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High-resolution three-dimensional large-eddy simulations are used to investigate the
effects of internal solitary waves (ISWs) breaking over a sloping boundary. The lock
release method is applied in a two-layer stratified fluid system to generate three different
breaking mechanisms (i.e., plunging, collapsing, and surging breakers). The different
breaking types are investigated in terms of their effects on the dynamics of the ISW and
the interaction of the ISW with the sloping boundary. During each breaking event, the
pycnocline region entrains fresher water from the upper layer and saltier water from the
lower one. The associated increase of the intermediate density layer also induces changes
of the pycnocline water density. This process occurs with a velocity that can be evaluated
using the bulk entrainment parameter. We show how the intermediate layer features depend
on the ISW shoaling and breaking dynamics and we discuss entrainment in breaking ISWs.
The instabilities induced by boundary layer separation allow entrainment of saltier water,
while the run-up of the gravity current causes the decrease of the intermediate layer mean
density. Simultaneously, the entrained water mixes into the pycnocline region. For all cases,
the temporal evolution of the instantaneous mixing efficiency is discussed. The plunging
breaker case shows the largest amount of mixing, which is mostly induced by rear-edge
overturning in the onshore direction. The largest entrainment is observed in the surging
breaker case in response to the large gravity current flowing upslope. The paper discusses
how the different turbulent instabilities induced by the ISWs breaking affect the time
delay between the times when entrainment of patches of salty and fresh water from the
neighboring layers occurs and the time the density of the intermediate layers becomes
fairly uniform via mixing. We finally point out that the entrainment parameter and the
mixing efficiency describe two different effects of the turbulent instabilities occurring in a
stratified fluid in terms of changes of the bulk density profile.
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I. INTRODUCTION

In the ocean, the density profile can be approximated by two layers of uniform density: the
lighter well-mixed surface waters, affected by seasonal changes in temperature, and the deep heavier
waters [1,2]. Between them, the thin portion of the water column characterized by a sharp change
in density is the pycnocline region. This region can be described as a very stable layer which
opposes the transfer of mass between the waters it separates. The interaction between the barotropic
tide and the bathymetry generates internal tides which induce large-amplitude undulations of the
pycnocline. Because of nonlinearities, during their propagation, the internal tides steepen and
disperse, generating trains of internal solitary waves (ISWs). Solitary waves preserve their shape
and celerity during their motion because of an equilibrium between dispersive and nonlinear effects
[3]. The velocity field of an ISW induces water parcel motions (in the same direction as the wave
propagation in the upper layer and in the opposite direction in the lower layer), because their paths
are composed of open orbits [4]. For this reason, ISWs are able to transport kinetic and thermal
energy during their propagation [5].

Internal solitary waves interacting with the continental or near-shore slope can shoal and then
break. Shoaling and breaking ISWs induce mixing, which in turn affects the temperature field [6–8]
and the spatial distribution of nutrients and oxygen [6,9,10]. Moreover, the shear velocities induced
at the bottom cause bed material resuspension and redistribution [11–17].

In recent years, scientific research has focused on analyzing the particular conditions that induce
ISW breaking and associated effects. The weakly nonlinear, weakly dispersive Korteweg–de Vries
(KdV) equation approximates the shape of shoaling ISWs as a squared hyperbolic secant [18].
The KdV theory is valid for ISW amplitudes of up to 0.4 times the shallow water depth. For
larger amplitudes compared to the total water depth, thus in shallow water, the wave structure is
significantly different from that predicted by KdV theory and nonanalytical methods must be used to
characterize internal wave dynamics. Moreover, it is quite difficult to analyze the ISWs features and
their shoaling and breaking processes based on field observations because of the fairly coarse spatial
and time resolution of field data [7,8,12,17,19–23]. For these reasons, experimental and numerical
studies of shoaling and breaking ISWs have been widely carried out using small-scale idealized
domains (see, e.g., [24–26]). Numerous laboratory experiments investigating the interaction of
ISWs with a uniform sloped surface have been performed in the past. For example, the study
of Kao et al. [27] investigated the loss of energy due to breaking ISWs. In another experimental
study, Helfrich [28] investigated boluses caused by the shoaling of ISWs. Michallet and Ivey [29]
evaluated the energy loss due to mixing induced by shoaling ISWs. Boegman et al. [30] classified
the observed breaking types as a function of the Iribarren number defined as the ratio between the
topographic slope and the square root of the wave slope. The latter is defined as the ratio between
the wave amplitude and the wavelength. La Forgia et al. [31] investigated the effects of breaking
ISWs on the pycnocline thickness. For plunging breakers, they found a nonlinear relation between
the Iribarren number and the increase of the pycnocline thickness induced by the wave breaking.
Several studies focused on transport due to ISWs breaking on slopes [24–26,28,32]. Helfrich [28]
investigated the onshore transport associated with the dense fluid flowing upslope as a gravity
current after the breaking event takes place [33]. Nakayama and Imberger [32] and Nakayama
et al. [24] quantified transport by means of a time-averaged residual circulation: Their laboratory
experiments and numerical simulations showed that transport occurs onshore in the upper layer
and offshore in the lower layer. Arthur and Fringer [26] distinguished an onshore transport due to
the upslope flow of the denser fluid and an offshore transport induced by an intrusion of mixed
fluid propagating upstream. As generally observed in the coastal regions of oceans, these intrusions
resemble intermediate nepheloid layers, inducing offshore transport of benthic material into the
interior of the water column [34].

