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Law of the wall for small-scale streamwise turbulence intensity
in high-Reynolds-number turbulent boundary layers
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Following the dimensional analysis approach carried out in previous studies, it is
hypothesized that the small-scale fluctuations should only depend on the inner scales,
analogous to the Prandtl’s law of the wall for the mean flow. This allows us to examine
the high-frequency regime of the streamwise energy spectra where a “law of the wall” in
spectra would hold. Observations in high-Reynolds-number turbulent boundary layer data
indicate that a conservative estimate for the start of this law of the wall is f + = 0.005
(which corresponds to 200 viscous time units) across a range of wall-normal positions and
Reynolds numbers. This is sufficient to capture the energetic viscous-scaled motions such
as the near-wall streaks, which have a timescale of approximately 100 viscous units. This
spectral collapse is consistent with the observations in internal flows and external flows
in other studies. Furthermore, the spectral collapse leads to a universal scaling (based on
skin-friction velocity and kinematic viscosity) for the small-scale streamwise turbulence
variance (consistent with the hypothesis) across the entire boundary layer. A logarithmic
variation of this small-scale variance is observed farther away from the wall.
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I. BACKGROUND

A number of previous efforts have focussed on proposing scaling laws for turbulent energy
spectra of turbulent wall flows. Perry and Abell [1] was perhaps the first to develop scaling
laws for streamwise energy spectra using dimensional analysis approach. This work has been
extensively extended in various subsequent studies [2–4]. The primary focus of these efforts
were on the overlap scaling of streamwise energy spectra where the energy content is inversely
proportional to the wall-normal position. The choice of different velocity and length scales for the
dimensional analysis in these previous studies were underpinned by the attached-eddy hypothesis,
a model of wall turbulence that provides critical insights. Very recently, Zamalloa et al. [5] used
dimensional analysis and proposed “model-free” scaling relations for the turbulent-energy spectra in
different regions (near-wall, log, and outer wake regions) of turbulent wall flows. Specifically, they
demonstrated the presence of law of the wall in the high-wave-number regime of energy spectra in
pipe and channel flows using experimental and DNS data over a limited range of Reynolds numbers.

In this paper, we present a reinterpretation of the dimensional analysis work carried out by
Perry and Abell [1] and Zamalloa et al. [5] as well as observations of law of the wall in
small-scale turbulence intensity and in the high-frequency regime of streamwise energy spectra in
high-Reynolds-number turbulent boundary layers. We highlight some subtle differences (compared
to those previous studies) in the choice of velocity and length scales (used in dimensional analysis)
and justify these choices based on physical reasoning and experimental observations.
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II. LAW OF THE WALL FOR STREAMWISE ENERGY SPECTRA

This section is a recap of the dimensional analysis performed in Refs. [1,5]. However, we
highlight the choice of different scaling variables and the reasoning required for it. Let φ11(k1, y)
be the power spectral density of the streamwise velocity fluctuation for a longitudinal wave number
k1 at location y away from the wall. Then, the integral over all k1 of this power spectral density is
equal to the turbulent energy of the streamwise velocity component at that wall-normal location:∫ ∞

0
φ11(k1, y)dk1 = u2(y). (1)

Now, k1φ11(k1, y) is the turbulent energy contained at a given wave number k1 at a certain wall-
normal location. Following Refs. [1,5] and their dimensional analysis approach, it is clear that we
need a velocity scale to nondimensionalize k1φ11 and potentially two different length scales for the
wave number and wall-normal position:

k1φ11(k1, y)

Ũ 2
= F (kL1, y/L2), (2)

where L1 is the relevant length scale for the wave number and L2 is the relevant length scale for
the wall-normal position. Ũ is the relevant velocity scale for the energy. We have to use physical
arguments to arrive at appropriate choices for these scales.

