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Liquid fraction profile in a liquid foam under an applied voltage
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A liquid foam, a dense assembly of gas bubbles in a surfactant solution, is a deformable
porous material. As classically observed in divided systems, electrokinetic transport can
be induced, for example, when an electric field is applied from either side of the foam
sample. We determine here the liquid fraction profile obtained when a foam is submitted to
an electro-osmotic flow, when the surfactant induces so-called rigid or mobile interfaces.
We show that the main governing equation for the liquid fraction repartition in space and
time is diffusivelike and similar to the one describing pressure-induced drainage only. The
electric field however significantly affects the general profile by modifying the boundary
conditions. A capillary number that compares electro-osmotic stress and capillary pressure
in the foam geometry is introduced and characterizes the magnitude of electrically induced
flow in a macroscopic foam. In particular, the ability of a foam to capture liquid from a
reservoir is quantitatively estimated.
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I. INTRODUCTION

The experimental demonstration of electro-osmotic flows dates back to two pioneering exper-
iments of Reuss [1]. The first one consists of applying a difference of voltage at the extremities
of an assembly of quartz grains contained in a tube and plunged in an electrolyte solution, as
represented in Fig. 1. After a few days, a displacement of the liquid level is observed. We note
that this experiment was carried out just after the discovery of the first chemical battery by Volta,
consisting of a pile of copper and zinc disks embedded in an electrolytic solution, as represented in
Fig. 1. From this particular shape, a chemical battery is still called pile in French.

Subsequently, the effect of electrokinetics on transport properties at the nanoscale was thoroughly
studied in the seminal work of Smoluchowski [2] and then extensively, for example, in a series of
papers by Elton [3–5]. Even if it is an old topic, investigations are limited by the difficulty to design
well-controlled systems at the nanoscale. However, these studies have regained interest, adapting
well-characterized fabrication techniques, previously developed for the microelectronics industry
[2,6]. From this, different types of actuation and coupled transport properties have been investigated
in nanofluidic systems, with the goal of identifying the functionalities which can best enhance these
properties at low cost.

These transport properties can be described by the linear response theory and characterized by
the symmetrical Onsager matrix [7] defined as⎛
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FIG. 1. Shown on the left is the scheme of the experiments performed by Reuss, which shows an electro-
osmotic flow [1]. On the right is a picture of a reproduction of the Volta battery.

where Q is the matter flux, I the electric current, JT the heat flux, P the pressure, U the voltage,
and T the temperature. The different terms of the Onsager matrix will be elaborated on below.

The nondiagonal terms of the matrix account for interactions of the liquid with the surfaces.
Though second order, they are of course of larger magnitude in large-surface-area systems, for
example, confined at the nanoscale. The values of these terms and especially the intricate coupling
existing between hydrodynamic and static interactions with a surface are still active subjects
of research [6] at the interface between surface chemistry, nonequilibrium physics, and fluid
mechanics. We will consider here nanofluidic transport in a macroscopic soft divided system in
a liquid foam.

The article is organized as follows. First, we underline some specifics of foamy materials that
could affect coupled transport and give a short review of experiments performed in these systems.
We then focus on the specific case of electrokinetic transport and determine how the distribution
of liquid in a foam is affected by the presence of an electric field. To do that, we present general
equations allowing us to define everywhere the liquid fraction in a foam sample. As it has been
performed for mass transport or so-called foam drainage, we will then consider two distinct cases
depending on the nature of the foam. In each case, two geometries, an isolated foam or a foam in
contact with a reservoir, will be considered.

II. SPECIFICITIES OF TRANSPORT IN A LIQUID FOAM

A. Complex poroelastic medium with fluidic interfaces

1. Foam geometry

A liquid foam consists of a dispersion of gas bubbles in a liquid matrix. An important
characteristic of the material is its liquid fraction φ, defined as the ratio of the volume of liquid
to the total volume of the foam. This parameter is used to distinguish bubbly liquids (typically for
φ � 30%) from wet foams (typically φ � 15%) and dry foams (φ � 5%) [8]. In dry foams, bubbles
are in contact and display a polyhedric shape (we then talk of a Kelvin structure) due to Plateau’s
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FIG. 2. Image of a liquid foam to identify its structural elements. The Plateau borders are small liquid
channels that link three films, as represented in the cross section, and the nodes are at the junction of four PBs.
Here R is the typical radius of a bubble.

law. In wet foams, bubbles stay spherical with a large amount of liquid in between. At a liquid
fraction above φr = 26% (random close packing liquid fraction for dense monodisperse ordered
systems), the bubbles are no longer in contact and the system is considered a continuous liquid.

As shown in Fig. 2, a liquid foam has a multiscale structure and it is crucial to take into account
the different scales when studying the transport in such a material. The first macroscopic scale is the
size of the foam sample, labeled L. On the length scale of individual bubbles, one has to take into
account the bubble radius R that can vary from few hundreds of micrometers to centimeters in usual
systems. Note that when bubbles are not spherical, this radius corresponds to the one of a spherical
bubble of identical volume. The thin flat films separating two bubbles, often colored because of light
interference, have a typical thickness δ of 0.1 μm. Three films join at 120◦, following Plateau rules
[8], in a liquid channel called a Plateau border (PB). The PB’s length and radius of curvature are
denoted by � and r , respectively. Four PBs join in a node. As we will focus here on a macroscopic
description, we omit the scale of the surfactants, subnanometric, whose presence is crucial to
stabilize a soap film or a liquid foam.

The arrangement of bubbles can be ordered or disordered, mainly because of the bubble radius
polydispersity. In monodisperse systems, different arrangements have been observed, depending on
the boundary imposed arrangement [9] or on the liquid fraction [10]. In the following, the transport
coefficients of the Onsager matrix are usually defined under the hypothesis that the foam structure
is a Kelvin structure [8], sketched in Fig. 3.

