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In superfluid helium-4, a model of normal-fluid hydrodynamics and their coupling with
topological defects (quantized vortices) of the order parameter (superfluid) is formulated.
The model requires only material properties as input and applies to both laminar and
turbulent flows, to both dilute and dense superfluid vortex tangles. By solving the model
for the case of a normal-fluid vorticity Hopf link interacting with systems of quantized
vortices, two vortex dynamical mechanisms of energy transfer from the normal fluid to the
superfluid are indicated: (a) small superfluid rings expand to the size of the normal-fluid
vortex link tubes and (b) superfluid rings with diameters similar to the diameters of
the normal-fluid tubes succumb to axial-flow instabilities that excite small-amplitude
wiggles which subsequently evolve into spiral waves along the superfluid vortex contours.
The normal-fluid vorticity scale determines the upper size of the generated superfluid
vorticity structures. A key role in energy transfer processes is played by an axial-flow
instability of a superfluid vortex due to mutual-friction excitation by the normal fluid,
which mirrors the instability of normal-fluid tubes due to mutual-friction excitation by
the superfluid. Although the sites of superfluid vorticity generation are always in the
neighborhood of intense normal-fluid vorticity events, the superfluid vortices do not
mimic the normal-fluid vorticity structure and perform different motions. These vortex
dynamical processes provide explanations for the phenomenology of fully developed finite
temperature superfluid turbulence.

DOI: 10.1103/PhysRevFluids.3.104701

I. INTRODUCTION

Due to quantum decoherence and the loss of quantum interference effects [1,2], the hydrody-
namics of many quantum systems (e.g., quark-gluon plasmas [3] or helium-4 liquids above the
critical temperature of T = 2.17 K) follow similar equations with those that apply to classical gases
and liquids. In the helium-4 case, however, below T = 2.17 K (the so-called lambda point), the
global U (1) symmetry of the microscopic quantum system is spontaneously broken (Bose-Einstein
condensation), and low-frequency, long-wavelength Nambu-Goldstone modes appear, which need
vanishingly little energy to excite, and are referred to as order-parameter dynamics [4]. These modes
are of different nature than the (normal-fluid) hydrodynamics corresponding to conservation laws.
Although spontaneous symmetry breaking is also a feature of classical systems (e.g., topological
defect networks in liquid crystals: Poiseuille flow [5] or simple shear flow [6]), in helium-4,
the broken symmetry corresponds to the conservation of particle number, and the corresponding
order parameter obeys a nonlinear Schroedinger equation that depicts an inviscid, compressible
superfluid populated with topological defects (vortices). In other words, the order parameter is a
material field, a rather intriguing physics case. The term material field indicates that, rather than
being (for example) a quality like the net magnetization in a ferromagnetic system undergoing
a phase transition, the superfluid order parameter corresponds to the density and momentum of
matter. The topological defects are real-life examples of the line vortices of inviscid hydrodynamics,
albeit with quantized circulation whose value is a material property. Complex tangles of superfluid
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vortices are often referred to as turbulence [7–9], although this terminology does not imply any
direct similarity with the statistical physics of classical vortices in classical fluids like water or
air [10,11]. Since only a fraction of helium-4 atoms is condensed to form the superfluid, the
remaining atoms obey normal-fluid hydrodynamics, and their collective excitations (i.e., phonons
and rotons) interact with topological defects via so-called mutual-friction forces. The latter play a
very important role in finite temperature superfluid turbulence (FTST), where tangles of quantized
vortices interact with fully developed, normal-fluid turbulence structures. There are two approaches
to FTST that model the effect of topological defects of the order parameter on the hydrodynamics
of the normal fluid: first, there is a “coarse-grained” [12–14] approach, which refers to scales
much larger than the superfluid intervortex spacing and assumes a continuous superfluid vorticity
interacting with a locally averaged normal-fluid vorticity field. Notably, the governing equations and
the parametrization of mutual-friction interactions in this approach are, in principle, flow dependent
(e.g., different for rotating and pipe or channel flows) and, by default, not applicable to dilute tangles
of a few superfluid vortices. Second, there is a “direct” approach [15–19] that models discrete
topological defects and their individual interactions with the normal fluid.