Formation and propagation of internal bores in two-layer stratified environments were studied
based on eddy resolving simulations by Borden et al. [35,36]. Shoaling and breaking internal
waves on slopes have been extensively investigated numerically, both at field scales [8,37–39] and
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FIG. 1. Sketch of the domain used to study breaking ISWs on slopes. The dashed line represents the initial
pycnocline position in the two layer-stratified fluid. The black dashed vertical line shows the initial position of
the lock gate.

at laboratory scales [40–43]. Moreover, several high-resolution, three-dimensional (3D) numerical
studies have examined turbulence and mixing during internal wave breaking on slopes. One can
mention the direct numerical simulations (DNSs) of Gayen and Sarkar [44] and Arthur and Fringer
[26,45] and the large-eddy simulations (LESs) of Gayen and Sarkar [46] among others. Each ISW
breaking mechanism is characterized by a peculiar dynamics and consequently different effects in
terms of mixing, entrainment, and the shear stresses induced over the sloped surface. During the
wave shoaling, the rear edge of the wave steepens and the denser fluid confined between the leading
edge and the incline moves downward. Depending on the ISW geometric features and the slope
inclination, the ISW shoaling over the sloping boundary develops differently [31]. For plunging
breakers, the steepening of the trailing edge is followed by a quick overturning in the onshore
direction, which entrains denser water and induces strong local mixing [47]. For collapsing breakers,
the rear edge steepening occurs slowly and it does not involve any observable instability. At the same
time, the dense water confined between the wave and the slope leaves its original position with a fast
downward motion in the adverse pressure gradient region. The consequent decrease of downslope
velocities induces boundary layer separation. As a result, a turbulent separated bolus forms that
quickly dissipates [43]. Then, part of the incident wave is reflected and a gravity current composed
of the denser fluid flows up the slope, until hydrostatic conditions are reestablished. In the case of
surging breakers, the ISWs are not subject to any observable large-scale instability during the shoal-
ing until the wave trough reaches the sloping bottom. The wave is not completely reflected because
a gravity current composed of denser fluid moves up the slope and strongly amplifies mixing [47].

Instabilities induced by ISWs breaking cause mixing and entrainment of both fresh and salty
water into the pycnocline region. The entrainment parameter is used to quantify the normalized
velocity of water discharge per unit area through the pycnocline boundaries, defined as the 2% and
98% isopycnal surfaces. A similar approach was adopted to study the entrainment of ambient fluid
in gravity currents [48–52]. Although ISWs have been widely studied in the past, the contribution
of this work is the investigation of entrainment in breaking ISWs. The present study uses fully
3D LES to investigate ISWs shoaling and breaking effects in terms of mixing and entrainment.
Because each breaking mechanism is characterized by different dynamics, our goal is to use the
3D flow fields available from highly resolved LES to qualitatively and quantitatively describe the
effects induced by the different ISWs breaking types. Section II describes the procedure adopted
to generate a certain type of breaker, as well as the main parameters of the experiments that are
used for validation of the numerical method. Section III describes the numerical model, previous
validation studies, boundary conditions, and simulation setup. Section IV investigates entrainment
processes. In Sec. V we discuss the ISW energetics and evaluate irreversible mixing. Section VI
discusses the significance of the main results and provides some conclusions.

II. INTERNAL SOLITARY-WAVE GENERATION AND RELATED EXPERIMENTS

Laboratory experiments were performed at the Hydraulics Laboratory of Roma Tre University
in a 3.0-m-long, 0.2-m-wide, and 0.3-m-deep Perspex tank (Fig. 1). The ISW was generated using
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a standard lock-release setup [27]. A thin, vertical, removable Perspex gate was used to divide
the regions containing lock fluid, on the left-hand side of the tank, and ambient fluid. A stratified
two-layer distribution containing fresh water in the upper layer (h1) and salty water in the lower
one (h2) was used to the right of the lock gate before the start of the experiment. The density
difference for the experiments performed ranges between 29.5 and 30.6 kg/m3. The Boussinesq
parameter values (0.0295–0.0306) are typical of those (∼0.03) observed in coastal ocean regions
where solitary waves are forming [53]. The Boussinesq parameter is defined as the ratio of the
density difference between the two layers and a reference density. To produce this initial density
stratification, the entire domain was filled with a solution of sodium chloride generating the lower
layer of uniform density ρ2. A density meter (Anton Paar DMA 4100M) was used to measure
the density of the saline mixture. Its measurement accuracy was 0.1 kg/m3. Fresh water of uniform
density ρ1 < ρ2 dyed by a controlled quantity of Methylthioninium chloride was then poured slowly
into a funnel inlaid in a sponge float placed over the free surface. Later, the vertical gate was inserted
at a distance x0 from the left wall of the tank. The bottom of the lock gate did not touch the channel
bottom but penetrated beneath the bottom of the layer containing lighter fluid in the lock region. The
addition of fresh water of uniform density ρ1 on the free surface of the lock induced the formation of
a displacement η0 between the pycnoclines of the two regions. During this phase, a known volume
of brine water flowed below the gate, reestablishing the hydrostatic equilibrium. The thickness of
the layer containing salty water was h1 + h2 on the left of the lock gate and h1 on its right (see
the dashed line in Fig. 1 that visualizes the interface between the heavier and light fluid before
the gate removal). The gate removal results in a gravity collapse that induces the generation of an
ISW of depression propagating toward the sloping boundary. The incline makes an angle θ with
the horizontal. At a fixed distance from the front wall of the tank, a CCD camera with a frequency
of 25 Hz and a spatial resolution of 1024 × 668 pixels was placed to record the evolution of the
ISW in each experiment. Each pixel had a resolution of about 3×3 mm2. Using image analysis, the
pycnocline thickness and the pycnocline position were inferred. For each generated ISW, the wave
amplitude Aw, the wavelength Lw, and the wave surface Sw (Fig. 1) were measured. Additionally,
the wave celerity cw (the first derivative of the trough’s position) was estimated. The characteristic
wavelength λw [29] was estimated from the relation

λw = 1

Aw

∫ +∞

−∞
η(x)dx = Sw

Aw

, (1)

where η(x) is the pycnocline vertical displacement compared to its original position.
Our goal was to generate well-defined ISWs in terms of their geometric features such that three

different breaking mechanisms are observed in a series of experiments conducted with different
values of θ or, equivalently, of the topographic slope sb = tan(θ ). The breaking mechanisms
are generally classified based on the internal Iribarren number [30,31,43,47]. This dimensionless
parameter is defined as

Ir = sb√
Aw

λw

. (2)

La Forgia et al. [31] developed empirical relations between the experimental setting parameters
before the lock gate release (x0, η0, h1, and h2) and the wave geometric features (Aw and λw). They
observed plunging breakers for Ir < 1, collapsing breakers for Ir = 1–1.5, and surging breakers
for Ir > 1.5. The ISW experiments reported in this study were conducted in the same Perspex tank
used by La Forgia et al. [31]. Table I shows the parameters in the three experiments (cases 1–3)
discussed in this study for which a plunging, a collapsing, and a surging breaker were observed,
respectively. In agreement with previous experimental studies [30,31,47], the slopes used in the
laboratory experiments are selected in order to generate well-defined plunging, collapsing, and
surging breaking mechanisms.
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TABLE I. Main parameters of the internal solitary wave cases. The variables in the table indicate the
breaker type (plunging P, collapsing C, or surging S), the densities of the upper and lower layers ρ1 and ρ2,
respectively, the lock length x0, the pycnocline displacement η0, the depth of the layers in the ambient fluid
region h1 and h2, the wave amplitude Aw , the characteristic wavelength λw , the wave celerity cw , the wave
surface Sw , the topographic slope sb, and the internal Iribarren number Ir .