FIG. 3. Scheme of the unit cell (one bubble) of a Kelvin structure [8].
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2. Hydrodynamic boundary condition

Mass transport, whether it is coupled to other actuations (thermo-osmotic, electrokinetic,
diffusio-osmotic, etc.) or not (pressure-driven drainage in liquid foam) depends not only on
specific interfacial properties but also on the hydrodynamic boundary conditions in such systems
[2,8,10–15]. When a liquid-gas interface, covered with surfactants, is considered, one has to take
into account two boundary conditions: the motion of the liquid with respect to the surfactant layer
and the motion of the surfactants in the laboratory frame [14].

Considering the relative motion of the liquid versus the surfactant layer, it may be defined by a
finite friction coefficient or by a slip length [16], defined as b = − 1

vt

∂vt

∂n
, with t and n the tangent

and the normal to the interface, respectively, and vt the tangential relative velocity between the
liquid and the surfactants. To define the influence of the slippage on the flow rate in a confined
geometry, one has to compare the slip length to the lateral dimension of the channel. In the case
of soap films, this slip length has been characterized by molecular dynamic simulations [17] in
the case of a common anionic surfactant (sodium dodecyl sulfate) and varies as the inverse of the
surface concentration (the more surfactants, the larger the friction and the smaller the slip length).
Quantitatively, at surface concentrations for which we can form a stable film or foam (fully covered
interfaces), the slip length is of the order of 0.1–0.2 nm [17] and so is definitely negligible in realistic
experimental conditions.

The second boundary condition concerns the motion of the surfactants with respect to the
laboratory frame and in particular their ability to distribute inhomogeneously along the interface and
generate surface tension gradients and subsequent so-called Marangoni stresses [8]. The possible
generation of these stresses depends first on the situation considered. Whereas it has been shown to
be crucial when considering foam drainage [10,18] or thermo-osmosis [13,19], it is less relevant
in the specific case of electro-osmosis. Indeed, in this particular situation, it has been shown
theoretically and experimentally [14] that no force is acting on the surfactants: The viscous friction
associated with the flow is directly compensated by the electric force on the surfactants [20,21].

For simplification, since it often corresponds to distinct well-defined experimental situations, two
extreme cases of rigid and mobile interfaces are typically considered [22]. Rigid interfaces corre-
spond to a vanishing velocity at the liquid-air interface, whereas mobile interfaces correspond to a
stress-free condition at the liquid-gas boundary. The surface rigidity is currently a subject of active
research [10] and describing it quantitatively requires the introduction of surface viscoelasticity
moduli and an analysis of the microscopic origins of surface dissipation. It is generally admitted
that the regime observed mainly depends on the surfactant type used to stabilize the foam. However,
one has to be cautious as the same formulation of a foam can lead to a rigidlike interface behavior
or a mobile one, depending on the foam geometry, the actuation type, or magnitude.

3. Elasticity of the foam

A foam is a deformable porous material. The pressure inside the foam which describes its ability
to absorb liquid when in contact with a semipermeable membrane is known in the community as
osmotic pressure. It has been extensively investigated [23,24] and depends on the foam structure
(ordered or disordered mainly) and its liquid fraction. We will consider here only the pressure in
the liquid, which we will approximate as the capillary pressure within the foam and, in the case
of dry foam [23], is given by �P � −γ /r , where γ is the interfacial tension and r is the radius
of curvature of the Plateau borders. If we consider that most of the liquid is located in the Plateau
borders (we neglect the volume of the nodes and of the films [8]), the pressure in the liquid is then
linked to the liquid fraction φ as

�P = −β
γ

R

1√
φ

, (2)

where β is a geometrical factor equal to 1.715 for a Kelvin structure [8]. In the following, we will
generally consider the pressure gradient in the vertical direction x, defined in Fig. 4 and derived

110505-4



LIQUID FRACTION PROFILE IN A LIQUID FOAM …

FIG. 4. Scheme of the two cases considered. In case A the foam is in contact with a liquid reservoir. One
electrode is in the reservoir, the other one is at the top of the foam. In case B the foam is squeezed between two
electrodes and isolated from the outside. Here L is the height of the foam along the x direction.

from Eq. (2):

∂P

∂x
= 1

2
β

γ

R

1

φ3/2

∂φ

∂x
. (3)

B. Some aspects of transport in liquid foams

1. Foam permeability

Drainage is defined as the flow of liquid in a foam due to a pressure gradient. It occurs spon-
taneously in macroscopic foamy materials, leading to a heterogeneous liquid fraction distribution,
accelerating foam aging, and destabilization [8,25]. The liquid flow rate inside the foam, due to the
pressure gradient, can be calculated only if the permeability of the foam LH , defined in Eq. (1), is
established; LH depends on the foam properties (mainly the liquid fraction and the bubble radius)
but also on the hydrodynamic boundary condition at the liquid-gas interface.