The purpose of this article is to advance further the direct approach by developing a model
for the coupling between topological defects and normal-fluid hydrodynamics, whose sole empirical
input requirement is the standard material properties of the quantum of circulation, superfluid-vortex
core radius, and normal-fluid viscosity. Hence, the model is genuinely predictive, and its solutions
can (a) directly be compared with experiments which measure local normal-fluid velocities and
vortex tangle densities or detect individual superfluid vortices and (b) guide the development of new
coarse-grained models [20]. We apply numerical analysis to the new dynamical equations and solve
them algorithmically. In order to calibrate the predictions of the new theory, one solution involves
a superfluid vortex ring propagating in a quiescent fluid, and it is compared with similar results
produced by employing an older modeling framework. A second solution of the model investigates
the effect of two reconnecting normal-fluid vortices (forming initially a Hopf link) on the structure
of ambient superfluid vorticity. A Hopf link is made of two circles (here vortices) that are linked
together exactly once. It is the simplest (nontrivial) link consisting of two components. This is a
key interaction that can us help understand better fundamental FTST processes. Indeed, previous
direct hydrodynamic studies have shown that, although mutual friction forces tend to equilibrate the
energy content of the two fluids scale by scale, this is a global (on average) effect that is not valid
locally within the flow domain. In other words, the normal-fluid and superfluid vortex structures
are locally different from each other. The crucial role of flow instabilities in this phenomenology
has been indicated in reference [20]. The new modeling framework will be employed to continue a
series of genuinely predictive investigations of superfluid hydrodynamics with topological defects
that could directly be compared with analogous experimental findings.

II. FINITE TEMPERATURE DYNAMICS OF DISCRETE TOPOLOGICAL DEFECTS

Our analysis of superfluid vortex dynamics (SFVD) assumes that this can be described within the
normal fluid’s hydrodynamic framework. Under typical experimental conditions, this is the case for
T > 0.8 K. For smaller (yet finite) temperatures a kinetic theory that takes into account quasiparticle
interactions (a quantum version of the Boltzmann equation) needs to be employed. For ultralow
temperatures, in the limit T → 0 K, ballistic quasiparticles could be modeled by the simpler Vlasov
equation. In FTST, vortex points Xv (t ) comprising a superfluid vortex tangle L move under the
influence of three forces: (a) inertial force fi, (b) Magnus force fM, and (c) mutual-friction force
fmf , which corresponds to its interaction with the ambient normal-fluid flow. In FTST, the small
vortex mass values allow one to neglect fi in comparison with the other forces, so fM + fmf = 0. We
start our analysis by observing the dissipative nature of the Hall-Vinen force [21], a key component
of fmf . This force resembles the drag force on an object moving in a classical fluid, i.e., the Stokes
force. Indeed, due to the very small vortex core size (which scatters the normal-fluid quasiparticles),
the latter are expected to comprise a creeping flow around the vortices. A second key observation is
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that a superfluid vortex appears (locally) to the flow similar to a cylindrical rod with circular cross
section. By combining these two observations with low Reynolds number hydrodynamics [22,23],
we can apply to SFVD a known solution of the latter regarding the resistance force on an elongated
cylinder (in SFVD a vortex segment) with radius R and length L. This force is contained in the plane
defined by the cylinder axis and the velocity vvn of the cylinder or vortex relative to the normal fluid
[vvn ≡ Ẋv − Vn, where Ẋv is the vortex velocity (Xv is the vortex position in the superfluid vortex
tangle), and Vn (referred to as V∞

n in theory of suspensions) is the asymptotic normal-fluid velocity
at the vortex position]. V∞

n is a coarse-grained (possibly turbulent) Navier-Stokes velocity that does
not resolve the microscopic (creeping) flow field around the vortex. In SFVD, the cylinder axis is
parallel to the tangent vector along the vortex contour, R is equal to the vortex core parameter α0,
and L is a characteristic vortex dynamical length scale, which in numerical calculations would be the
discretization length δ� along vortices. Core radius α0 has a mild variation with temperature around
the value α0 ≈ 10−8 cm, except close to the transition temperature, where it diverges. Accordingly,
we have two mutual friction drag forces per unit length: one normal to the vvn direction, and another
parallel to it: fD = D⊥X′

v × (X′
v × vvn) + D‖X′

v (X′
v · vvn), where the values of D⊥ and D‖ are given

by creeping flow analysis: D⊥ = 8πρnν/[ln(δ�/α0) + 0.5] and D‖ = 4πρnν/[ln(δ�/α0) − 0.72].
X′

v is the unit tangent vector at vortex position Xv , and ν is the kinematic viscosity of the normal
fluid. Adding the Iordanskii force [24–26] to fmf and the Magnus force, we obtain the following
SFVD:

X′
v × [ρsκ (Ẋv − Vs ) + D⊥X′

v × vvn + ρnκvvn] = −D‖X′
v (X′

v · vvn),

where κ is the quantum of circulation, and ρn and ρs are, correspondingly, the normal-fluid and
superfluid mass densities. This equation can be satisfied only if both of its sides are equal to zero,
i.e., X′

v · vvn = 0, and

ρsκ (Ẋv − Vs ) + D⊥X′
v × vvn + ρnκvvn = λX′

v,

for a real number λ to be determined. Solving the last equation in terms of Ẋv , employing the
decomposition vvn = (vvn · X′

v )X′
v − X′

v × (X′
v × vvn), and using the condition X′

v · vvn = 0 above,
we obtain

Ẋv = Vs − (D⊥/ρsκ )X′
v × vvn − (ρn/ρs )vvn + (λ/ρsκ )X′

v.

Next, employing the decomposition Vs = (Vs · X′
v )X′

v − X′
v × (X′

v × Vs ), multiplying both
sides with X′

v , and demanding that there is no vortex velocity along the tangent, i.e.,
Ẋv · X′

v = 0, we obtain for λ the equation Vs · X′
v + λ/(ρsκ ) = 0. With this value, the SFVD

equation reads

Ẋv = −X′
v × (X′

v × Vs ) − (D⊥/ρsκ )X′
v × vvn + (ρn/ρs )X′

v × (X′
v × vvn).

Next, we define the coefficients a = D⊥/ρsκ and b = ρn/ρs , and we rewrite the equation in
the form Ẋv + A × Ẋv = B, where A = aX′

v/(1 + b), and B = [−X′
v × (X′

v × Vs ) + aX′
v × Vn −

bX′
v × (X′

v × Vn)]/(1 + b). The solution of this equation is [27]

Ẋv = [B − A × B + (A · B)A]/(1 + A · A)].

After straightforward vector algebra, the solution can be written as

Ẋv = −X′
v × (X′

v × Vs ) + αX′
v × [X′

v × (Vn − Vs )] + βX′
v × (Vn − Vs ),

where α = −[b(1 + b) + a2]/[(1 + b)2 + a2], and β = a/[(1 + b)2 + a2]. Notably, α < 0 and
β > 0, hence, the double vector product term contributes to the vortex velocity a part of the
component of Vn − Vs that is not along the direction of the vortex tangent, while the single-vector
product term results in the growth of a vortex ring’s radius whenever Vn − Vs points along the
direction of Vs .

Coupling the new SFVD with the Navier-Stokes equation for the normal fluid [15–19] forms a
fully predictive FTST model, bringing superfluid research on par with other areas of hydrodynamics.
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Hence, we add the conservation of mass in the incompressible normal fluid ∇ · Vn = 0, and the
conservation of its momentum

∂Vn(x, t )

∂t
+ ∇

(
p

ρn + ρs

+ Vn · Vn

2

)
− Vn × (∇ × Vn)

−ν∇2Vn − κ

∫
L

d|XL| [X′
L × (Vn − ẊL)]δ3(x − XL)

−νc

∫
L

d|XL|{X′
L × [X′

L × (Vn − ẊL)]}δ3(x − XL) = 0,

where p is the isotropic part of the normal-fluid pressure tensor, μ = νρn is the normal-fluid
dynamic viscosity, and XL is a position on the superfluid vortex tangle L. Notably, the inertial force
acts like a potential force added to the pressure (third term), but also as a nonlinear lift force on
vorticity (fourth term or Lamb force), which acts as a generator of turbulence complexity. Although
the Lamb force appears to indicate the key role of inertial force on turbulence, one has to be cautious:
this term is nonzero only because the viscous stress tensor creates vorticity in the fluid. Turbulence
involves a quality of motion initially generated by viscous forces and only subsequently shaped
by inertial force. Similarly, although strong small-scale strain is a key turbulence feature, it cannot
be a feature of any vorticity-free inviscid flows. The new form of the mutual-friction coefficient
D⊥ allows us to define a coupling viscosity νc ≡ D⊥/ρn, with νc/ν = 8π/[ln(δ�/α0) + 0.5]. Next
we address the obvious question: what are the solutions of this model, and what do they tell us
about FTST? We shall see, that, despite the multilayered mathematical complexity of algorithmic
solutions, they provide some crucial insights into superfluid physics.