ρ1 ρ2 x0 η0 h1 h2 Aw λw cw

Case Type (kg/m3) (kg/m3) (cm) (cm) (cm) (cm) (cm) (cm) (cm/s) sb Ir

1 P 1001.7 1031.7 10.0 18.0 1.2 19.8 3.9 24.8 11.6 0.284 0.7
1 C 1001.0 1031.6 15.0 9.2 5.0 23.0 3.3 42.4 12.8 0.366 1.3
1 S 1001.0 1030.5 15.0 13.5 3.3 16.7 5.3 41.1 15.7 0.953 2.6

III. NUMERICAL MODEL, SIMULATION SETUP, AND VALIDATION

The numerical model was previously applied to study bottom propagating and intrusion lock-
exchange gravity currents [54–57] and internal bores [35]. The Boussinesq approximation is
employed to account for stratification effects. Here we only briefly describe the main features of
the numerical algorithm. The governing Navier-Stokes and density transport equations are solved
in nondimensional form with the channel height H = h1 + h2 as the spatial scale and the buoyancy
velocity ub = (g′H )0.5 as the velocity scale. The reduced gravity is g′ = g

ρ2−ρ1

ρ2
, where g is the

gravitational acceleration. The dimensionless density field is defined as

ρ∗(x, y, z, t ) = ρ(x, y, z, t ) − ρ1

ρ2 − ρ1
. (3)

The finite-volume viscous solver [58] advances the Navier-Stokes equations in time using a
semi-implicit iterative method. The pressure Poisson equation is solved using multiple grids. The
conservative form of the nondimensional Navier-Stokes equations is integrated on nonuniform
Cartesian meshes. All operators in the momentum and pressure equations are discretized using
second-order central schemes. The algorithm is second order in time. Discrete energy conservation
ensures robustness at relatively high Reynolds numbers despite using strictly nondissipative (cen-
tral) schemes to discretize the Navier-Stokes equations. A standard advection-diffusion equation
is solved for the nondimensional density. The quadratic upstream interpolation for convective
kinematics scheme is used to discretize the advective term in the equation for ρ∗. The FORTRAN 90
parallel code uses a message passing interface. The two parameters in the nondimensional governing
equations are the channel Reynolds number Re = ubH/ν and the molecular Schmidt number
Sc = ν/κ , where ν is the molecular viscosity and κ is the molecular diffusivity. The subgrid-scale
viscosity and the subgrid-scale diffusivity in the filtered nondimensional momentum and density
equations are calculated using the dynamic Smagorinsky model [58] based on the resolved velocity
and density fields at each time instant. As opposed to the classical constant-coefficient Smagorinsky
model, the dynamic version does not require any near-wall corrections or corrections to account for
stratification effects [59]. It also correctly predicts zero values of the subgrid-scale viscosity and
diffusivity in regions where the flow is nonturbulent even in the presence of mean shear or where
the flow is relaminarizing, which is particularly important for the types of flows that are investigated
in the present study. Also the values of the subgrid-scale viscosity and subgrid-scale diffusivity in
the instantaneous flow fields are significantly lower than those predicted by the constant coefficient
Smagorinsky model. For the relatively fine mesh used in the present simulations and relatively low
physical Reynolds number, the maximum values of the eddy viscosity and eddy diffusivity in the
instantaneous flow fields were of the order of 10 times the corresponding molecular values. At most
grid points situated inside the ISW region and around it where the flow is turbulent, the instantaneous
subgrid-scale viscosity and diffusivity values were comparable to or lower than the molecular
viscosity and diffusivity, respectively. This means that the present simulations resolve most of the
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energetically important eddies in the flow and the subgrid-scale model has a small effect on the
dynamics of these eddies other than providing the minimum dissipation that keeps the simulation
stable.

The LES-DNS code was validated for several relevant types of flows relevant for the present
investigation. Ooi et al. [54] discussed validation results for intrusion currents propagating in a two-
layer stratified environment. Tokyay and Constantinescu [60] and Steenhauer et al. [61] discussed
validation for a gravity current interacting with a large triangular obstacle and lock-exchange
currents propagating over a sloped surface, a setup that is directly relevant for the present study once
the ISW starts interacting with the sloped surface. Borden et al. [35] investigated the propagation
of internal bores generated in lock-exchange configurations. All these studies contain a detailed
comparison with experimental data and shallow water theory. The same code was also used to
calculate mixing and mixing efficiency in stratified turbulence. Sommer et al. [62] reported such a
study conducted for bacteria-induced mixing in a stratified lake environment. The flow dynamics,
flow velocities within the convection cells forming inside the bacteria layer, the dissipation levels,
and the mixing efficiency were found to be close to values estimated based on field experiments
conducted in a lake with similar stratification and flow conditions.

The geometrical setup of the simulations in a horizontal-vertical plane x-y is shown in Fig. 1. A
zero flow velocity field is imposed in the domain at the time when the lock gate is released (t = 0).
All the solid channel boundaries, including the inclined surface, were treated as no-slip surfaces.
Periodic boundary conditions were applied for all variables in the spanwise direction.