The model in [26] assumes that the flow only occurs in the Plateau borders and that the
contribution of the films and nodes is negligible. In the rigid interface limit case, the permeability
factor then reads

LH = K

η
R2φ2, (4)

where K is a geometrical factor calculated numerically (K = 0.0032).
An extension of this model [27] has been proposed, also taking into account the dissipation in

the nodes. In the limit of mobile interfaces, the dissipation in the PBs becomes negligible and the
permeability is given by

LH = H

η
R2φ3/2, (5)

with H = 0.0023 obtained numerically [18].
In practice, even for surfactants which are expected to create mobile interfaces, the foam

permeability is larger than the one calculated by Eq. (5). As reported in the literature [10,18,28],
experiments made with various surfactants and different bubble sizes have a permeability that scales
as φn, with n varying between 1.5 and 2 as a function of the surface mechanical properties.
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2. Foam conductance

When an oscillatory voltage difference is applied on the foam material, one can measure the
current in the foam to deduce the foam conductivity G. It has been shown experimentally that it
depends mainly on the bulk liquid conductivity σ and on the liquid fraction of the foam [29]. In the
case of a large liquid fraction, the curve is well described by the Maxwell bubbly liquid limits [30],
whereas at small liquid fraction, one can consider the foam as an array of PBs, evenly oriented, that
transport the ions. This situation, described by Lemlich [31] and reasonable in the limit of dry foam
(typically when φ < 3%), reads

G = 1
3σφ. (6)

3. Thermo-osmosis

The flows induced by a thermal gradient have been less studied in the literature. The exact origin
of so-called thermo-osmosis is still debated and even the direction of the induced flows is difficult
to predict [15,32,33]. In the case of liquid foams, some experiments have been carried out in two-
dimensional foams (an assembly of bubbles squeezed between two plates) [13,19]. They show that a
thermal gradient will induce a thermal Marangoni stress along the bubble interfaces and then induce
a flow that can even reverse gravity-driven drainage. Different mechanisms taking into account an
opposite generated interfacial stress due to inhomogeneous surfactant distribution are also relevant
when surfactant properties are tuned [13].

4. Electro-osmosis

Since Reuss’s experiments, generating a liquid flow with an electric field (or in the case of
its phoresis counterpart, generating solid motion in liquids) has been extensively investigated in
colloidal science [34]. The velocity of the liquid is set by the applied electric field and is given by
the so-called Smoluchowski equation, namely,

v = −εζ

η
E, (7)

where ζ is the zeta potential of the interface, which characterizes its electrostatic and hydrodynamic
environment [2]. A recent review [35] and some recent experiments [14] underline the difficulties
of measuring accurately the ζ potential of an interface covered with ionic surfactants.

The effect of a vertical electric field on a macroscopic foam has been investigated experimentally
[36–39] and has regained interest recently [40], especially at a more local scale, in the films and in
the PBs [41–43]. However, a complete description of an electro-osmotic flow in such a deformable
system is still lacking. Working towards a better description, we try to identify the factor α, which
is defined in the Onsager matrix and which describes these coupled effects. With an assumption
similar to the one performed in the Lemlich model of conductance (Sec. II B 2), we will consider
that the electro-osmotic flow occurs only in the Plateau borders, evenly oriented, which results in

α = −φ

3

εζ

η
. (8)

III. GENERAL RELATIONSHIPS

In the following, the case of a liquid foam, with a Kelvin structure, with bubbles of constant
radius R and a liquid fraction φ typically smaller than 3%, is investigated. We will neglect the
effect of gravity and assume that there is no thermal gradient. An electric potential difference �U

is applied on either side of the foam, in the x direction, by two electrodes separated by a distance L

and with an area A (Fig. 4).
We will define how the liquid fraction in the foam is affected by the applied electric field and

plot the liquid fraction profile in several conditions. Throughout the paper, we will assume that the
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zeta potential of the interface is negative, hence that the electro-osmotic flow will occur in the same
direction as the electric field (towards increasing x here).

A. Liquid fraction profile

We can relate the flow rate of liquid Q and ionic current I to the pressure gradient ∇P and the
applied electric field −∇U by local linear response (where U is the electric potential) [see Eq. (1)]:

Q = −A
(

LH

∂P

∂x
+ α

∂U

∂x

)
, I = −A

(
α

∂P

∂x
+ G

∂U

∂x

)
. (9)

The different parameters such as the hydrodynamic permeability LH , the ionic conductance in the
foam G, and the coupled term α depend only on the liquid fraction φ (and then indirectly of x and
t). These equations can be completed by mass conservation

A∂φ

∂t
(x, t ) = −∂Q

∂x
(x, t ) (10)

and the electric charge conservation. In contrast to mass, variations of the electric charge over time
are instantaneous, so the electrical current is conserved at every moment.

∂I

∂x
(x, t ) = 0. (11)

Then the current does not depend on x and is denoted by I (t ). We finally assume that the foam
structure, and subsequently its liquid fraction, instantaneously adapts to the pressure. Under these
assumptions, an equation for the temporal evolution of φ is derived from Eqs. (9) and (10):

∂φ

∂t
(x, t ) = ∂

∂x

[
∂P

∂x

(
LH − α2

G

)
− I (t )

A
∂

∂x

α

G

]
. (12)

The ratio α/G does not depend on the liquid fraction and then does not vary along the foam sample.
The liquid fraction profile in the sample then satisfies

∂φ

∂t
(x, t ) = ∂

∂x

[
∂P

∂x

(
LH − α2

G

)]
. (13)

B. Boundary conditions

This equation is completed with boundary conditions depending on the geometry considered. We
will present results for the two cases represented in Fig. 4.