III. VORTEX RING PROPAGATING IN A QUIESCENT NORMAL FLUID

In order to calibrate the new model, we compare its predictions with a standard computation
of a superfluid vortex ring propagating in a quiescent normal fluid [28]. The numerical methods
employed in the calculation are described in Refs. [15,29,30], which should be consulted for detailed
information on the methods and their original sources. The calculation is set within a cubic domain
of size lb = 0.1 cm, at T = 1.3 K. The initial normal-fluid velocity is zero. The boundary conditions
are periodic. The superfluid ring radius is R = 0.25lb, and its initial position is on the center of the
box. On top of the truncation errors of the numerical analysis (as discussed in Refs. [15,29,30]), the
algorithmic calculations introduce round-off errors, since they employ finite precision arithmetic
[31] within the set of floating point numbers F−1022,1023

2,53 , where 2 indicates binary arithmetic and
53 the precision (significant binary digits). Hence, the distance between 1 and the next larger
floating point number is εm = 0.222 × 10−15. The numbers −1022 and 1023 are the powers of
2 that correspond to the smallest and largest numbers that the algorithm arithmetic can represent. In
base-10 arithmetic, these numbers are approximately 2.2 × 10−308 and 1.8 × 10308 correspondingly.
The algorithms employ the round to nearest even rounding mode. The numerical grid for the normal
fluid is made of 1283 grid points. The discretization element along the quantized rings is equal to
normal-fluid grid size. The typical time step is 4.365 × 10−5 s.

The results indicate that the new SFVD reproduce two key features: (a) a “double-vortex tube”
normal-fluid structure (Fig. 1, left) that is induced via mutual-friction excitation, due to the velocity
difference between the vortex and normal-fluid velocities, and (b) the characteristic normal-fluid
velocity streamlines (Fig. 1, right) generated by a jetlike structure that originates on the vortex
contour as the mutual-friction force “pushes” the normal fluid there. As in the original calculation,
the Reynolds number induced in the normal fluid is very small, Re ≈ 0.284 × 10−1. This type of
excitation is responsible for generating a complex type of low Reynolds number vortical flow in
FTST calculations, which appears in the highest-wave-number range of the velocity spectra. In
accordance with a visual inspection of new SFVD equations, the calculation predicts the decrease of
vortex ring diameter during its propagation. It is nice that the new SFVD does not alter basic physics
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FIG. 1. Superfluid vortex moving in a quiescent normal fluid. The normal-flow field predicted by the new
model is similar to that in earlier works [28]. Right: Isocontours of mutual friction induced normal-fluid
vorticity at t = 0.436 × 10−1 s. A dissipative (Re ≈ 0.284 × 10−1) two-vortex-tube structure appears. One
hundred isocontours spanning the whole range of normal vorticity-magnitude values [ωn = (0.103 × 10−1 −
0.370 × 102) s−1] are shown. Left: Normal-fluid velocity streamlines for the same structure. A mutual-friction
induced jet at the superfluid vortex position creates two recirculating normal-flow areas adjacent to the
superfluid ring contour.

features in the previous calculations. Moreover its fully predictive character comes together with a
direct connection between superfluid theory and classical low Reynolds number hydrodynamics.

