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In addition to mass, energy, and momentum, classical dissipationless flows conserve
helicity, a measure of the topology of the flow. Helicity has far-reaching consequences
for classical flows from Newtonian fluids to plasmas. Since superfluids flow without
dissipation, a fundamental question is whether such a conserved quantity exists for
superfluid flows. We address the existence of a “superfluid helicity” using an analytical
approach based on the symmetry underlying classical helicity conservation: the particle
relabeling symmetry. Furthermore, we use numerical simulations to study whether bundles
of superfluid vortices which approximate the structure of a classical vortex recover the
conservation of classical helicity and we find dynamics consistent with classical vortices
in a viscous fluid.
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I. INTRODUCTION

Our understanding of fluid flow is built on fundamental conservation laws such as the conser-
vation of mass, energy, and momentum [1]. In particular, these give rise to the Euler equations of
dissipationless fluid mechanics, which capture many fluid phenomena including vortex dynamics
[2] and instabilities [3] and play a key role in the study of turbulence [4,5].

Hidden within the Euler equations for isentropic flows is a less familiar conservation law [6–8]:
conservation of helicity HEuler = ∫

d3x u · ωωω, ωωω = ∇ × u. As a measure of the average linking of
vortex lines [7,8], helicity conservation places a topological constraint on the dynamics of classical
inviscid isentropic flows.1 Helicity has further yielded new insights into viscous flows, from vortex
reconnection events [9,10] to the study of coherent dynamical structures generated by turbulent flow
[11–13].

Superfluids2 display striking similarities with classical fluids in their vortex dynamics [14,15] and
turbulence statistics [16–18]. Since superfluids flow without dissipation, it is natural to ask whether
a conserved quantity analogous to helicity also exists in superfluid flows. Natural candidates for a
“superfluid helicity” are (i) the expression for the classical helicity HEuler which is not conserved
in superfluid flows [9,19] and (ii) a Seifert-framing-based helicity which vanishes identically
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FIG. 1. A threefold helical superfluid vortex and a section of its phase isosurface clipped at a fixed distance
from the vortex. The volume occupied by the superfluid naturally separates into such surfaces of constant
phase.

[9,20–22]. However, it has been challenging to establish their connection to the fundamental notion
of conservation. It has thus remained unclear whether additional conserved quantities akin to helicity
and circulation exist in superfluids and how a “classical limit” of superfluid helicity might behave.

In this paper, we use an analytical approach based on the particle relabeling symmetry, which
underlies helicity conservation and Kelvin’s circulation theorem in classical inviscid fluids, to
address the question of superfluid helicity. We find that the conserved quantities associated with the
particle relabeling symmetry in superfluids vanish identically, yielding only trivial conservation laws
instead of the conservation of helicity and circulation. This raises the question of a “classical limit”
in which a relevant notion of helicity is recovered which has dynamics akin to helicity in classical
flows. To answer this question, we study bundles of superfluid vortices that mimic the structure of
classical vortices and are robust long-lived structures [23,24]. Our numerical simulations show that
the centerline helicity [9] of superfluid vortex bundles behaves akin to helicity in classical viscous
flows.

II. SUPERFLUID VORTEX DYNAMICS AND CONSEQUENCES FOR HELICITY

To simplify our discussion, we consider superfluids at zero temperature, i.e., weakly interacting
Bose condensates described by a complex order parameter ψ (“wave function of the condensate”
[25]) obeying the Gross-Pitaevskii equation [26,27]:

ih̄ ∂tψ = − h̄2

2m
∇2ψ + g |ψ |2 ψ, (1)

where the constant g captures the interatomic interaction strength [28]. The Gross-Pitaevskii
equation (GPE) captures qualitatively important features of superfluid behavior at low temperatures
[14,29], including the dynamics of vortices—lines where the complex order parameter ψ vanishes
and around which its phase winds around by an integer multiple of 2π (see Fig. 1).