The top boundary (free surface of the tank) was treated as a shear-free slip surface with zero
normal velocity. Before the lock gate was released at t = 0, the nondimensional density was set
up as ρ∗ = 1 in the region containing the saltier fluid and ρ∗ = 0 in the remaining part of the
tank containing ambient lighter fluid (see the red dashed line in Fig. 1). A small 3D disturbance
was imposed on the initial density field in the regions delimitating the saltier and ambient fluids.
The surface-normal concentration gradient was set to zero at all no-slip and free-slip boundaries.
The molecular Schmidt number was equal to 100. Ooi et al. [63] investigated the effect of the
molecular Schmidt number on the propagation and mixing of bottom propagation gravity currents
using the same LES code. They found that the main variables characterizing the evolution of the
turbulent current were close to being independent of the value of the molecular Schmidt number
for 1 < Sc < 100. These results are also fully consistent with similar conclusions reached based
on DNS by Necker et al. [64] and Cantero et al. [65], who found that the value of the Schmidt
number does not significantly alter the generality of the results as long as it is of order one or larger.
In all the simulations the grid contained over 70 × 106 nodes with 64 grid points in the spanwise
direction. The grid spacing in the spanwise direction was about 0.008H , while the grid spacing
in the vertical and streamwise directions was close to 0.0035H . At most locations the boundary
layer on the inclined surface was resolved with at least five points in the wall-normal direction.
This resolution is comparable to the one used by Steenhauer et al. [61] to study the propagation
of lock-exchange gravity currents over inclined surfaces at comparable physical Reynolds numbers
for which experimental data were available for validation of the numerical predictions. Simulations
were run with a time step of 0.002H/ub. A grid dependence study was conducted for case 1. It
confirmed that the mesh density used in the present simulations was sufficient for the solutions
to be considered grid independent. In the simulations, the flow is homogeneous in the spanwise
direction. This allows defining the mean (spanwise-averaged) variables at any moment in time.
The spanwise-averaged values are denoted as 〈 〉. The wave Reynolds number Rew is evaluated as
in [43],

Rew = Awc0

ν
, (4)

where the linear phase speed c0 is defined as in [47],

c0 =
√

g′ h1h2

h1 + h2
. (5)
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FIG. 2. Snapshots in time visualizing the heavier fluid in the experiments (on the left) and the nondi-
mensional density fields obtained by numerical simulation (on the right) for the collapsing case (case 2)
(a) after the experimental or numerical initial setting (t ′/T = −5.1), (b) a short time after the gate is removed
(t ′/T = −4.51), (c) after the ISW formation (t ′/T = −3.43), (d) during the ISW propagation toward the
sloping boundary (t ′/T = −2.34), and (e) before the interaction of the ISW with the sloping boundary
(t ′/T = −1.23). Yellow and red lines visualize the 2% and 98% isopycnal surfaces, respectively.

The inferred wave Reynolds numbers for the three cases are Rew = 2.25 × 103 (case 1), Rew =
3.66 × 103 (case 2), and Rew = 4.91 × 103 (case 3). To interpret more easily the differences among
the three cases, Sec. VI analyzes the relevant variables in nondimensional form. The nondimensional
time scale is T = λw/cw. The time scale T is 2.14, 3.31, and 2.62 s in cases 1, 2, and 3, respectively.
Given that the focus of the present study is on the interaction of the ISW with the sloped surface
and that the length of the tank has a small effect on the ISW characteristics before it approaches
the sloped surface, the time in each simulation (t ′) is specified with respect to the time (t0) at which
the horizontal velocity in the upper layer starts to decrease because of the presence of the sloping
boundary. In nondimensional form, t ′/T = (t − t0)/T , where t is measured with respect to the time
at which the lock gate is removed (t/T = 0).

We assessed the reliability of the numerical model by comparing the results of the numerical
simulations with those obtained from laboratory experiments performed as part of the present
research. For all three cases, the numerical simulations predicted the formation of an ISW with
geometric and kinematic features (i.e., amplitude, wavelength, and celerity) very close to those
observed in the corresponding experiments. For brevity, only numerical results for case 2, in which
a collapsing breaking mechanism is observed, are compared in Figs. 2 and 3 with experimental
visualizations. For the corresponding time steps, the right-hand side of Figs. 2 and 3 shows the
(nondimensional) density field 〈ρ∗〉 predicted by the numerical simulation at relevant times after
the formation of the ISW. In the experiment (left-hand side of Figs. 2 and 3), the dye introduced
inside the upper lighter layer allows one to directly observe the spatial and temporal evolutions of the
pycnocline. The frames in Fig. 2 visualize the ISW generated by the lock release at t ′/T = −5.1
or t/T = 0 [Fig. 2(a)]. The most obvious discrepancy between the experiments and the way the
simulation was conducted is the presence of a thin Perspex gate introduced during the filling phase
inside the tank to generate a different stratification between the lock and the ambient fluid regions.
Moreover, the gate removal induces a transfer of vertical shear stress to the fluid parcels in direct
contact with it. However, given the small thickness of the Perspex gate (4 mm) and the low gate
removal rate, the induced disturbances are fairly limited and confined. Figure 2(b) confirms that,
immediately after the gate removal, the simulated density field nearby the lock region is in good
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FIG. 3. Snapshots in time visualizing the heavier fluid in the experiments (on the left) and the nondimen-
sional density fields obtained by numerical simulation (on the right) for the collapsing case (case 2) (a) at the
time at which the ISW starts interacting with the sloping boundary and the horizontal velocity in the upper layer
starts to decrease because of the presence of the sloping boundary (t ′/T = 0); (b) during the bolus generation,
point A in the following figures (t ′/T = 1.7); (c) at a time when mixing induced by the bolus is significant,
point B in the following figures (t ′/T = 2.05); (d) after the gravity current running up the slope forms, point
C in the following figures (t ′/T = 2.96); and (e) at the time the gravity current reaches the end of the slope,
point D in the following figures (t ′/T = 5.59). Yellow and red lines characterized the 2% and 98% isopycnal
surfaces, respectively.

agreement with the spatial distribution of dye observed experimentally at the same time. At time
t ′/T = −4.51 the lighter fluid initially placed inside the lock region begins to assume the typical
shape of a solitary wave [Fig. 2(c)] and propagates while preserving its shape and celerity as it
approaches the sloping boundary [Fig. 2(d)]. In both experiment and simulation several bores follow
the internal wave, as shown in Fig. 2(c). The bores are comparable in terms of their size and location.
This proves again that the disturbance induced by the Perspex gate removal during the laboratory
experiment can be considered negligible. Figure 3 visualizes the ISW once it starts interacting with
the sloping boundary. The numerical model captures very well the main geometric features of the
ISW approaching the inclined surface [Fig. 3(a)]. The collapsing breaking mechanism involves
the formation of a bolus characterized by a counterclockwise vortex, which is clearly visible over the
inclined surface [31]. Both the location of this instability and its geometric features are well captured
by the numerical simulation [Figs. 3(b) and 3(c)]. The wave breaking induces the generation of
a gravity current containing heavier fluid running up the inclined surface [Fig. 3(d)], while the
approaching ISW is partially reflected [Fig. 3(e)].