IV. EFFECTS OF A NORMAL-VORTICITY HOPF LINK ON THE STRUCTURE
OF SUPERFLUID TURBULENCE

It has previously been shown [18] that a key effect of single normal-fluid vortex ring on superfluid
turbulence is the transfer of energy from the normal fluid to the superfluid towards an equilibration
of energies in the two fluids. This, however, is not accompanied by the superfluid vorticity
mimicking the normal-fluid one. Indeed, it was shown that, under typical conditions, normal-fluid
inertia overpowers the mutual-friction force, hence, the latter cannot efficiently correlate superfluid
vorticity with the normal-fluid one. In a similar vein, it was shown that, as a result of its
interactions with ambient quantized vortices, a straight normal-fluid tube becomes unstable, and
only a small percentage of generated superfluid vorticity is eventually trapped by the unstable
normal tube mimicking its structure [20]. Instead, the majority of superfluid vorticity propagates
in the intervortex space. Here we introduce the new element of nontrivial vortex topology (a Hopf
link), and we investigate the effect of (reconnection-induced) topology change in the normal fluid
on superfluid vortices. We set a calculation within a cubic domain of size lb = 0.1 cm at T = 1.3 K.
The normal-fluid initial conditions are two vortex tubes in a Hopf-link configuration with Reynolds
number Re = �/ν = 1000. The individual ring radius Rl = 0.125lb (based on the centerline), and
the tube radius is Rt = 0.2Rl . The superfluid initial condition is a randomly positioned collection of
vortex rings. Two cases were studied: (a) the superfluid rings have diameters similar to the diameters
of the normal-fluid rings, and (b) the superfluid rings have an order of magnitude smaller diameter.
The boundary conditions are periodic. As mentioned above, the numerical methods are discussed
elsewhere [15,29,30]. The finite arithmetic precision characteristics of the computations have also
been explicated above. The numerical grid for the normal fluid is made of 1283 grid points. The
discretization element along the quantized rings is equal to normal-fluid grid size. The typical time
step is 0.122 × 10−5 s.

V. THE PURE NORMAL-FLUID HOPF LINK

For reference, we include here the evolution of a pure normal-fluid link (Fig. 2). This is well
studied in classical fluid dynamics [32–34], and it depicts a dissipative (Fig. 3, left) process via
which the original flow helicity (a signature of the topological entanglement of the two tubes [35])
is destroyed (Fig. 3, middle) as a result of intervortex interactions (Fig. 2, middle). Another key
physics process is the enstrophy amplification due to vortex stretching during the (relatively) high
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FIG. 2. Pure normal-fluid link. Left: Initial configuration (t = 0). Center: Vorticity antialignment process
during link evolution (t = 0.3088 × 10−3 s). Right: Later stages of the same process (t = 0.5870 × 10−3 s). In
all cases, vorticity isosurfaces at level |ω| = 37 000 s−1, where ω is the flow vorticity, are shown. The chosen
value corresponds to 30% of the (global in time) maximum vorticity magnitude. The local variations of tube
radii are indicative of vortex stretching intensity.

Reynolds number vortex-tube interactions (Fig. 3, middle). The vorticity isosurface graphic at t =
0.5870 × 10−3 s (Fig. 2) corresponds to (approximately) the peak in the enstrophy graph.

VI. INTERACTIONS BETWEEN RINGS OF SIMILAR SIZE

Figure 4 shows the values of average (normal-fluid) energy, enstrophy, and helicity versus
time. The pure normal-fluid link data (dotted lines) are also shown for comparison. Due to
large normal-fluid inertia, energy flows to the superfluid resulting in smaller normal-fluid energy
levels. In agreement with fully resolved turbulence calculations [15], a reduction of the maximum
enstrophy value is observed. In other words, the production of superfluid vorticity dampens intense
normal-fluid vortical structures. The later time enstrophy levels that match the pure normal-fluid
result are due to generation of normal-fluid enstrophy via mutual-friction excitation at the newly
created superfluid ring locations. There is no significant effect on the rate of unlinking of the initial
structure (as monitored by the rate of absolute helicity value reduction).

Figure 5 shows normal-fluid vorticity isosurfaces (|ω| = 37 000 s−1) as they coevolve with a
dilute tangle of superfluid vortices. In agreement with previous investigations [18], the solution
indicates that although the generation sites of superfluid vorticity are somewhat correlated with
intense normal-fluid vorticity locations (the former are located in the neighborhood of the latter),
the formed superfluid structures do not mimic the morphology of the normal-fluid structures and
perform very different motions. This is due to the disparity between normal-fluid and superfluid
vortex circulations (that cause the vortices to move with very different self-induced velocities) as
well as to the mathematical form and strength of their coupling. The solution indicates a transfer
of energy from the normal fluid to the superfluid in the form of variable-radius, spiral-wave
excitations along the superfluid vortex contours. This process is also observed in fully developed
FTST solutions [15,16]. The spiral structures result from the expansion of small-amplitude wiggles
that appear on the vortices. The wiggle-formation sites are not correlated with intense normal-
fluid vorticity sites. Instead, they are locations where, sufficiently high, axial (i.e., parallel to