Interestingly, the Gross-Pitaevskii equation can be mapped to an Euler flow in the region
excluding vortices via the Madelung transformation [30,31]: ψ = √

ρ/m exp(iφ/h̄), by rewriting
Eq. (1) in terms of the fluid density ρ = m|ψ |2 and velocity u = ∇φ/m . The mapping between
superfluid flow and Euler flow makes it tempting to conclude that classical helicity is conserved
in superfluids just as in Euler flows. However, numerical simulations show that the expression
for helicity in Euler flows: HEuler = ∫

d3x u · ωωω, ωωω = ∇ × u is not conserved in superfluid flows
[9,19,21]. HEuler evaluated for singular vortex lines has two contributions: (a) the Gauss linking
integral for pairs of vortex lines, giving the linking between them, and (b) the Gauss linking integral
evaluated for each vortex line and itself giving its writhe [32]. Since the writhe of a vortex line is
not conserved [9] even in the absence of reconnections, HEuler is not conserved for superfluid flows.

This disparity between Euler flows and superfluid flows stems from two key differences: (i)
Superfluids have singular vorticity distributions, concentrated on lines of singular phase (see Fig. 1),
and quantized circulation � = ∮

u · dl = n h/m, unlike classical vortices which have smooth
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vorticity distributions. (ii) Vortex lines in a superfluid can reconnect [33–35], in contrast to vortex
lines in Euler flows which can never cross.

The singular nature of superfluid vortices and the presence of vortex reconnections make it
challenging to carry over the derivation of helicity conservation [8] in Euler flows and suggest
that a fundamentally different approach is required to address the question of a superfluid helicity.
Previous approaches [21,36,37] to seeking a conserved quantity analogous to helicity in superfluid
flows have focused on adapting the expression for classical helicity HEuler to superfluids, as opposed
to starting from a symmetry and seeking conservation laws.

We now begin with the fundamental symmetry that gives rise to helicity conservation in Euler
flows via Noether’s theorem and carry this over to superfluids.

III. HELICITY AS A NOETHER CHARGE FOR EULER FLUIDS AND SUPERFLUIDS

The conservation of helicity in Euler flows [38–47] is a special conservation law, arising from
the particle relabeling symmetry via Noether’s second3 theorem [42,50]. The particle relabeling
symmetry arises from an equivalence between the Lagrangian description of a flow in terms of the
positions x(a, τ ) and velocities ∂τ x(a, τ ) of fluid particles labeled by a at time τ , and the Eulerian
description of a flow in terms of the velocity u(x, t ) and density ρ(x, t ) at each point in space. The
action for Euler flow is [40,43,45]

SEuler =
∫

dτ d3a

{
1

2
[∂τ x(a, τ )]2 − E(ρ)

}
, (2)

where τ is time, d3a = ρ d3x is the mass of a fluid element, ∂τ x(a, τ ) is the velocity, E(ρ(a))
is the internal energy density, and the co-ordinate frames (a, τ ) and (x, t ) are related as follows:
∂τ = ∂t + u · ∇ . Note that the Euler flow action in Eq. (2) depends only on the flow velocity u =
∂τ x(a, τ ), and the density ρ : ρ−1(a) = det [∂xi (a)/∂ aj ].

Particle labels can be interpreted as the initial co-ordinates of the fluid particles, and the
relabeling transformation as a smooth reshuffling (diffeomorphism) of the particle labels, akin to
a passive co-ordinate transformation, which leaves the fluid velocity and density unaffected and
hence leaves the action invariant.

Relabeling transformations are changes of the particle labels: ai → ãi = ai + ε ηi, where ηi

satisfies (i) ∂ηi/∂τ = 0, which ensures that the velocity is unchanged, and (ii) ∂ηi/∂ai = 0, which
ensures that the density ρ = det (∂x/∂a)−1 is invariant. The positions of the fluid particles remain
unchanged under such a transformation, i.e., x̃(ã, τ ) = x(a, τ ). The conserved charge associated
with relabeling transformations [40–44] is

QEuler =
∫

d3a ui

∂xi

∂aj
ηj , (3)

where ui = ∂xi/∂τ .
The conservation of QEuler gives both Kelvin’s circulation theorem and helicity conservation for

different choices of ηηη. Evaluating QEuler for the relabeling transformation ηj = ∮
C:a(s) ds δ(3)(a −

a(s)) ∂aj (s)/∂s which infinitesimally translates particle labels along a loop C [42,43,51] gives the
circulation along the loop C: �C = ∮

C
u · dx(s). Evaluating QEuler for the relabeling transformation

ηj = εjkl (∂up/∂ak )(∂xp/∂al ) which infinitesimally translates the particle labels a along vortex
lines, gives the helicity HEuler = ∫

u · ω d3x [40–44]. Conservation of helicity follows as a special
case of Kelvin’s circulation theorem: from the conservation of the sum of circulations along all the
vortex lines in the fluid, weighted by the flux of each vortex line.