To provide a more in depth comparison of the experimental and the numerical flow evolution
results in case 2, the temporal evolution of the grayscale field from the experimental visualization
and the normalized density field from the simulation are compared in a horizontal plane [Figs. 4(a)
and 4(b)] and in a vertical one [Figs. 4(c) and 4(d)]. The strips of dark color in Figs. 4(a) and
4(b) represent a portion of the ISW underlying the horizontal plane placed at y/H = 0.74 from
the bottom. The thickness and inclination of the two strips are about the same in the experiment
and simulation, which is consistent with the good prediction of the ISW size and celerity by the
simulation. The breaking of the ISW generates a reflected ISW that is smaller compared to the
incident one. This is why the reflected wave is occasionally visible for t ′/T > 1 at times when
it intersects the reference horizontal plane. The reflated waves assume comparable features, for
t ′/T > 2.5 [Figs. 4(c) and 4(d)].

For cases 1 and 3, Fig. 5 shows the nondimensional density fields predicted by the numerical
simulations as the ISWs generated by the lock release approach the inclined surface and starts
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FIG. 4. Case 2 experiment and numerical simulation snapshot with the field of view showing the
entire domain. (a) Experimental normalized grayscale field gn and (b) numerically predicted dimensionless
density field 〈ρ∗〉 in a horizontal plane (x/H -t ′/T ) situated at fixed depth (y/H = 0.74) from the bottom.
(c) Normalized grayscale field and (d) numerically predicted dimensionless density field in the vertical plane
(t ′/T -y/H ) at the middle of the domain (x/H = 5.35).

interacting with it. The steepening of the trailing edge of the wave for case 1 [Figs. 5(a)–5(e)], the
formation of a bolus over the sloping boundary for case 2 [Figs. 3(a)–3(e)], and the formation of

FIG. 5. Nondimensional density fields predicted by numerical simulation for (a)–(e) the plunging case
(case 1) and (f)–(j) the surging case (case 3). Shown for the plunging breaker are (a) the wave approaching
the slope (t ′/T = 0); (b) steepening of the trailing edge (t ′/T = 1.03); (c) mixing induced by the trailing edge
overturning, point E in the following figures (t ′/T = 2.46); (d) gravity current flowing upslope, point F in the
following figures (t ′/T = 7.44); and (e) the gravity current stopping (t ′/T = 13.48). Shown for the surging
breaker are (f) the wave approaching the slope (t ′/T = 0); (g) small instability for boundary layer separation,
point G in the following figures (t ′/T = 1.17); (h) formation of the gravity current (t ′/T = 1.84); (i) the
gravity current flowing upslope, point H in the following figures (t ′/T = 2.25); and (j) the gravity current
stopping (t ′/T = 3.42).
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a gravity current flowing up the incline for case 3 [Figs. 5(f)–5(j)] represent the main events that
characterize the breaking mechanism in the plunging, collapsing, and surging cases, respectively.

IV. ENTRAINMENT IN INTERNAL SOLITARY WAVES

During the ISW generation phase, the pycnocline region entrains both fresh and salty water,
increasing its volume. Once the lock gate is released, the initial potential energy is converted into
kinetic energy and mixing occurs between the upper layer containing lighter fluid and the lower
layer containing heavier fluid. The fresh water entrainment velocity can be estimated as the fresh
water discharge per unit area crossing the interface between the two fluids defined by the isodensity
level 〈ρ∗〉 = 0.02 in the vertical x-y plane.

This procedure is similar to the one used in Refs. [48,49,52,66–68]. The salty water entrainment
velocity is estimated in a similar way using the water discharge per unit area crossing the interface
defined by the isodensity level 〈ρ∗〉 = 0.98 in the vertical x-y plane. Figure 5(a) shows the 〈ρ∗〉 =
0.02 and 〈ρ∗〉 = 0.98 isodensity levels as the ISW is approaching the inclined surface in case 2. The
arrows perpendicular to the isodensity surfaces identify the direction of the entrainment discharge.
We define the intermediate density layer (or pycnocline water) as the region enclosed by these two
isodensity levels. The water discharge per unit area crossing these interfaces represents entrainment
into the pycnocline water. It can be described by the temporal variation of the intermediate density
layer region volume enclosed between the two isodensity levels in the vertical x-y plane.

If at t = t0 (t ′/T = 0) the initial volume of the pycnocline water is V m0, at a successive time
ti = t0 + �ti the intermediate density layer has a larger volume V mt = V m0 + �Vi . The change
in volume �Vi can be estimated as �Vi = (At − A0)d, where d is the spanwise dimension of the
domain, At is the area enclosed between the isodensity levels in the vertical x-y plane at time ti ,
and A0 is the initial area of the pycnocline water at t = t0. A bulk entrainment discharge can be
calculated at each time:

Qei = �Vi/�ti . (6)

Then one can define a bulk entrainment velocity

Wei = Qei/Si, (7)

where the interface Si is obtained as the sum of the isodensity surfaces defining the boundaries of the
intermediate density layer. The bulk entrainment parameter EP is a dimensionless number obtained
by dividing the bulk entrainment velocity by the ISW celerity

EPi = Wei/cw. (8)

For each case, the temporal variations of the nondimensional pycnocline water volume V m/V m0

and averaged density ρ∗ − ρ∗
0 are plotted in Figs. 6(b) and 6(c), respectively. The index 0 is used to

denote the values of these variables at t = t0.
Before the ISW reaches the inclined surface (initial phase, t ′/T < 2), the intermediate density

layer volume increases with time at an approximately constant rate in all three cases [Fig. 6(b)]. By
contrast, the averaged density does not show a similar variation in the three cases for t ′/T < 2
[Fig. 6(c)]. After this initial phase, the temporal variations of the pycnocline water volume is
a function of the breaking dynamics of the ISW. For the collapsing and the surging cases,
the pycnocline water volume continues to increase with about the same initial rate [Fig. 6(a)].
Meanwhile, a much smaller rate of increase of the pycnocline water volume with time is observed
in the plunging case for t ′/T > 2 [Fig. 6(a)]. This is due to the slow decrease of the mean density
of the mixing layer [Fig. 6(b)]. The temporal variation of the averaged density is nonmonotonic for
all three cases. For the collapsing and the surging cases, ρ∗ − ρ∗