1. Case A

In case A, the bottom of the foam is in contact with a reservoir whereas its top is in contact
with an impermeable electrode. Then, at the bottom of the column (x = 0), the pressure is constant,
which means for a dry foam that the liquid fraction is constant, defined as

φ(0, t ) = φr . (14)

A second boundary condition concerns the upper configuration: We assume that there is no flux
at the impermeable electrode (Q = 0). This results in, from Eq. (9) applied for x = L,

LH

∂P

∂x

∣∣∣∣
x=L

+ α
∂U

∂x

∣∣∣∣
x=L

= 0, (15)
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with ∂U
∂x

|x=L the voltage gradient at the electrode given by Eq. (9):

∂U

∂x

∣∣∣∣
x=L

= −I (t )

AG
− α

G

∂P

∂x

∣∣∣∣
x=L

. (16)

The ionic current I (t ) is derived from the integration of this equation between 0 and L as the current
does not depend on the spatial coordinate [see Eq. (11)]:

�U = −I (t )

A

∫ L

0

dx

G
−

∫ L

0

α

G

∂P

∂x
dx. (17)

From this, the value of the current can then be expressed as a function of φ and replaced in Eq. (16)
to determine the voltage gradient as a function of φ. Then the second boundary condition can be
expressed with φ as the unique variable from a derivation of Eqs. (15)–(17). Note that in a steady
state, this condition is simplified. Indeed, the flux is zero everywhere, so Eq. (15) can be directly
integrated over the entire sample, resulting in

�U = −
∫ L

0

LH

α

∂P

∂x
dx. (18)

2. Case B

In the second case, the foam sample is squeezed between two electrodes and isolated from the
outside. The first boundary condition is then volume conservation, which reads

1

L

∫ L

0
φ(x, t )dx = φi, (19)

with φi the initial volume fraction. The second boundary condition of zero flux at the top and at the
bottom of the sample, given by Eqs. (15)–(17), is in this case valid for x = 0 and x = L.

C. A few orders of magnitude

We assume that the initial liquid fraction profile is flat with a liquid fraction denoted by φi . To
evaluate physically the different contributions governing liquid transport in our foam, we will con-
sider a typical water-based liquid foam (η = 10−3 Pa s) with a bubble radius R = 100 μm, a liquid
fraction φi = 0.1%, a zeta potential of the surfactant-laden liquid-gas interface ζ = −100 mV, a
surface tension γ = 34 mN/m, and a conductivity of the soapy solution σ = 600 μS/cm. These
parameters correspond to a liquid foam stabilized with sodium dodecyl sulfate near the critical
micellar concentration. The size of the foam sample is set to L = 5 cm. We will now present some
solutions of Eq. (13) in the two limits of rigid and mobile interfaces and for the different geometries,
cases A and B, represented in Fig. 4.

IV. CASE OF RIGID INTERFACES

A. Liquid fraction equation

Using the definitions of LH [Eq. (4)], α [Eq. (8)], G [Eq. (6)], and pressure gradient [Eq. (3)]
previously introduced, the liquid fraction profile [Eq. (13)] satisfies

∂φ

∂t
(x, t ) = ∂

∂x

[
γβ

2R

∂φ

∂x

1√
φ

(
K

η
R2φ − ε2ζ 2

3η2σ

)]
. (20)

We introduce the following dimensionless variables: X = x/L with L the vertical dimension of the
foam sample, φ̄ = φ/φi , and T = t/τr with τr a characteristic time (the timescale of the flow in the
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foam due to capillary suction) defined as

τr = 2L2η

γβRK
√

φi

. (21)

For our typical foam, τr is equal to 8500 s. This large value justifies our hypotheses that the liquid
foam locally and instantaneously adjusts to the pressure. Moreover, a dimensionless number Sr ,
which compares the magnitude of coupled transport (electro-osmosis and streaming current) to the
magnitude of direct transport (permeability), can be introduced. This parameter reads

Sr = ε2ζ 2

3ησR2Kφi

. (22)

The variations of the dimensionless liquid fraction then satisfies the relation

∂φ̄

∂T
= ∂

∂X

(
∂φ̄

∂X

1√
φ̄

(φ̄ − Sr )

)
. (23)

The value of Sr is around 10−3 in our typical foam, which is small compared to one. In the following,
we will then neglect the second term of Eq. (23). However, one must be careful when dry foams
with small bubbles are considered (Sr � 1 for a bubble size of R = 10 μm). However, such out-
of-equilibrium dry foams are coarsening and then the bubble size is increasing fast with time (on
a timescale short compared to τr ), resulting in a small and then negligible Sr . Equation (23) then
reduces to

∂φ̄

∂T
� ∂

∂X

(
∂φ̄

∂X

√
φ̄

)
. (24)

This equation, a diffusionlike equation with a small nonlinearity, is similar to the one of pressure-
driven drainage. This means that coupled transport will affect the liquid fraction profile through the
boundary conditions only. We begin by discussing the liquid fraction profiles in the steady state
before studying the transient regime.

B. Some solutions of steady-state profile in specific conditions

In the steady-state case, Eq. (24) reduces to

0 = ∂

∂X

(
∂φ̄

∂X

√
φ̄

)
. (25)

After an integration and the introduction of two constants φ̄(0) and φ̄(1), the liquid fraction at the
bottom and at the top of the column, respectively, one recovers

φ̄(X) = {φ̄(0)3/2 + [φ̄(1)3/2 − φ̄(0)3/2]X}2/3. (26)

To determine the values of φ̄(0) and φ̄(1), we consider the two cases A and B defined in Fig. 4.

1. Liquid fraction profile in case A: A foam in contact with a reservoir

In our dimensionless system, the first boundary condition is derived from Eq. (14),

φ̄(0) = φr/φi = φ̄r . (27)

The second is derived from Eq. (18) [with Eq. (3) to make explicit the pressure gradient] and is
given by

[
√

φ̄(1) −
√

φ̄(0)] = Car , (28)

110505-9



ANNE-LAURE BIANCE AND ORIANE BONHOMME

FIG. 5. Stationary liquid fraction profile for rigid interfaces in (a) case A from Eq. (30) with φ̄r = 1.1 and
(b) case B from Eq. (32).

with Car an electro-osmotic capillary number, defined here in the rigid case, which compares the
viscous stress generated by the electro-osmotic flow with the capillary pressure,

Car = − εζ�U

3γRβK
√

φi

. (29)

We note that the zeta potential considered in this study is negative, resulting in a positive capillary
number. For the typical foam considered here, with a voltage difference of 25 V, this capillary
number is close to unity. Then the stationary liquid fraction profile in case A reads

φ̄(X) = {
φ̄3/2

r + [
(Car +

√
φ̄r )3 − φ̄3/2

r

]
X

}2/3
. (30)

Liquid fraction profiles for different capillary numbers are reported in Fig. 5(a). One can observe
that the total liquid fraction is increasing with the applied electric field or the capillary number.
Electro-osmosis is then a useful tool to keep a foam wet. In particular, the liquid fraction at the top
of the foam is very sensitive to the capillary number as it scales as Ca2

r .