Recall that Prandtl’s law of the wall for mean flow postulates that at high Reynolds numbers,
close to the wall (y � δ, where δ is the outer length scale), there is an inner layer in which the mean
velocity is determined by the viscous scales, independent of outer length and velocity scales. Based
on this, we arrive at an equation for the mean flow, which is the law of the wall:

U

Uτ

= fw

(
yUτ

ν

)
(3)

Uτ is the skin-friction velocity (Uτ = √
τw/ρ, where τw is the wall-shear stress and ρ is the density

of the fluid) and ν is the kinematic viscosity of the fluid.
We can follow the same reasoning as for the mean profile to determine the appropriate values

for Ũ , L1, and L2. As an observer at the wall with “no knowledge” of the outer flow, there
is only one choice for Ũ , which is the viscous velocity scale (Uτ ). There may be two possible
candidates for L1: viscous length scale (ν/Uτ ) and wall-normal position (y). For L2, there is only
one possible candidate, which is the viscous length scale ν/Uτ (note that we will represent scales
nondimensionalized with the viscous scales with a superscript “+”). Then, the spectral scaling
becomes

k1φ11(k1, y)

U 2
τ

= F (k1L1, y
+). (4)

The authors of Ref. [1] used their insights from attached-eddy hypothesis and chose L1 = y

that highlights distance from the wall scaling. They used Uτ to be the velocity scale. Here, we
take a different approach to determine L1. We postulate that there exists a law of the wall for the
small-scale velocity fluctuations, i.e., the integral of the spectrum over a certain high-wave-number
range. In the near-wall region, the variance of the small scales over a range of high wave numbers
is only influenced by inner velocity scale such that

u2
S

U 2
τ

= gw(y+), (5)

where u2
S is the variance of the streamwise velocity fluctuations in the high-wave-number regime

that should conform to law of the wall and gw is the function that represents law of the wall for
these small-scale motions. This will result in a universal form that is only dependent on viscous
scales and is independent of outer influence. Therefore, we can choose L1 as ν/Uτ . For these high
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wave numbers, Ref. [1] used the classical Kolmogorov scaling of η (length scale) and vη (velocity
scale) that depends on the dissipation of turbulent kinetic energy (〈ε〉). However, given that the
Kolmogorov scales changes with wall-normal direction, especially in the near-wall region, the inner
scales are a much more stringent requirement compared to Kolmogorov scales. Additionally, it
ensures that the small-scale turbulence intensity has the same scaling parameters as the mean flow.

This assumption is consistent recent observations of the small-scale behavior in wall-bounded
flows. Recently, Ref. [6] showed the universality in the small scales across different flows even
in low Reynolds numbers. This was especially true farther away from the wall. Reference [7]
showed that the kinetic energy dissipation (and the Kolmogrov scale) in the near-wall region of
a turbulent channel flow scales with the inner scales. They show excellent collapse of η+ versus
y+ with increasing Reynolds numbers. Dissipation is a weighted integral of the energy spectrum,
where the weighting is toward the higher wave numbers. Therefore, the collapse in small-scale
turbulence intensity is similar to the collapse of integrated dissipation spectra. The dissipation-based
length scale (i.e., the Kolmgorov scale) provide a good scaling parameter for boundary-free flows;
however, in the presence of the wall, skin-friction velocity (Uτ ) captures the integrated effects of
the large scales and small scales and therefore represents a better scaling parameter. In fact, Ref. [7]
built on previous efforts [8,9] and showed that the probability density functions of instantaneous
Kolmogorov scale can be collapse with an outer length scale that is derived based on Townsend’s
attached eddy model. This was necessary to capture the effect of the large scale on the small scales.
Based on these arguments, we set L1 to be ν/Uτ . Therefore,

gw(y+) =
∫ ∞

M+
F (k+

1 , y+)d[ln(k+
1 )] (6)

is a universal function in the inner region across Reynolds numbers. At fixed values of y+ close
enough to the wall (i.e., y � δ), the above equation indicates that there should be a universal value
of M+ that is independent of y+.