0 first increases until t ′/T = 3 and
then it starts decreasing in a nonmonotonic way [Fig. 6(b)]. The nonmonotonic decay of ρ∗ − ρ∗

0
is observed starting immediately after the end of the initial phase in the plunging case. Depending
on the breaking dynamics, the changes of the pycnocline water volume and averaged density are
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FIG. 6. Analysis of the entrainment process. (a) Case 2, nondimensional density. The arrows identify the
direction of the entrainment which occurs perpendicularly to the 2% and 98% isopycnal surfaces (yellow and
red lines, respectively). Also shown are the temporal evolution of (b) the dimensionless volume and (c) the
averaged density of the pycnocline water. Results are shown for case 1, the plunging breaker (solid lines); case
2, the collapsing breaker (dashed lines); and case 3, the surging breaker (dash-dotted lines). Points A–H are
defined in Figs. 3 and 5.

affected by the entrainment of both fresh and salty water. The physical processes affecting the
intermediate density layer evolution can be described by considering the temporal evolution of the
bulk entrainment parameter. In particular, one can distinguish between the global bulk entrainment
parameter of the pycnocline water (black lines in Fig. 7) and the bulk entrainment parameter
evaluated by considering the 〈ρ∗〉 = 0.02 and 0.98 isopycnal surfaces. The former characterizes
the entrainment of the fresh water into the salty water (green lines in Fig. 7), while the latter
characterizes the entrainment of the salty water into the fresh water (red dashed lines in Fig. 7).
As the collapsing breaker approaches the inclined surface in case 2, it modifies its shape without
developing any visible instability [Fig. 3(a)]. Its trailing edge steepens, while its leading edge
tends to assume the same slope as the incline. As this happens, the wave partially dissipates. The
pycnocline water increases its volume by entraining mostly fresh water. This is the main reason why
its mean density decreases for small t ′/T [e.g., until point A in Figs. 6(b), 6(c), and 7(a)]. As the
ISW starts breaking, a bolus characterized by a counterclockwise motion forms and then dissipates
fairly rapidly [Figs. 3(b) and 3(c)]. This event induces a sudden change of the bulk entrainment
parameter due to the increase of the brine water discharge into the pycnocline water, which increases
its density [see the time interval between points A and B in Figs. 6(b), 6(c), and 7(a)]. The generation
of a gravity current flowing up the inclined surface is consistent with the counterclockwise direction
of the vortex generated by the interaction of the IBW with the inclined surface [see Figs. 3(d) and
3(e) and point C in Figs. 6(b), 6(c), and 7(a)]. The gravity current propagates upslope, interacting
with the upper layer containing fresh water. As a result, the gravity current entrains lighter water
[see the time interval between points C and D in Figs. 6(b), 6(c), and 7(a)], which explains the
decrease of the pycnocline water averaged density. The disappearance of a well-defined gravity
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FIG. 7. Temporal variation of bulk entrainment parameter for (a) the collapsing case, (b) the plunging case,
and (c) the surging case. The dashed lines show the EP obtained by using the 2% isopycnal surface (entrainment
of fresh water), the green solid lines show the EP obtained by using the 98% isopycnal surface (entrainment of
salty water), and the black solid lines show the EP obtained by using both the 2% and 98% isopycnal surfaces
(entrainment of the fresh water and salty water into the intermediate density layer). Points A–H are defined in
Figs. 3 and 5.

current marks the end of the breaking event. At larger times, the incident wave is partially reflected
and the pycnocline water density becomes approximately constant [see the time interval after point
D in Fig. 6(c)].

For the plunging breaker case, the interaction of the ISW with the sloping boundary [case 1
results in Figs. 5(a)–5(c)] results in the steepening of the rear edge of the wave and its subsequent
overturning in the onshore direction [31]. This induces the formation of a clockwise rotating patch
of heavier fluid due to the Rayleigh-Taylor instability which causes entrainment of the lower-layer
salty water [43]. During the initial stages, increases of the pycnocline water volume and density
are observed. They are due to entrainment of salty water into the intermediate density layer [see
the time interval before point E in Figs. 6(b), 6(c), and 7(b) for case 1]. The rotating patch of fluid
slowly dissipates as it entrains less and less brine water. At the same time, as for the collapsing
case, a gravity current forms and flows upslope [case 1 in Fig. 5(c)], entraining lighter water into the
intermediate density layer [case 1 in Figs. 5(d) and 5(e)]. Consequently, a decrease of the pycnocline
water mean density is observed due to a fresh water entrainment [see the time interval after point E

in Figs. 6(b), 6(c), and 7(b)].
For the surging breaker case, the ISW dynamics is comparable to that observed in the collapsing

case. As the wave interacts with the sloping boundary, it changes its shape and partially dissipates as
it entrains fresh water [t ′/T < 0.5 in Figs. 6(b), 6(c), and 7(c)]. When the wave trough reaches its
lowest position over the sloped surface, boundary layer separation occurs, inducing the formation
of a bolus [case 3 in Fig. 5(g)] characterized by a counterclockwise motion. It quickly dissipates
causing mixing. Eventually the bolus evolves into a gravity currentlike flow that advects fresh water
upslope [case 3 in Figs. 5(h)–5(i)]. This induces a quick increase of the pycnocline water density
which entrains rapidly salty water [see the time interval before point G in Figs. 6(b), 6(c), and 7(c)].
In a first phase, the gravity current flow moves upward over the sloped boundary, intruding into
the intermediate density layer, whose mean density increases [see the time interval between points
G and H in Figs. 6(b), 6(c), and 7(c)]. As it propagates over the sloped boundary and approaches
the free surface, the gravity current decelerates and interacts with the upper layer containing fresh
water [case 3 in Fig. 5(j)]. As this happens, a decrease of the pycnocline water mean density due to
entrainment of fresh water is observed [see the time interval after point H in Figs. 6(b), 6(c), and
7(c)], which is similar to what was observed in the collapsing case. Later on, the entrainment of
salty water remains roughly unchanged, while the entrainment of fresh water increases with time.
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This is probably due to the horizontal rearrangement of the pycnocline water towards a more stable
hydrostatic condition.