FIG. 3. Pure normal-fluid link. Left: Flow energy E = (1/2V )
∫

dV V · V versus time. Center: Flow
enstrophy � = (1/2V )

∫
dV ω · ω versus time. Right: Flow helicity H = (1/2V )

∫
dV ω · V versus time. V is

the volume of the computational box, V is the flow velocity, and ω = ∇ × V the flow vorticity.
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FIG. 4. Normal-fluid Hopf link interacting with superfluid vortices of similar diameters. Left: Flow energy
E = (1/2V )

∫
dV V · V versus time. Center: Flow enstrophy � = (1/2V )

∫
dV ω · ω versus time. Right: Flow

helicity H = (1/2V )
∫

dV ω · V versus time. V is the volume of the computational box, V is the flow velocity,
and ω = ∇ × V the flow vorticity. For comparison, the dotted lines indicate the corresponding pure normal-
fluid results.

the superfluid vortex contours) normal-fluid velocities cause the line vortices to become unstable
(Fig. 6). The observed instabilities appear similar to the Ostermeier-Glaberson instability [36],
that also involves axial normal-fluid flow and was studied in the context of rotating superfluid
flows employing the coarse-grained, Hall two-fluid equations. To illustrate this instability, we have
performed a test computation with a uniform normal-fluid velocity of magnitude Vn = 150 cm s−1

streaming on the plane of a superfluid vortex ring of radius 0.025 cm (Fig. 7). The results show
wiggle formation only on the parts of the superfluid ring that are parallel to the normal-fluid
flow. The instability is physical rather than numerical, since there is no sign of the typical zig-zag
instability that plagues vortex dynamics calculations with line vortices, and the instability appears
under very different amounts of numerical damping of the Biot-Savart singularity. Moreover, in a
second test computation with much smaller normal-fluid velocity Vn = 1 cm s−1, the ring remained
stable, without any signs of wiggle formation.

Another important result (see also Ref. [18]) is that the superfluid rings do not grow at sizes
larger than the sizes of the energy-providing normal-fluid tubes, as if the normal-fluid vorticity

FIG. 5. Normal-fluid Hopf link interacting with superfluid vortices of similar diameters. Normal-fluid
vorticity isosurfaces (|ω| = 37 000 s−1) and superfluid vorticity configurations. Top left: t = 1.229 × 10−4 s.
Significant normal-tube interactions take place without any accompanying important effects on the superfluid
tangle. Top right: t = 3.085 × 10−4 s (before the enstrophy peak). Mutual friction excites superfluid-vortex
contour wiggles. Bottom left: t = 5.915 × 10−4 s (after the enstrophy peak). The superfluid gains energy via
wiggle growth processes. Bottom right: t = 2.650 × 10−3 s. There is no normal vorticity isosurface at the
prescribed value. In the vortex tangle, some vortices keep growing, whilst other develop wiggle instabilities.
The local variations of normal-tube radii are indicative of vortex stretching intensity.
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FIG. 6. Normal-fluid Hopf link interacting with superfluid vortices of similar diameters: mechanism of
energy transfer from the normal fluid to the superfluid. Left: t = 4.794 × 10−4 s (before the enstrophy
peak). Small amplitude wiggles are excited via axial-flow instability on the superfluid vortex at the center,
by normal-fluid velocity pointing (locally) along the vortex direction. Right: t = 5.915 × 10−4 s (after the
enstrophy peak). As energy pours from the normal fluid to the superfluid, the wiggles grow to form a (variable
radius) spiral.

scale determines the upper size of the generated superfluid vorticity structures. This observation is
very relevant to the understanding of interscale energy transfers in FTST and the role of vorticity
structures in it.