3For more details on Noether’s second theorem, see Refs. [48,49].
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We seek conserved quantities analogous to helicity and circulation in superfluids by seeking
analogs of the relabeling symmetry transformations. The action for the Gross-Pitaevskii superfluid
in terms of the hydrodynamic variables ρ = m |ψ |2 and φ = h̄ arg ψ is

Sgpe = −
∫

dt ρ d3x

(
∂tφ

m
+ (∇φ)2

2m2
+ g

2m2
ρ +

(
h̄ ∇√

ρ

m
√

2 ρ

)2
)

,

where the last term (∇√
ρ/

√
ρ )2 is known as the “quantum pressure” term and has no classical

analog. Its primary effect is to regularize the size of the vortex core [52–54] and enable vortex
reconnections [28], and is negligible when the typical length scale of density variations is much
larger [28] than the “healing length” ξ =

√
h̄2/(2m g ρmax). We make the Thomas-Fermi approx-

imation [25,28,55] which neglects the “quantum pressure” term and captures well the dynamics
of superfluid vortices [28,55–57]. Within this approximation, we seek to express the action for the
Gross-Pitaevskii superfluid in terms of Lagrangian co-ordinates (a, τ ), where a is the particle label
and τ is time. To this end, we rewrite ∇φ as the fluid velocity ∇φ/m = u = ∂x(a, τ )/∂τ and use
the relation ∂τ = ∂t + u · ∇ to rewrite ∂tφ as ∂τφ − u · ∇φ. The superfluid action then becomes

Sgpe =
∫

dτ d3a

{
1

2
[∂τ x(a, τ )]2 − E(ρ) − 1

m
∂τφ(a, τ )

}
,

where E(ρ) = g ρ/(2m2), ρ d3x = d3a as for Euler flow. Note that the action Sgpe differs from the
Euler flow action in Eq. (2) by an extra term:

∫
dτ d3a(−∂τφ(a, τ )/m). This extra term is needed

to ensure Galilean invariance4 of the action Sgpe and has key consequences for the conservation of
helicity.

Particle relabeling transformations of the form ai → ãi = ai + ε ηi , x̃(ã, τ ) =
x(a, τ ), φ̃(ã, τ ) = φ(a, τ ), where ∂ηi/∂τ = 0 , ∂ηi/∂ai = 0, leave the velocity, the phase,
and the density unchanged, and hence are symmetries of the action. Using Noether’s theorem, the
corresponding conserved charge is

Qgpe = QEuler + Qphase =
∫

d3a ui

∂xi

∂aj
ηj +

∫
d3a

(−1

m

∂φ

∂aj

)
ηj = 0, (4)

where QEuler is the contribution from the Euler flow part of the action SEuler and Qphase =∫
d3a(−∂φ/∂aj )ηj is the contribution from Sphase. The classical conserved charge QEuler is simply

the superfluid conserved charge Qgpe in the absence of Qphase since the phase of the complex order
parameter φ(a, τ ) is absent from the description of classical flow. Since the superfluid velocity
is u = ∇φ/m, QEuler and Qphase cancel each other exactly. Hence, the conserved charge Qgpe

vanishes identically for all relabeling transformations, instead of giving conservation of helicity
and circulation.

Our calculation shows that even in the absence of a “quantum pressure” term, the relabeling
symmetry yields a vanishing conserved quantity, instead of conservation of circulation and helicity.
This vanishing of “superfluid helicity” is consistent with an alternative calculation based on helicity
as a Casimir invariant [40,43] (see Ref. [60] for details).

4As described in Refs. [58,59], under a Galilean transformation:{x → x′ = x − vt, t → t ′ = t}, the phase
transforms as φ(x, t ) → φ(x′, t ) = φ(x, t ) − [v · x − (v · v)t/2], assuming m = h̄ = 1.
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FIG. 2. Vortex lines C and closed curves C ′ constructed by offsetting vortex lines along a phase isosurface
for (a) a writhing (coiling) vortex line C and (b) a pair of linked rings C1 , C2. Notice that the presence of
either writhe or linking in vortex lines leads to the twisting of the phase isosurface around the vortex lines.
The circulation around a closed loop γ encircling a vortex line is equal to the change in phase φ as the loop is
traversed, giving a multiple of 2π .

