problem. Second, the
boundary-interacting arrivals are delayed compared to the refracted arrivals in the computation when
compared to the measurements, especially in the lower half of the water column. This difference
does contribute to the field mismatch problem. Third, the computed wave-front amplitudes and
arrival times are smoothly varying while the measured ones are not, especially those of the boundary
interacting arrivals. These variations also contribute to the field mismatch problem.

For this acoustic propagation scenario—as for the previous two—the in-band scheme fails while
the out-of-band scheme is successful. After choosing a 300-by-6-km search plane and defining
“success” as the peak of B or B� falling within 5% of the overall search range and depth (±15 km
in range and ±300 m in depth) of the true source location, the in-band scheme produced only one
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FIG. 11. Two-pulse ensemble-averaged source localization scatter plots from the first 101 (correctly
measured) experimental pulses from the deep-ocean experiment in a 300-km-range by 6-km-depth search
plane. Blue squares mark the locations of correlation maxima. The circle marks the location of the source.
The red ellipse defines the localization-success boundary. Its dimensions are ±5% of the overall search range
and depth. Panel (a) shows in-band conventional results for B(rt ) from Eq. (9). Panel (b) shows below-band
frequency-difference results for B�(rt , �ω) using Eq. (10) incoherently averaged across �ω/2π = 3.75, 4.00,
and 4.25 Hz with a phase correction applied to w to account for caustics along the 130 km propagation path.
The in-band scheme is successful 1 time out of a 100. The below-band scheme is successful 92 times out of
100. In (b), the inset plot shows the cloud of successful below-band localizations.

successful localization when applied individually to the first 100 (correctly recorded) experimental
pulses. Such dismal localization performance for this frequency range and source-to-receiving-array
distance is expected and has led to the abandonment of in-band MFP localization schemes, outside
of the research community, for such frequencies and distances. However, the below-band technique
produced 85 successes when the outcome from Eq. (10) for individual pulses was averaged through
three difference frequencies, �ω/2π = 3.75, 4.00, and 4.25 Hz; and a phase correction was applied
to w to account for caustics along the 130 km propagation path. When the localization results from
neighboring pulse pairs were ensemble averaged, these localization performance results remained
at one success for the in-band scheme but improved to 92 successes for the below-band scheme.
Here, the one- and two-pulse in-band successes were from different pulse broadcasts, so they were
likely obtained by random chance.

Scatter plots for the two-pulse-averaged results in the 300-km-by-6-km search plane are shown
on Fig. 11 for the in-band (a) and out-of-band (b) schemes. In both parts of Fig. 11, the blue
squares mark the locations of the peaks of B or B�, and the red ellipse defines the “success”
boundary. The inset panel in Fig. 11(b) shows the cloud of successful out-of-band localization
results. Additional difference-frequency and multiple-pulse ensemble averaging further improves
the out-of-band results, too. Thus, in this scenario as well, the frequency-difference scheme Eq. (10)
allows source localization when the equivalent in-band approach Eq. (9) fails.

V. SUMMARY AND CONCLUSIONS

Acoustic waves in fluid media are well described by the linearized equations of fluid motion.
They provide a unique means for mankind to explore the interior of the Earth, its oceans, and the
human body. Because of this, acoustic remote sensing is economically important and common place
in the modern world. In the many applications of acoustic remote sensing that have been developed
over many decades, recorded acoustic signals are analyzed within their (in-band) frequency range.
However, this limitation to in-band analysis and information extraction is not a scientific one.
This paper describes how a quadratic product of complex linear-field amplitudes can be used to
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reveal hidden information that lies outside of the frequency range of a recorded acoustic field. The
results presented here show that this out-of-band information can be used to reconstruct above- and
below-band acoustic fields when the original signal is known, or to achieve unique source
localization results when the original signal is unknown. The reported work draws on experiments
conducted in a laboratory water tank and in the ocean.

The following four conclusions are drawn from this effort. First, acoustic fields are unexpectedly
richer in information than is typically thought. The results provided here suggest that an acoustic
field with in-band frequency range �L � ω � �H also carries hidden information at lower
frequencies, 0 < �ω < �H − �L, and at higher frequencies, 2�L � �ω � 2�H . Second, this
hidden acoustic information may be revealed by quadratic products of complex field amplitudes
that down- and up-shift the spatial wave numbers of field components in a manner similar to
the backscatter and cascade processes found within hydrodynamic turbulence. However, unlike
naturally occurring fluid dynamic nonlinearities, the quadratic products considered here are formed
after field recording and their formation may be controlled by the investigator to selectively reveal
below-band or above-band hidden information at the frequency(ies) of interest. For example, the 5
and 30 kHz results shown in Fig. 3 are readily extended to any frequency below 60 kHz or so [4].
Third, the two possible quadratic products (the autoproducts) formed from complex acoustic field
amplitudes at two different frequencies can be considered pseudo or surrogate fields that contain
information at the difference or sum frequency of the two constituent field amplitudes, even when
these frequencies lie outside the bandwidth of the original field. As shown herein, autoproduct fields
contain out-of-band field information, and artifacts from their associated quadratic product that can
be at least partially suppressed by averaging through the in-band frequency range. And fourth, use of
these quadratic acoustic products in established remote sensing schemes can lead to unique results
that surpass what is possible from direct use of the in-band field in the same schemes. The three
sets of experimental results from three different environments in three-different (but overlapping)
frequency ranges, support this conclusion. In addition, when the wave speed c is nondispersive
[a necessary requirement in going from Eq. (1) to Eq. (2)], these four conclusions may apply to
electromagnetic, seismic, and structural acoustic waves as well.
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