VII. INTERACTIONS BETWEEN RINGS OF DISPARATE SIZES

Figure 8 shows the values of average (normal-fluid) energy, enstrophy, and helicity versus time.
Since the ratio of the circulations of the two fluids is �/κ ≈ 2337, and the initial superfluid vortex
tangle is dilute, the effect of superfluid vortices on global normal-fluid quantities is expected to
be small. Indeed, only mild variations of the pure normal-fluid solution are observed. Since, after
the enstrophy peak, the FTST case enstrophy values are slightly smaller than the corresponding
pure normal-fluid values, and the same is true for the energy, we can infer that the reduction in
the normal-fluid energy levels is due to a transfer of energy to the superfluid. This is the case
because the enstrophy dynamics are qualitatively similar to the energy dissipation-rate dynamics,
hence since the FTST case dissipation rate is smaller, only energy transfer could explain the
reduction of the energy levels in the FTST case.

Figure 9 shows normal-fluid vorticity isosurfaces (|ω| = 33 000 s−1) as they coevolve with a
dilute tangle of superfluid vortices. In comparison with the larger vortex ring case, it is important
to note that energy transfer to the superfluid is not associated with vortex instabilities. Instead, the
small rings expand to diameters similar to the normal-fluid vortex-tube diameters while remaining
smooth. As the normal-vorticity structure evolves, it leaves behind a trail of such expanded rings.
The largest-time results (Fig. 9, bottom right) show that the newly enlarged vortex rings undergo the

FIG. 7. Superfluid vortex ring moving in a normal-fluid cross-flow. Left: Superfluid-vortex ring and sample
normal-flow streamlines (t = 0). Center: Initiation of wiggle excitation along the ring-contour parts that are
parallel with the normal-flow streamlines (t = 1.928 × 10−4 s). Right: The wiggles have grown to become
spirals that resemble similar structures in the Hopf-link solution (t = 3.842 × 10−4 s). It is intriguing that this
is an instability caused by the normal fluid via mutual friction forcing on a superfluid vortex, and Ref. [20]
indicates an instability caused by the superfluid via mutual-friction forcing on a normal-fluid tube.
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FIG. 8. Normal-fluid Hopf link interacting with superfluid vortices of much smaller diameters. Left: Flow
energy E = (1/2V )

∫
dV V · V versus time. Center: Flow enstrophy � = (1/2V )

∫
dV ω · ω versus time.

Right: Flow helicity H = (1/2V )
∫

dV ω · V versus time. V is the volume of the computational box, V is the
flow velocity, and ω = ∇ × V the flow vorticity. For comparison, the dotted lines indicate the corresponding
pure normal-fluid results.

same instability mechanism that facilitated energy transfer in the larger rings case, thus, indicating
that there are two energy transfer mechanisms: ring expansion and ring wiggle excitation, and
subsequent spiral formation. Remarkably, the second mechanism becomes apparent only after the
initially small rings have grown to the size of the normal-fluid tubes. Employing the formula for the

FIG. 9. Normal-fluid Hopf link interacting with superfluid vortices of much smaller diameters. Normal-
fluid vorticity isosurfaces (|ω| = 33 000 s−1) and superfluid vorticity configurations. Top left: t = 0. Top right:
t = 3.088 × 10−4 s (before the enstrophy peak). Some rings have expanded to normal-tube size. Bottom left:
t = 1.068 × 10−3 s (after the enstrophy peak). As the normal-fluid structure evolves, the superfluid gains
energy via ring expansion. Bottom right: t = 2.831 × 10−3 s; there is no normal vorticity isosurface at the
prescribed value. We observe a tangle of superfluid vortices that trail, the now dissolved, normal-fluid link.
Some of the newly augmented rings undergo a similar instability process with the corresponding one of the
large rings in the other solution. The local variations of normal tube radii are indicative of vortex stretching
intensity.
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speed of propagation Vwave of a vortex wave with wavelength λ along a vortex contour, Vwave(λ) =
κ
2λ

ln( λ
2πα0

), and applying the reasoning of Ref. [37], we compute that an axial normal-fluid velocity
of magnitude larger than Vn,|| = 1 cm s−1 is required to energize waves of wavelength equal to half
of a small vortex loop’s length. The average energy data of Fig. 8 suggest that such velocities should
be available, so, in principle, spiral-wave formation via axial-flow instability could be observed even
for small loops. Hence, they are not observed because either the initial loops are too small for the
axial-flow instability to generate wiggles (i.e., we are below the axial-flow instability threshold) or
the ring expansion effect irons any possibly excited wiggles out.