Zamalloa et al. [5] use y as their length scale L1; however, they recognized that this scaling
can be replaced with a scaling similar to the one mentioned above. They did not examine this
in any detail. They used data and observed that the spectra collapses for high wave numbers, if
k1y � 10(y+/Reτ ). This translates to k+

1 � 10/Reτ or k1δ � 10, which essentially means that there
should be one order of magnitude difference in the wave-number range compared to the large scales
of the flow. These observations were limited in Reynolds number range (only up to Reτ ≈ 3000) and
were confined to internal flows. This limit of collapse might have an outer influence since the scale
separation is not sufficiently large. However, the choice of Uτ as the velocity scale should ensure
that there is collapse in the high-wave-number regime. Therefore, it is important to examine this
collapse at higher Reynolds numbers to determine if there exists an appropriate wave-number cutoff
that eliminates the dependence of distance from the wall (or Reynolds number). This is examined
in the next section.

III. OBSERVATIONS IN TURBULENT BOUNDARY LAYERS

It is very difficult to obtain wave-number spectra at high Reynolds numbers without invoking
Taylor’s hypothesis where we have to assume or model a frequency–wave-number mapping
function. Typically, this mapping function is assumed to just depend on the local mean velocity.
This could lead to incorrect observations on the nature of collapse of spectra. Therefore, here we
resort to using frequency spectra from hot-wire data without invoking Taylor’s hypothesis (or other
equivalent mapping). In this case, the law of the wall for spectra becomes

f φ11(f, y)

U 2
τ

= F (f T1, y
+), (7)

where f is the frequency and T1 is a suitable timescale. Following the same arguments as in
the previous section, the appropriate timescale should be the inner timescale based on wall-shear
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FIG. 1. [(a)–(f)] Inner-normalized energy spectra for four different Reynolds numbers at six different
values of y+. The figures show the value of y+ and the variance in that selected wall-normal location across
the Reynolds numbers. Lines are colored from lightest to darkest in order of increasing Reτ (= 2800, 3900,
7300, and 14150). The solid black line shows the f + = 0.005, which is 200 inner time units, while the dashed
black line shows f + = 0.001, which is 1000 inner time units.

stress and viscosity, T1 = ν/U 2
τ . This makes the law of the wall for streamwise energy spectrum in

frequency domain

f φ11(f, y)

U 2
τ

= F (f +, y+). (8)

We now seek collapse in spectra across Reynolds numbers such that

gw(y+) = u2
S (y+)

U 2
τ

=
∫ ∞

A+
F (f +, y+)d[ln(f +)] (9)

is a universal function in the inner region. Here, A+ is equivalent to M+ where at fixed values of y+
close enough to the wall (i.e., y � δ), there is a universal value of A+.

Hot-wire measurements obtained in Melbourne’s high-Reynolds-number boundary-layer wind
tunnel (HRNBLWT) is used to compare spectra at similar wall-normal locations over a range of
Reynolds numbers (Reτ = 2800, 3900, 7300, 14150). The datasets for Reτ = 2800, 3900, and
7300 are obtained from Refs. [10,11]. The dataset for Reτ = 14150 is from Ref. [12]. Figure 1
shows the energy spectra against inner-normalized frequency over a range of wall-normal locations
including y+ = 11 ± 1, 16 ± 1, 53 ± 3, 103 ± 4, 207 ± 8, and 525 ± 22. The largest y+ value is
chosen to be in outer edge of the log region at the lowest Reynolds number. It is difficult to obtain
data at exactly the same y+ values across different Reynolds numbers. Therefore, the locations
mentioned are average of the nearest wall-normal location over the range of Reynolds numbers and
the error is based on twice the standard deviation of the wall-normal positions that are chosen across
Reynolds numbers.