IV. SUPERFLUID HELICITY—A GEOMETRIC INTERPRETATION

The vanishing of superfluid helicity and circulation Qgpe is a consequence of a relation between
the geometry of superfluid vortex lines and phase isosurfaces, as we now illustrate.

For a relabeling transformation5 along a closed loop γ encircling a vortex line as shown in Fig. 2,
the vanishing of the conserved charge comes from a cancellation between the circulation

∮
γ

u · dl
and the change in phase

∮
γ

(−∇φ) · dl. We note, however, that by judiciously choosing the shape
of the loop, so that it lies entirely on a phase isosurface as depicted in Fig. 2, it is possible to make
the contribution Qphase vanish identically. The vanishing of Qgpe then acquires a simple geometric
interpretation, which we elucidate below.

A curve along which Qphase vanishes identically is constructed by offseting the vortex line
Ci along a phase isosurface by a distance � (see Fig. 2) to give a new closed curve C ′

i (�) :
a′(s) = a(s) + � n̂(s), where a(s) ∈ Ci , and n̂(s) is perpendicular to the vortex line and tangent
to the phase isosurface. The quantum pressure term is negligible on the new closed curve C ′

i (�)
as long as the distance � is large compared to the healing length ξ . The conserved charge Qgpe

evaluated for a relabeling transformation6 ηηη(�) which translates particle labels along C ′
i (�) has no

contribution from Qphase, and becomes the circulation along the curve C ′
i (�): Qgpe = ∮

C ′
i (�) u · dl.

This circulation can be evaluated by substituting the Biot-Savart flow field for u, since the
compressible part of u does not contribute.

Qgpe then becomes the linking of the loop C ′
i with all the vortex lines in the superfluid, i.e.,

Qgpe = ∑
j �=i �j Li ′j + �i Li ′i = 0, where Li ′j denotes the linking between the vortex line Cj , and

we have used the Gauss linking integral [61]. The vanishing of the conserved charge Qgpe follows
as a result of the linking Li ′i between the offset line C ′

i and the vortex line Ci canceling the linking
Li ′j between the offset line C ′

i and all the other vortex lines Cj , j �= i. Furthermore, assuming that
the section of the phase isosurface bounded by the two loops C ′

i , Ci can be considered as a smooth
ribbon, we can use the CălugăEreanu-White-Fuller theorem [62–65] to express Li ′i as the sum of
the writhe (Wri ) and the twist (Tw∗

i ) of the ribbon (see Fig. 2), giving

Qgpe =
∑
j �=i

�jLij + �iWri + �iTw∗
i = 0. (5)

5ηηηγ = m
∮

γ
ds δ(3)(a − a(s )) da(s )/ds, where a(s ) ∈ γ .

6ηηη(�) = m
∮

C′
i
(�) ds δ(3)(a − a′(s )) da′(s )/ds.
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The vanishing of the conserved charge Qgpe is thus related to the vanishing of the sum of the linking
of a vortex line Ci with all other vortex lines

∑
j �=i Lij , its writhe Wri , and the twist Tw∗

i of a ribbon
formed by a phase isosurface ending on it.

The vanishing of these geometric quantities was first studied in the context of helicity of framings
of magnetic flux tubes [20], and is a consequence of the fact that a phase isosurface is an orientable
surface which has as its boundary, all the vortex lines in the superfluid, i.e. it is a Seifert surface
[20,66–68] for the vortex lines in the superfluid. This relation between linking and writhing of
vortex lines and the twisting of phase isosurfaces has been used in superfluid simulations [9,69]
to calculate the centerline helicity (linking and writhing of vortex lines) and was elaborated on in
recent efforts to define a superfluid helicity [21,22].

V. CLASSICAL HELICITY—THE SINGULAR LIMIT AND DISSIPATION

We now address the question of whether a classical notion of helicity can be recovered in
superfluids and if its dynamics are akin to that in Euler flows or viscous flows.