VIII. CONCLUSIONS

In superfluid helium-4, the order parameter depicts the material flow of an inviscid fluid,
and its topological defects correspond to line vortices in this fluid. The helium-4 atoms that are
not described by the order parameter obey normal-fluid hydrodynamics that correspond to the
conservation laws of the system. A complete, fully predictive model of normal-fluid hydrodynamics
taking into account its coupling with the topological defects of the order parameter has been
proposed. It is intriguing that the normal-fluid becomes aware of the order parameter only via
its interaction with topological defects in the latter. Our model exploits another intriguing aspect
(brought forward by the pioneering experiments of Hall and Vinen [38,39]): the topological defects
appear as obstacles in the normal flow. Due to the small topological defect sizes, the flow around
them can only be a creeping flow, hence, taking into account the linear character of the defects,
our model is based on low Reynolds number hydrodynamics around cylindrical objects. When our
defect dynamics is coupled with the Navier-Stokes equations for the normal fluid, it becomes evident
that the coupling between fluid and defects is characterized by two parameters with kinematic
viscosity dimensions: the quantum of circulation κ in the Iordanskii force term, and a renormalized
normal-fluid viscosity νc in the Hall-Vinen type force term. The nature of the coupling constants
reflects the physics of the corresponding couplings: the Iordanskii force is a consequence of the
wave-function dynamics of the normal fluid at the pre-second-quantization level. Indeed, since
κ = h/m, where h is Planck’s constant and m is the mass of helium-4 atoms, κ points directly to
quantum mechanical effects. On the other hand, the nature of the Hall-Vinen force is very different:
the force involves point (quasi)particles that are scattered by the cores of the defects that appear
to them as obstacles. This (far from obvious) defect-flow interaction physics is a foundation pillar
of our SFVD. So the Iordanskii force is a quantum mechanical force that hints at the fundamental
wave nature of matter and, hence, at Planck’s constant, while the Hall-Vinen force is a (quantum)
statistical mechanical force that hints at thermal physics and, hence, at fluid viscosity.

We explore the physics of the model by computing the interactions of a normal-fluid vorticity
Hopf link with a dilute suspension of superfluid vortices. The solutions of the model illustrate two
different vortex dynamical processes that transfer energy from the normal fluid to the superfluid:
(1) an expansion to large sizes of superfluid vortex rings with much smaller diameter than the
diameter of the normal-fluid tubes that make up the vortex link, and a key observation here is that
the superfluid rings do not grow to larger than the normal-fluid tube sizes; and (2) a superfluid vortex
ring instability due to axial flow along the vortex contours that excites small-amplitude wiggles that
subsequently evolve into variable-radius spiral waves along the vortices. Consistent with the fact
that the initially small rings do not expand to larger than the normal-ring sizes, the initially large
rings (with diameters similar with the diameters of the Hopf-link tubes) do not receive energy by
increasing their size, but only via instability-induced, spiral-wave excitation.

Although the sites of superfluid vorticity generation are always in the neighborhood of intense
normal-fluid vorticity events, the superfluid vortices do not mimic the normal-fluid vorticity
structure and perform very different motions.

Notwithstanding the gained physical insight, the experimental detection of the above vortex
dynamical processes presents a challenge. Perhaps the best way for detecting them would be via
particle tracking velocimetry (PTV) techniques which employ small particles that do not easily
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escape superfluid vortices once they collide with them. Since there is significant experience with
PTV methods in current superfluid research [40–42], the main difficulty to be encountered in
such future experiments is the manipulation of the normal-fluid vorticity into organized structures.
Such an experimental breakthrough would bring superfluid hydrodynamics on par with more
traditional fields in hydrodynamics, enabling a vigorous interaction between theory and experiment.
A hopeful case of such an interaction is the thermal counterflow experiment of Ref. [41], where
PTV measurements indicate significant particle-velocity fluctuations in the streamwise direction
even when the normal fluid is laminar (at low heat fluxes). The creeping flow structures generated
by mutual-friction forces at the superfluid vortex locations, as indicated here and in Ref. [28], could
very well be responsible for the observed particle-velocity fluctuations.
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