2. Liquid fraction profile in case B: An isolated foam

In this case, only the first boundary condition is modified and volume conservation is written∫ 1

0
φ̄(X)dX = 1. (31)

The liquid fraction profile is derived from Eqs. (26), (30), and (31) and is given by

φ̄(X) = 1
4

[(−Car +
√

2 − Ca2
r + 2

√
1 − 2

3 Ca2
r + 1

5 Ca4
r

)3

+ 4Car

(
3 − Ca2

r + 3
√

1 − 2
3 Ca2

r + 1
5 Ca4

r

)
X

]2/3
. (32)

This solution is plotted in Fig. 5(b) for different capillary numbers. From a constant liquid fraction
without an electric field, one can see that some liquid is pumped from the bottom of the foam column
to the top. One can also observe that if the capillary number is too large, the liquid fraction at the
bottom of the column is vanishing, which is nonphysical: In this regime, the parameter Sr neglected
so far becomes relevant. Moreover, one can notice that for large capillary numbers, the profile is
converging. This can be explained by the fact that when the liquid fraction is locally too low, the
capillary stress diverges and cannot be overcome.
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C. Transient profile

In the transient state, we need to solve Eq. (24) with the boundary conditions defined previously
(Sec. III B).

1. Boundary conditions

The boundary conditions of constant liquid fraction at the bottom of the column [case A, Eq. (14)]
and of volume conservation in the sample [case B, Eq. (31)] remain valid when an unsteady state
is described. In contrast, as mentioned in Sec. III B 1, the boundary condition of nonflux at the
electrode is now given by Eqs. (15)–(17). To get these boundary conditions dimensionless, we
introduce the dimensionless current ī(t ) = I (t )/Ii with

Ii = 1

3

�UσφiA
L

, (33)

which corresponds to the initial current under the applied voltage �U . Then Eq. (16) reads

∂Ū

∂X
= − ī(T )

φ̄
− Sr

2 Car

1

φ̄3/2

∂φ̄

∂X
. (34)

If once again we consider that Sr � 1 or even Sr � Car , the electrical current at each time reduces
to

ī(T ) = 1∫ 1
0

1
¯φ(X,T )

dX
, (35)

and together with the boundary condition [no flux at the electrode (15)], one recovers

2 Car ī(T ) =
√

φ̄(1)
∂φ̄

∂X

∣∣∣∣
X=1

. (36)

Note that in this transient case, φ̄(1) and its spatial derivatives are a function of time T . We will first
consider the limit case of a liquid fraction distribution that remains close to the initial one and then
make a full numerical resolution of these equations.

2. Small applied electric field: Linear regime

We first consider the case of small applied voltage, namely, Car � 1. In this limit, the liquid
fraction is given by φ̄ = 1 + ε with ε � 1. The equations describing the liquid fraction evolution
(24) and the boundary conditions are then linearized. The variation of ε versus space and time
satisfies the classical diffusion equation

∂ε

∂T
� ∂

∂X

(
∂ε

∂X

)
. (37)

The boundary conditions are now inspected under this hypothesis for cases A and B.
a. Case A. The contact with the liquid tank sets the liquid fraction at the bottom of the column

ε(0, T ) = φ̄r − 1. The second boundary condition [given by Eqs. (35) and (36)] can be also
linearized and results in ∂ε/∂X|X=1 � 2Car . This condition on the flux of the diffusive quantity
ε shows that electro-osmosis fixes a pressurelike condition on the system.

Then the solution is given by

ε(X, T ) = L−1(ε̂(p,X)), (38)

with ε̂(p,X), the Laplace transform of ε(X, t ), given by

ε̂(p,X) = φr − 1

p
cosh(qX) + 2Car − q(φr − 1) sinh(q )

pq cosh(q )
sinh(qX), (39)
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FIG. 6. Linearized transient liquid fraction profile for rigid interfaces plotted at different times T with
Car = 0.1 in (a) case A (with φ̄r = 1) and (b) case B. The black line corresponds to the steady-state profile
obtained from Eqs. (30) and (32) for cases A and B, respectively.

with q2 = p. To evaluate the inverse Laplace transform, we use the invert Laplace transform
function [44]. Some liquid fraction profiles plotted at different dimensionless times are reported
in Fig. 6(a) for Car = 0.1 and φ̄r = 1.

b. Case B. In this second case, the first condition is given by volume conservation, namely,∫ 1
0 ε(X)dX = 0. The system is then symmetrical with respect to X = 1/2 with ε(1/2) = 0. The

solution reads

ε(x, t ) = L−1(ε̂(p, x)), (40)

with

ε̂(p,X) = 2 Car sinh[q(X − 1/2)]

pq cosh(q )
. (41)

Let us note that in this case, ε is directly proportional to the capillary number. This function is
represented in Fig. 6. Finally, in these two cases, the profile at short times adapts to the boundary
(up to T = 0.02) and then slowly relaxes entirely towards a linear equilibrium.

3. Numerical solution

Equation (24) can also be solved numerically, using an explicit scheme, with the appropriate
boundary conditions that apply in cases A and B. Liquid fraction profiles are plotted in Fig. 7, with
Car = 1. We can observe that the diffusion mechanism (from the border) is similar to the linear
case, but with a relaxation towards the nonlinear stationary profile.