V. POTENTIAL ENERGY AND IRREVERSIBLE MIXING

Mixing within a breaking ISW is herein quantified by the energy budget method of Winters et al.
[69], which has been widely used in the literature (see, e.g., [50,67,70,71]). This method does not
consider the change in the volume of the pycnocline water; thus it is not required to define any
isodensity interface. Considering the density field ρ(x, y, z, t ) for a closed system, where x, y,
and z are the streamwise, vertical, and spanwise coordinates, respectively, mixing of the density
field corresponds to a change in the probability density function (PDF) of the density induced by
mass diffusion. This change results in a reduction of the density variance. Turbulence enhances the
blending of fluid parcels by steepening scalar gradients and increasing isoscalar surfaces, the regions
along which diffusion develops [72]. In the energy budget method, diabatic and adiabatic processes
are distinguished. An adiabatic process can change the potential energy of the fluid by switching
the kinetic energy into potential energy without inducing any diffusive mixing (i.e., no heat or
mass transfer occurs). The diabatic processes properly quantify the energetics of mixing. They are
responsible for the change of the total potential energy of the fluid due to irreversible molecular
diffusion. In order to distinguish between the contribution of diabatic and adiabatic processes, the
concepts of background and available potential energy have to be introduced [69]. The volume-
integrated kinetic energy and the gravitational potential energy of the flow are defined as

Ek (t ) = ρ0

2

∫
V

(u2 + v2 + w2)dV, (9)

Ep(t ) = g

∫
V

ρ(x, y, z, t )y dV, (10)

where ρ0 is a constant reference density; u, v, and w are the streamwise, vertical, and spanwise
velocity components respectively; ρ(x, y, z, t ) is the local instantaneous density field; and V is the
entire volume of the domain. The instantaneous volume-integrated background potential energy is
defined as

Eb(t ) = g

∫
V

ρ̃(x, y, z, t )y dV, (11)

where ρ̃(x, y, z, t ) represents the density field in the configuration of the minimum potential
energy obtained by sorting the fluid parcels by an adiabatic volume-conserving rearrangement. The
background potential energy is uniquely defined by the PDF of density and thus is independent
of the instantaneous spatial distribution of density in the flow domain. The difference between the
total energy and the background potential energy defines the volume-integrated available potential
energy

Ea (t ) = Ep(t ) − Eb(t ). (12)

The available potential energy quantifies the amount of potential energy released in the adiabatic
transition from ρ(x, y, z, t ) to ρ̃(x, y, z, t ) without altering the PDF of density. It is the amount of
potential energy stored in the fluid when it is not in gravitational equilibrium [73]. Changes in the
background potential energy are thus associated with the energy consumed in mixing the fluid and
can be used to characterize this process.

The energy budget was evaluated for all cases. Qualitatively, the temporal variations of the kinetic
energy, total background potential energy, and available potential energy terms were similar in these
cases. For brevity, only results for the collapsing case are presented in Fig. 8(a). When plotted, the
energy variables E have the initial value E0 removed. The dimensional variables are then normalized
by the absolute value of the minimum available potential energy |Ea,min|. The energy that is no
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FIG. 8. (a) Temporal variation of volume-integrated energy for the collapsing case. The kinetic energy Ek ,
total potential energy Ep , background potential energy Eb, and available potential energy Ea are all normalized
by |Ea,min|. (b) Normalized rate of change of background potential energy for the collapsing case. Points A–D

are defined in Fig. 3.

longer available due to irreversible mixing can be evaluated by calculating the change in background
potential energy between consecutive states of the system. Figure 8(b) shows the rate of change of
the nondimensional background potential energy for the collapsing case.

As the wave starts to experience the presence of the sloping boundary, its celerity decreases. As a
result, the volume-integrated kinetic energy inside the domain starts decaying. As this happens, the
ISW is modifying its shape and the lighter fluid parcels tend to move downward [Fig. 3(a)]. For this
reason, both the total and the available potential energies increase, while remaining equal to each
other. The background potential energy is thus equal to zero. The kinetic energy starts to increase
during the breaking event. The motion induced by the boundary layer separation [Fig. 3(b)] uplifts
the lighter water parcel and induces mixing. The time evolution of the background potential energy
shows the presence of a first peak during the time interval the bolus forms and of a second, more
pronounced, peak during the time period when the whirling motion causes mixing [points A and B,
respectively, in Fig. 8(b)]. As the counterclockwise vortex loses its coherence, the rate of change of
Eb decreases. This lasts until the formation of the gravity current [point C in Fig. 8(b)]. The fluid
motion inside the domain is now characterized by the presence of a gravity current flowing upslope
and a reflected wave moving offshore. For these reasons, the kinetic energy and the potential energy
assume their maximum and minimum values, respectively. When the gravity current flows upslope
it induces mixing, which in turn results in slight variations of the background potential energy. In
particular, when the gravity current reaches its highest position over the sloping boundary [Fig. 3(e)],
a more pronounced variation of Eb is observed [point C in Fig. 8(b)].

The rate of change of the background potential energy is not a direct measure of the amount
of mixing. Rather the mixing efficiency is used to quantify mixing, by evaluating the relation
between the change in PDF and the system energetics. In a stratified flow, the mixing efficiency
quantifies the fraction of energy consumed by irreversible diabatic mixing related to the amount of
energy available to support this process (i.e., the mechanical energy). As widely used in previous
experimental and computational studies (see, e.g., [74–77]), the instantaneous mixing efficiency is
defined as

η = �Eb

|�ET | , (13)
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FIG. 9. Instantaneous mixing efficiency η and bulk mixing efficiency ηm (dashed lines) for (a) the
collapsing case, (b) the plunging case, and (c) the surging case. Points A–H are defined in Figs. 3 and 5.

where � is the change between two consecutive states of the system and ET is the instantaneous
total mechanical energy of the fluid

ET (t ) = Ea (t ) + Ek (t ). (14)

Figure 9 shows the temporal variation of the mixing efficiency in the three cases and its mean
value during the corresponding breaker event. For the collapsing case, as the wave approaches the
incline, it decelerates and consequently partially dissipates. The first peak of the mixing efficiency
is observed for t ′/T < 1 [Fig. 9(a)] as the volume-integrated kinetic energy starts to decrease
[Fig. 8(a)]. Then, as the wave interacts with the sloping boundary, the changes in wave geometric
and kinematic features cause an approximately linear increase of the mixing efficiency with time.
Its maximum value is recorded during the dissipation of the counterclockwise vortex induced by the
boundary layer separation [point B in Fig. 9(a)]. During the upslope propagation of the gravity
current, the value of η increases in an irregular way. Three peaks of increasing magnitude are
observed during the time interval between point C and point D [Fig. 9(a)]. During this phase, the
mixing peaks when the gravity current reaches the upper layer close to the free surface [point D in
Fig. 8(a)]. Because of the interaction between the gravity current and the surrounding lighter fluid,
mixing is strong, which explains the peak in the mixing efficiency at point D.