While vorticity in superfluids is necessarily concentrated on lines of singular phase, vorticity in
classical fluids can be continuously distributed and indeed must be to avoid a physical singularity
in the flow. Following [8,70,71], a natural way of recovering a “classical” notion of helicity is to
consider a continuous vorticity distribution as made up of an infinite collection of vortex lines. The
centerline helicity Hc of a collection of singular vortex lines is

Hc =
∑

i

∑
j

�i�jLij =
∑

i

∑
j �=i

�i�jLij +
∑

i

�2
i Lii =

∑
i

∑
j �=i

�i�jLij +
∑

i

�2
i Wri , (6)

where �i is the circulation around the ith vortex line, Wri is the writhe of the ith vortex line, and
Lij is the linking between the ith and j th vortex lines. Since the above expression includes the
writhe of vortex lines which is not a topological invariant, the centerline helicity of a collection of
singular vortex lines is not conserved [9]. Assuming that the circulation of each vortex line is �, the
centerline helicity rescaled by the square of the total circulation (N �)2 becomes

Hc

(N �)2
= 1

N2

∑
i

∑
j �=i

Lij + 1

N2

∑
i

Wri . (7)

In the limit N → ∞, the contribution from the writhe term in Eq. (7) scales as O(1/N ) and becomes
irrelevant, as was shown in Ref. [72], leaving only the contribution from the linking Lij between
different vortex lines which is conserved in Euler flows:

lim
N→∞

Hc

(N �)2
= lim

N→∞
1

N2

∑
i

∑
j �=i

Lij = HEuler

�2
total

. (8)

Hence the rescaled centerline helicity of an infinite collection of vortex lines is conserved in Euler
flows. However, for a finite number of singular vortex lines, the writhe term remains relevant
albeit O(1/N ) and the rescaled centerline helicity is not conserved. The case of a superfluid is
interesting in the context of this discussion, since quantization imposes a fundamental granularity
in the vorticity field.

Since the above calculation is independent of the dynamics of the vortices, it leaves unanswered
the question of what the dynamics of the rescaled centerline helicity of collections of superfluid
vortex lines will be. In particular, will the centerline helicity remain unchanged as in Euler flows,
follow the dynamics observed in viscous flows, or have entirely different dynamics?

In the case of Euler flows, the helicity dynamics are simple: Hc remains constant (in the limit of
an infinite number of vortex lines). In the case of viscous flows, the dynamics are more subtle. For
a freely evolving helical vortex, as shown in a recent study [73], the total helicity converges to the
writhe over time. This can be rationalized by separating the helicity into contributions from (a) the
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FIG. 3. A threefold helical superfluid vortex bundle [shown in panel (a)] evolving as a coherent structure,
rotating as it travels forward, akin to a single threefold helical vortex [shown in panel (b)]. A cross section of
the threefold helical superfluid vortex bundle reveals a central vortex and five equally spaced vortices arranged
around the central vortex at distance 6ξ (where ξ is the healing length). After a long time, the helical vortex
bundle disintegrates (symbolized by the gray dots) and loses its bundle-like structure.

linking between bundles, (b) the writhing (coiling) of bundles, and (c) the local twisting of vortex
lines, with the total twist being the difference between the total helicity and the former two. Since
the twist is the only local component of helicity, it is the only one acted upon by viscosity and thus
the only one that dissipates.

The special role of twist can be understood by computing the instantaneous rate of helicity
dissipation: ∂tH = −2ν

∫
d3x ωωω · ∇ × ωωω = −2ν

∫
d3x |ωωω|2 ω̂ωω · ∇ × ω̂ωω, where ω̂ωω · ∇ × ω̂ωω captures

the local twisting of vortex lines [74], and vanishes identically for a twist-free thin-core vortex
[73]. While the role of the twist-free state as the zero-dissipation state is clear, the dynamics of the
approach to such a state are more challenging to study because of their dependence on the local
details of the vortex core [73].

Thus, for a collection of superfluid vortices, a constant rescaled centerline helicity would suggest
Euler-flow like behavior, while the convergence of the rescaled centerline helicity to the writhe
would suggest viscous flowlike behavior.