V. CASE OF MOBILE INTERFACES

In this section we apply the same methodology to determine the profile of the liquid fraction in
the case of mobile interfaces.

A. Liquid fraction equation

In this case the equation describing the temporal and spatial variations of the liquid fraction is
derived from Eqs. (13) and (5):

∂φ

∂t
(x, t ) = ∂

∂x

[
γβ

2R

∂φ

∂x

1√
φ

(
H

η
R2

√
φ − ε2ζ 2

3η2σ

)]
. (42)
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FIG. 7. Liquid fraction profile obtained numerically for rigid interfaces in (a) case A (with φ̄r = 1.1) and
(b) case B with Car = 1.

As for the rigid case, we introduce similar dimensionless variables X = x/L, φ̄ = φ/φi , and T =
t/τm with

τm = 2ηL2

γβHR
(43)

and the dimensionless number Sm = ε2ζ 2

3ησHR2
√

φi
. In the case of our typical foam, the characteristic

time is 375 s (so one order of magnitude faster than in the rigid case) and Sm = 4 × 10−5, which is
definitely small compared to one. In this case also we will neglect the coupling contribution. Then
Eq. (46) simplifies directly in a linear diffusive equation

∂φ̄

∂T
� ∂2φ̄

∂X2
. (44)

B. Some solutions of steady-state profile in specific conditions

The equation governing the liquid fraction distribution is given by

0 � ∂2φ̄

∂X2
, (45)

which can be easily integrated in

φ̄(X) = [φ̄(1) − φ̄(0)]X + φ̄(0), (46)

introducing once again the liquid fraction at the bottom and at the top of the column φ̄(0) and ¯φ(1),
respectively.

1. Boundary conditions and solution in case A

We consider here the case A of a foam in contact with a liquid tank. The liquid fraction at the
bottom of the foam is then given by φ̄(0) = φ̄r .

Similarly to what has been performed in the case of rigid interfaces, current conservation and the
no-flux condition at the top electrode reads

1

φ̄(X)

∂φ̄

∂X
= Cam

∂Ū

∂X
, (47)
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FIG. 8. Stationary liquid fraction profile for mobile interfaces in (a) case A (with φ̄r = 1.1) and (b) case B.

with the electro-osmotic capillary number Cam defined as

Cam = −εζ�U

γL

2L

3HRβ
. (48)

Note that, in contrast to the rigid case, Cam does not depend on the initial liquid fraction φi . For a
difference of voltage of 25 V as before, with our typical foams, the order of magnitude of Cam is
around 0.08, definitely smaller than Car . After an integration over the entire sample (within X), the
second condition is given by

ln

( ¯φ(1)
¯φ(0)

)
= Cam (49)

and the liquid fraction profile by

φ̄(X) = φ̄r [exp(Cam) − 1]X + φ̄r . (50)

This solution is represented in Fig. 8 for different capillary numbers. The liquid fraction at the top
of the column is varying exponentially with the capillary number and then the applied electric field,
allowing one to maintain liquid in the foam very efficiently. However, in this case, increasing Cam

up to unity requires a huge applied voltage (around ∼500 V), which is difficult to reach practically.

2. Boundary conditions and solution: Case B

In the case of an isolated foam squeezed between two electrodes, the first boundary condition is
given by volume conservation as before

∫ 1
0 φ̄(X)dX = 1 and the full solution then reads

φ̄(X) = 2 tanh

(
Cam

2

)
X + 2

eCam + 1
. (51)

The profile is also reported in Fig. 8 for different capillary numbers. A symmetric linear profile is
recovered.

When the foam is squeezed between two electrodes, variations of the liquid fraction as a function
of the position first increase greatly with Cam and then saturate at large capillary numbers, as
observed for the rigid case, in the same geometry. Once again, the saturation is due to the fact
that the capillary stress is nonlinear and increases when the foam dries, explaining why a saturation
is not observed in case A, when the foam is in contact with a reservoir. Then, above a certain
applied electric field, the capillary pressure is too large to be overcome in the dry zones and the
liquid fraction profile does not evolve anymore.
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C. Transient profile

We now attempt to define the transient liquid fraction profile when mobile interfaces are
considered. Note that in contrast to rigid cases, Eq. (45) is a diffusion equation without any
hypothesis on the Cam value. The normalized equation (45) is solved by taking into account the
boundary conditions adapted to cases A and B. Similarly to Sec. IV C 1, one can show that the
electric current is linked to the voltage gradient according to

∂Ū

∂X
� i(T )

φ̄
, (52)

with

i(T ) = 1∫ 1
0

1
¯φ(X,T )

dX
, (53)

and then the no-flux condition reads

i(T ) = 1

Cam

∂φ̄

∂X

∣∣∣∣
X=1

, (54)

so the problem is closed in both cases.

1. Small applied electric field: Linear regime

For small capillary numbers, if once again we define the liquid fraction as φ̄(X) � 1 + ε(X)
with ε(X) � 1, one recovers, in X = 1,

∂ε

∂X

∣∣∣∣
X=1

= Cam. (55)

So, as before, one can recover the liquid fraction profile in the two cases considered here.
a. Case A. In this first case, the second condition reads as usual ε(0) = φr − 1. Then the solution

is given by

ε(x, t ) = L−1(ε̂(p, x)), (56)

with

ε̂(p,X) = φr − 1

p
cosh(qX) + Cam − q(φr − 1) sinh(q )

pq cosh(q )
sinh(qX). (57)

This solution is represented in Fig. 9, as performed for the rigid case.
b. Case B. In this second case, the second boundary condition is given by volume conservation,

namely,
∫ 1

0 ε(X)dX = 0. The system is then symmetrical with respect to X = 1/2 where ε(1/2) =
0. The solution then reads

ε(x, t ) = L−1(ε̂(p, x)), (58)

with

ε̂(p,X) = Cam sinh[q(X − 1/2)]

pq cosh(q )
. (59)

This function is represented in Fig. 9.