In the plunging case [Fig. 9(b)], the clockwise vortex induced by the overturning of the rear
edge of the wave causes the entrainment of a large amount of salty water for 0 < t ′/T < 2.5
[point E in Fig. 7(b)]. The mixing efficiency then decreases before starting to increase again for
t ′/T > 4 and it peaks around t ′/T = 7.5 [point F in Fig. 9(b)]. During this phase, the formation
of the gravity current is observed. As the gravity current flows upslope, it entrains lighter fluid
[Fig. 7(b)], which causes mixing. For the same reason explained in the collapsing case, when the
gravity current reaches the upper layer close to the free surface, the mixing and mixing efficiency
peak again [t ′/T = 11.5 in Fig. 9(b)].

The instantaneous mixing efficiency for the surging case contains four peaks [Fig. 9(c)]. The
first one occurs for t ′/T = 0.8, as the wave interacts with the sloping boundary, which induces
strong dissipation. As the wave trough reaches its lowest position over the incline, small instabilities
develop due to boundary layer separation. A peak of the mixing efficiency occurs at this time [point
G in Fig. 9(c)]. The breaking event continues with the formation of a gravity current flowing upslope
that induces strong local mixing. The peak of the mixing efficiency is reached when the gravity
current reaches its highest position over the sloped boundary [point H in Fig. 9(c)]. Around t ′/T =
4, a third peak of the mixing efficiency is observed. This peak is probably due to the horizontal
rearrangement of the intermediate density layer towards a stable hydrostatic condition. Our results
are in agreement in terms of bulk mixing efficiency and mixing efficiency peaks with the values
obtained by Arthur and Fringer [45].
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VI. CONCLUSION

Using high-resolution numerical simulations, we reproduced three laboratory experiments of
internal solitary waves interacting with a sloping boundary. The numerical approach allowed us to
analyze and quantify three different types of breaking events by linking the different instabilities
and dynamics of each type of breaker wave with the temporal evolution of the density fields. For the
plunging breaker case, an instability develops as the wave experiences the presence of the sloping
boundary in the form of a clockwise vortex induced by the overturning of the trailing edge of the
wave. Compared to the other cases, this instability occurs in the internal part of the flow beneath
the wave, relatively far from the bottom. Immediately after the edge overturning, a large amount of
salty water runs over the wave, which results in strong salty water entrainment into the pycnocline
water. The instantaneous mixing efficiency increases rapidly to 0.2, as the wave starts interacting
with the sloping boundary and then remains approximately constant until the turbulent structure
dissipates. During these times (t ′/T = 1–2), the thin layer of salty water is pushed down the incline
by the approaching wave, which induces a large amplification of the bed shear stress. The instability
characterizing the plunging breaker causes initially a large entrainment into the pycnocline region,
while the mixing efficiency peaks only at a later stage as the mixed region reaches the sloping
boundary. A relatively large time delay occurring between the two processes is observed.

In the collapsing breaker case, the heavier fluid is forced to accelerate downward in the vicinity
of the sloped boundary, before the wave trough reaches the sloping surface. The consequent
boundary layer separation generates a fresh water bolus characterized by a counterclockwise motion
that induces strong entrainment of salty water into the intermediate density layer. The vortex
dissipation occurs rapidly, thus entrainment and mixing occur in quick succession: The maximum
mixing efficiency is observed after the bolus generated by boundary layer separation forms. After
the bolus dissipates, a gravity current is generated by the unstable density distribution over the
sloping boundary. The gravity current flows upslope, inducing entrainment of fresh water into the
pycnocline water. During this phase, the entrainment increases linearly while the mixing efficiency
shows several peaks of increasing values. This is probably due to the formation of successive
Kelvin-Helmholtz billows at the interface.

In the surging case, the entire breaking event is very similar to the one observed for the collapsing
breaker case. The main difference between the two cases can be found in the energetics of the
boundary layer separation. Because a larger Iribarren number is needed for a surging breaker to
occur, the sloping boundary should have a minimum inclination with respect to the wave slope. As
the wave approaches the slope, the downstream deceleration of the heavier fluid over the incline in
the adverse pressure gradient region causes boundary layer separation. Consequently, the formation
of a small bolus occurs. Because the ISW generated is bigger (i.e., faster) than the one generated
in case 1 (the collapsing breaker case), one could expect stronger instabilities to develop for the
surging breaker case. Nevertheless, a comparison of both the bolus size in Figs. 3(b) and 5(g) and
the mixing efficiency in Figs. 9(a) (point B) and 9(c) (point G) proves that this instability is less
energetic for the surging breaker. As a result, the gravity current moving upward over the sloping
boundary is bigger and more energetic in the surging breaker case [Fig. 5(i)] compared to the one
in the collapsing breaker case [Fig. 3(d)].

Although the maximum entrainment values are very different in the three cases, the bulk mixing
efficiency values during the breaking event are similar. The maximum amount of entrainment is
observed in the surging breaker case whereas the difference with the other two cases is not very
significant. Thus, the surging breaker case is characterized by a lower mixing compared to the other
two cases.

The entrainment parameter and the mixing efficiency represent different indicators of the
effects of turbulent instabilities. Nevertheless, they should both be taken into account for a clear
and complete description of mixing occurring within a stratified fluid system. Changes in the
intermediate water entrainment parameter are associated with the rate of decrease of water volumes
with constant density values (i.e., the uniform upper and lower layers). Moreover, mixing processes
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involve the generation of a mixed region characterized by more uniform properties. Thus, changes
of the density profile, evaluated in the state of minimum potential energy, can be completely
described by considering both entrainment (which influences the thickness of the density profile
with intermediate density values) and mixing (which affects the density profile within the mixed
region). With respect to other ISW breaking mechanisms, the results reported in the present
paper show that a plunging breaker is expected to induce changes of the initial density profile,
by increasing both the region characterized by intermediate values and the vertical displacement
between the inflection points.
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