VI. CENTERLINE HELICITY OF SUPERFLUID VORTEX BUNDLES

Superfluid vortex bundles which approximate the structure of a classical thin-core vortex tube
have been shown to be robust coherent structures [23,24]. We construct thin bundles of equally
spaced vortex lines winding around a central vortex loop as shown in Fig. 3(a), whose shape controls
the writhe (coiling) of the vortex bundle. These superfluid vortex bundles evolve coherently over
distances of the order of their size (see Figs. 3 and 4 and movies in the Supplemental Material
[60]) before becoming unstable and disintegrating, as observed in previous work [23,24]. The
coherent portion of the evolution of these bundles resembles the dynamics of single vortex loops
in superfluids and the evolution of vortices in classical fluids and has been studied for ring bundles
[24] and reconnecting line bundles [23]. When the vortex bundles become unstable, the number of
individual vortices quickly proliferates, as shown in the bottom panel of Fig. 5, with the number
of vortex strands acting as a natural indicator of whether the bundle has disintegrated. We use the
earliest time T at which the number of vortex filaments N (T ) exceeds their initial number N0

by 50% as the time until which the bundle evolves coherently. Figure 5 shows that the transition
between the coherent phase and the disintegration phase of the vortex bundle is sharp.
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FIG. 4. A superfluid vortex bundle in the shape of a trefoil knot evolving as a coherent structure, akin
to a single trefoil knot vortex. (a) A trefoil knotted vortex bundle reconnects to form a smaller threefold
distorted ring bundle and a larger threefold distorted ring bundle, which lose their bundle-like structure over
time. A cross section of the initial trefoil knotted vortex bundle shows three equally spaced vortices arranged
on the circumference of a disk of radius 5ξ . (b) A single trefoil knotted vortex reconnects to form a smaller
threefold distorted ring and a larger threefold distorted ring, which undergoes further reconnections to give a
large distorted ring at long times.

In order to inject different amounts of centerline helicity in the bundle, we twist7 the lines
of the bundle around the central vortex, thus varying the centerline helicity independently of the
writhe of the bundle. An initial complex order parameter ψ for these vortex bundles is constructed
following the methods outlined in Refs. [9,34,69] and evolved by numerically solving the Gross-
Pitaevskii equation [Eq. (1)] using a split-step method. Simulations of vortex bundles in the shape
of helices and trefoil knots show that their coherent evolution is much like their classical vortex
tube counterparts [9,75]. Helical vortex bundles propagate coherently without a significant change
in shape (see Fig. 3) for longer times, while knotted vortex bundles stretch and reconnect (see
Fig. 4) to form disconnected loop bundles which quickly become unstable. Vortex bundles which
evolve coherently over long times allow us to study the dynamics of their rescaled centerline helicity
h = Hc/(N �)2. We focus on helical vortex bundles which evolve coherently over distances of 6r̄

or greater, and in particular study bundles in which the central vortex is a toroidal helix (see Figs. 5
and 6) winding two to four times in the poloidal direction around tori of aspect ratios 0.35 (twofold),
0.25 (threefold), and 0.16,0.18,0.2 (fourfold), as it winds around once in the toroidal direction. We
consider superfluid vortex bundles with N = 5 and N = 6 vortex lines each having a circulation
� = 2π , an initial intervortex spacing of d ∼ 6ξ (see Fig. 3), and an overall rms radius r̄ ∼ 50ξ .
To avoid the possibility that symmetry stabilizes the vortices, we add a small amount of Gaussian
noise to each vortex line in the transverse direction. To obtain sufficient statistics, we simulated the
evolution of a total of 1 156 vortex bundles with a volume of (256ξ )3 and a grid spacing of 1ξ .
A small number of simulations at double resolution (but the same physical volume) yield identical
observations.

Unlike in Euler flows, where the rescaled centerline helicity h of a bundle of singular vortex
lines emerges as a conserved quantity in the limit of large N , the rescaled centerline helicity h of
superfluid vortex bundles appears to change with time. Assuming these superfluid vortex bundles
approximate thin-cored vortex tubes, we can further decompose their rescaled centerline helicity

7The twisting of vortex lines mentioned here describes the winding of one vortex line around another and is
distinct from the twist Tw∗ in Eq. (5) of the ribbon formed by a phase isosurface ending on a vortex line.
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FIG. 5. Helical vortex bundles (N = 6) at different stages of evolution (top row), with the corresponding
points in the graphs indicated by colored circles (bundle-like structure preserved), and gray circles (bundles
disintegrate). (a) Twofold helical vortex bundles with aspect ratio 0.35, (b) threefold helical vortex bundles
with aspect ratio 0.25, and (c) fourfold helical vortex bundles with aspect ratio 0.2. The rescaled helicity h

(middle row) for superfluid vortex bundles having the same overall shape (writhe) but different amounts of
twist trends toward their initial average writhe (horizontal gray band), before eventually decaying toward zero
(gray dotted lines). After a vortex bundle disintegrates at time T (= min t ′ : N (t ′)/N (0) > 1.5), its rescaled
helicity is shown by a gray dotted line. Bottom panel shows the ratio of the number of vortex filaments at time
t ′ to the initial number of vortex filaments: N (t ′)/N (0). For each helical vortex bundle configuration, multiple
(>10) simulations are performed with random Gaussian noise (rms is 2% of the rms radius) added to the initial
bundle. The mean rescaled helicity is indicated by the solid lines, and the width of the shaded band around the
solid line indicates the standard deviation (2σ ).