2. Numerical solution

The equations are also solved using an explicit scheme and results are reported in Fig. 10. Once
again, a diffusion process emerging from the borders accompanies a relaxation to the linear steady-
sate profile.
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FIG. 9. Linearized liquid fraction profile as a function of the position for different times T for (a) case A
and (b) case B. We set Cam = 0.1 and φ̄r = 1 to remain in the linear regime.

VI. DISCUSSION

We now compare the results obtained in different cases (a foam in contact with a reservoir or a
foam squeezed between two electrodes) and in different regimes (mobile and rigid interfaces). We
will then discuss the different hypotheses made during the previous calculation.

A. Comparison of different cases

The evolution of the liquid fraction profile of a liquid foam subjected to an electric field was
determined using several hypotheses. Unexpectedly, the general equation that describes the liquid
distribution within the foam does not depend on the applied electric field and is diffusivelike (with
a small nonlinearity in the rigid case). As for classical mass transport in a foam under a pressure
gradient, two characteristic times depending on the interface rigidity, defined as τr and τm, can be
introduced and differ by several orders of magnitude.

The effect of the electric field is introduced through the boundary conditions and will affect
dramatically the final steady-state profile. Its magnitude can be evaluated by introducing an electro-
osmotic capillary number that compares the viscous stress associated with the electro-osmotic flow
and the capillary pressure.

FIG. 10. Numerical solutions obtained in (a) case A and (b) case B for liquid fraction evolution, at different
times with Cam = 1 and φr = 1.1. The black lines correspond to the stationary profiles determined from
Eq. (50) for case A and Eq. (51) for case B.
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In the first geometry considered (case A), the foam can capture water from the reservoir.
However, the case of a reservoir filled with liquid is not realistic as the foam liquid fraction at the
top is expected to be larger than the random close packing liquid fraction (imposed at the bottom
in this case). It is then not a foam anymore but a bubbly liquid and the equations established are
no longer valid. The analysis developed here describes situations of a foam, for example, in contact
with a water-based gel and which captures liquid under an applied electric field.

One can also compare the pumping efficiency of a foam squeezed between two electrodes (case
B) in the steady-state regime for the two limits of rigid and mobile interfaces. For our typical foam
and for an applied electric field of 25 V, in the case of rigid interfaces, the difference of liquid
fraction ratio between the top and the bottom of the foam is equal to 1.6, whereas in the case of
mobile ones, it is equal to 0.08. The rigid foam is then more efficient, despite the long timescales
required to achieve equilibrium. The different hypotheses performed (no gravity, extreme cases
of rigid and mobile interfaces, dry foams, large bubbles, and no contribution of the films in the
transport) will be discussed in the following section.

B. Discussion of the hypotheses

1. Effect of liquid fraction

The analysis has been performed in the case of dry foams, a hypothesis that should be kept
during the entire process. If the foam liquid fraction is increased, the description of LH , α, and G

will differ. Some other difficult aspects concern the definition of the pressure. In particular, when
we consider the geometry A of a liquid in contact with a reservoir, the condition is a fixed so-called
osmotic pressure at the bottom of the column, which can differ from the capillary pressure and
whose expression is detailed in [23].

2. Contribution of the films

In this analysis we neglected the contribution of the films in the transport, similarly to what
is generally performed for pressure-driven drainage. However, this hypothesis can be discussed.
For drainage, the film contribution was mentioned because film thicknesses were observed to be
high [28]. A recent work has shown that during electro-osmosis in a single soap film, a thickening
of the film was observed [35,41]. The thickness of the film δ is determined by a balance between the
electro-osmotic flow and the capillary suction. It is given by, introducing Caf , an electro-osmotic
capillary number based on film geometry

δ = 2.68r

(
ε0εr |ζ |�U

γL

)2/3

= 2.68r Ca2/3
f , (60)

where r is the equivalent of the radius of curvature of the Plateau border.
If we consider our typical foam and if we apply a voltage of 20 V, the film thickness predicted

by this expression is 0.2 nm, much smaller than the thickness of a film at equilibrium. Thus, this
process does not affect the film thickness in this limit. If we consider a wetter foam (φ = 5% with
a bubble radius of 2 mm), the film thickness can reach 20 nm, a value still quite low. However, the
contribution of the film on transport properties will be significant for very dry foams and will be
larger than the one in the Plateau borders if φ � Ca4/3

f . This corresponds to a liquid fraction below
0.001%.

As a first-order correction, the effect of film thickening can be neglected in the hydrodynamic
permeability LH whether the rigid or mobile case is considered (for rigid films, for example, the
permeability in one film is proportional to δ3, so even if the film thickens, it remains negligible
as compared to the contribution of the Plateau borders). In contrast, if we consider other types
of transport, where plug profiles are expected (for the conductance G or for the electro-osmotic
coupling α), the contribution of the films to the total transport will be proportional to ratio of the
liquid volume in the film to the total liquid volume and is generally significant. One interesting point
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is that intrinsically, as the mechanisms of transport are of same nature (plug flows), the ratio α/G

is always independent of the liquid fraction and then independent of the spatial position x. This
characteristic is a specific to liquid foams.