[Eq. (7)] into contributions from the twisting of the vortex lines around each other, and their
individual writhes. Using Lij = Twij + Wri(j ), the rescaled centerline helicity becomes

Hc(t )

(N �)2
= 1

N2

∑
i

∑
j �=i

[Twij (t )+Wri (t )]+ 1

N2

∑
i

Wri (t ) = 1

N2

∑
i

∑
j �=i

Twij (t )+ 1

N

∑
i

Wri (t )

= 1

N2

∑
i

∑
j �=i

Twij (t ) + 〈Wr(t )〉 (9)

where the average writhe 〈Wr(t )〉 = ∑
i Wri (t )/N includes contributions from the writhe term in

Eq. (7), as well as from the linking term by decomposing it into writhe and twist contributions.
Our numerical simulations show that the rescaled centerline helicity of long-lived superfluid

vortex bundles tends toward their average initial writhe 〈Wr(0)〉, as in Figs. 5 and 6, suggesting8

that the twist term in Eq. (9) decays over time. The dynamics of the rescaled centerline helicity h

are thus classical.

8The difficulty of calculating the average writhe at later times stems from the small-wavelength fluctuations
in the vortex lines which contribute to large fluctuations in their writhe.

104702-9



KEDIA, KLECKNER, SCHEELER, AND IRVINE

FIG. 6. The ratio h(T )/h(0) approaches the ratio 〈Wr(0)〉/h(0) of the average initial writhe to the initial
rescaled helicity for a variety of helical vortex bundles (1209 simulations) in the shape of twofold (aspect
ratio: 0.35), threefold (aspect ratio: 0.25), and fourfold (aspect ratios: 0.16, 0.18, 0.2) helices with N = 5 and
N = 6 vortex filaments where T is a proxy for the time at which the vortex bundle disintegrates. To divide by
the initial helicity h(0), we only consider vortex bundles whose initial helicity satisfies |h(0)| > 0.25. Vortex
bundles with initial helicity |h(0)| < 0.25 also display similar behavior with h(T ) → 〈Wr(0)〉 as shown in
Fig. 5; see Ref. [60] for more details.

The role of writhe in the dynamics of centerline helicity of superfluid vortex bundles in our
simulations has a striking resemblance to the role of writhe in the helicity dynamics of vortices
in viscous flows [73]. This points to a “classical limit” in which classical behavior is recovered
from quantized vortex filaments geometrically by replacing single vortex filaments with vortex
bundles. However, owing to reconnections, the classical behavior that is recovered is not that of
Euler flows but that of the Navier-Stokes equations in which viscosity acts to dissipate twist. Our
results corroborate the role of writhe as an attractor for the helicity at long times, adding a geometric
lens to previous work [76,77] on the dissipative effects of vortex reconnections in superfluids.

VII. CONCLUSION

We have addressed the existence of an additional conservation law in superfluids—conservation
of helicity—by generalizing to superfluids the particle relabeling symmetry, which underlies helicity
conservation in Euler flows. The application of Noether’s second theorem to the particle relabeling
symmetry [42,50] yields the conservation of helicity and circulation in Euler flows; however, for
superfluid flows it yields a trivially vanishing conserved quantity. This is owing to the appearance
of an additional term that comes from the phase of the superfluid order parameter, not present in
Euler flows. This additional term has a well-known geometric interpretation for the vanishing of
“superfluid helicity” in terms of a relation between the linking and writhing of vortex lines, and the
twisting of phase isosurfaces near vortex lines.

On replacing superfluid vortices with superfluid vortex bundles, their centerline helicity becomes
the classical helicity in the limit of an infinite collection of vortices. We study the dynamics of the
centerline helicity of superfluid vortex bundles via numerical simulations and find behavior akin to
that of classical helicity in a viscous fluid, with the writhe acting as an attractor for the final value
of helicity.
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