3. Effect of gravity

The effect of gravity is considered by adding the gravitational external force in the system. This
term can be incorporated, for example, in the pressure. The equations that fix the liquid fraction for
the rigid [Eq. (20)] and mobile [Eq. (46)] cases are modified to become classical gravity drainage
equations [10], introducing a Bond number which reads Bo = 2ρgLR

√
φi/γβ. The problem

however differs from classical drainage because of the boundary conditions. A promising avenue
would be to solve the problem in the presence of gravity and to determine the electric field required
to reverse gravity-driven drainage.

4. Effect of surface viscoelasticity

In the stationary state, surface properties will affect the permeability of the foam but not the
conductance or the electro-osmotic contribution. Therefore, the consequences of adding surface
viscoelasticity will be similar to the ones for gravity-driven drainage [10], ranging between the two
limit cases (rigid and mobile interfaces) described here.

In transient regimes or when an oscillating field is applied, one has to consider surfactant ability
to desorb, resorb, and create Marangoni stresses along the interface. One has to compare the
different timescales involved in surfactant dynamics, which depend on surfactant type (adsorption-
desorption time and diffusion time at the interface or in the bulk), and the period of actuation.

5. Effect of bubble size

The bubble size affects different factors in this complex problem. It is first encountered in
the definition of the capillary number, which does not depend on the total electric field but on
the total voltage difference applied on one bubble size. So the larger the bubbles, the smaller the
capillary number for a given applied voltage. Moreover, the characteristic times of the transient
regime increase when R is decreased. Then the larger the bubbles, the shorter the transient.

The last factor in which it is encountered is in the magnitude of coupled transport, through the
parameter S defined in both cases. For foams with small bubbles around 10 μm, S is no longer
negligible. Note that the bubble radius growth, due to coarsening, after a transient of 10 min,
reaches a self-similar evolution [45]: The smaller the bubbles, the faster the relative radius evolution.
Finally, foam polydispersity will affect the results here particularly through the R dependences in
the different parameters introduced and thus must be taken into account.

C. Comparison with experimental data

A few experiments have been performed to show the effect of an electric field on flow in liquid
foam [35,36,38–40]. Due to the lack of information on experimental details and foam properties, a
comparison can be achieved only in one case [35]. We thus report in Table I the ratio of the volume
of liquid observed in the sample in the presence of the electric field �(Ca) divided by the initial
volume � and the electro-osmotic capillary number Ca deduced from the experiments. To compare
with our predictions, we calculate the excess of liquid in the foam (situation A) as

�(Ca)

�
=

∫ L

0 φ(x, Ca)dx∫ L

0 φ(x, 0)dx
, (61)

with φ(x) given by Eq. (30) as the surfactant employed (sodium dodecyl sulfate) can be considered
as generating rigid interfaces. A clear comparison is difficult as these experiments are performed
under gravity, with one electrode set in the liquid. The value of φr is then difficult to determine
and is taken at φ̄r = 0.1 arbitrarily. A full comparison would require an analysis which takes these
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TABLE I. Comparison between experimentally observed normalized volume
electro-osmotic liquid retention (Expt.) [35] and theoretical expectations from Eq. (61)
(Theor.). The case considered is case A with rigid interfaces. The foam initial liquid
fraction is φi = 0.005, the bubble radius is R = 3 mm, the solution surface tension
is γ = 34 mN/m, and φ̄r has been set arbitrarily to 0.1. Note that the ratio both
experimentally and theoretically is taken with a reference not at Car = 0 but at
Car = 0.01.

(�(Ca)/�)Expt. Car (�(Ca)/�)Theor.

1.15 0.05 1.14
1.25 0.1 1.33
1.3 0.14 1.5

factors into account. Indeed, despite linear response theory, the gravity-driven drainage is not only
superimposed over electro-osmosis, as it will affect also the foam structure (i.e., liquid fraction) and
then the transport coefficient of the Onsager matrix. Experiments varying the liquid fraction and
bubble size, together with theoretical development taking into account gravity, are thus required to
fully describe these phenomena.

VII. CONCLUSION AND FUTURE DIRECTIONS

We have predicted the spatial distribution of liquid in a foam in the presence of an applied
electric field, which induces electro-osmosis in the foam structure. This analysis is performed in
two particular regimes: the case of surfactants that generate a no-slip boundary condition for the
liquid velocity at liquid gas interfaces (so-called rigid interfaces) and the case of surfactants that
generate stress-free boundary conditions (so-called mobile interfaces). In both cases we have shown
that the equation describing the liquid fraction profile evolution does not depend on the applied
electric field and is diffusivelike. Both tendencies are similar (except for a small nonlinearity for
the rigid case) but timescales involved can vary by several orders of magnitude. The influence of
the electric field appears in the boundary conditions, which will of course dramatically affect the
profile. We introduced a dimensionless number that compares the magnitude of the viscous stress
generated by the electro-osmotic flow and the capillary pressure in the complex foam geometry,
designated the capillary electro-osmotic number (Car or Cam).

This analysis is an initial attempt towards the understanding of such a system. Apart from
obvious improvements, such as introducing gravity or interfacial viscoelasticity, one must note
that a realistic description would be much more complex. Indeed, a foam is an out-of-equilibrium
medium that evolves with time, due, for example, to coarsening, coalescence, or evaporation. All
these mechanisms will affect and will be affected by the foam structure and dynamics. To give just
one example of these intricate couplings, coarsening, on the one hand, will affect the bubble size
versus time and then the magnitude of the electro-osmotic flow in the foam. On the other hand,
the coarsening depends on the local liquid fraction and on the film thickness and is affected by the
magnitude of the electro-osmotic flow. Such effects then have to be fully incorporated for a complete
description of foam evolution under an electric field. On a more practical side, experiments must
be performed to determine whether electro-osmosis can indeed be useful to retain liquid in a foam
sample and then increase foam homogeneity and stability [46] over time.
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