Spectra in Fig. 1 shows excellent collapse in the spectra at high frequencies where we expect
the law of the wall to hold. It should be noted the data at the highest Reynolds number might
suffer from mild attenuation of energy due to spatial resolution of the hot-wire probe, especially
at these high frequencies [10]. Despite this, the collapse is within the statistical error. The collapse
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FIG. 2. (Left) Inner normalized large-scale (open squares) and small-scale (filled circles) variance of
streamwise velocity for four different Reynolds numbers. The separation between large and small scale is
based on a Fourier filter at f + = 0.005. The dashed black line shows the log decay of the small-scale variance
beyond y+ > 100. (Right) Compensated form of small-scale variance where the fitted log trend is subtracted
from the data (symbols) and the log region in the mean flow (solid lines). The dashed lines show the extent
of log region (3

√
Reτ � y+ � 0.15Reτ ). Increasing darkness in all symbols and lines represents increasing

Reynolds number.

is obvious even at y+ ≈ 103 down to a frequency of f + = 0.001 (which is shown in dashed line
in the figure). Below this frequency, the outer influence becomes obvious and the spectra for each
Reynolds number peel off at different frequencies. The quality of the collapse is worse at y+ = 525.
At that location, wall-normal location is at the outer edge of the log region at Reτ = 2800, while
it is still in the log region for the other Reynolds numbers. We expect the law of the wall for the
small scales of the spectrum to diminish at these locations where the shear is minimal and therefore
the spectra at the small scales would collapse with Kolmogorov scales. Regardless, in the near-wall
region (where y+ is small and y � δ), there is excellent collapse in the spectra at least up to f + =
0.005 (shown as solid black line) and perhaps up to f + = 0.001 (dashed line).

Based on the above observations, a conservative estimate for A+ in Eq. (9) can be 0.005. We
can now integrate the power spectral density from this value of A+ up to infinity. This should give
the near-wall small-scale turbulent energy, which obeys law of the wall. The amount of energy
contained in these scales will diminish farther away from the wall. In fact, farther away from
the wall, the viscous scale may no longer be equal to inner scales but could be replaced with
Kolmogorov scales, as in Ref. [1]. However, farther away from the wall, it is difficult with current
experimental data to delineate if this frequency should scale with viscous wall units or Kolmogorov
scales. From balancing production and dissipation in the logarithmic region, authors of Ref. [4]
found that the inner-normalized Kolmogorov timescale, t+η , should vary as t+η ≈ √

(κy+) (where
κ is the Karman constant). Therefore, the value A+ in terms of Kolmogorov scales will vary with
wall-normal location as Aη ≈ 0.005

√
κy+. For the higher Reynolds number considered here, this

would translate to Aη ≈ 0.06 (at the lower end of the log region) and Aη ≈ 0.14 (at the upper
end of the log region). It is difficult to discern collapse (or lack thereof) with the current data and
does not preclude the presence of Kolmogorov scaling. However, it does suggest that inner scaling
provides a bound for the low-frequency limit where there is indeed collapse of the small scales (that
is consistent with the Kolmogorov scaling).

The impact of using A+ = 0.005 as the cutoff frequency is explored by computing the large-scale
and small-scale variances of streamwise velocity based on this cutoff value. Figure 2 shows these
two quantities in inner scaling. The small-scale fluctuations across Reynolds numbers collapse
across the entire range of wall-normal locations (up to y+ ≈ 1000, which is well outside the
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log region for the lower Reynolds number). In fact, the small-scale variance appears to follow a
logarithmic decay with wall-normal position for y+ > 3

√
Reτ across all Reynolds numbers. This

logarithmic decay extends well into the outer region (beyond the traditional log region for the mean
profile). This log decay has the form

u2
S (y+)

U 2
τ

= −α ln(y+) + β for y+ > 3
√

Reτ , (10)

where α = −0.15 ± 0.002 and β = 1.59 ± 0.01 [the uncertainty estimates are based on the rms of
the difference between the experimental data and Eq. (10) across all Reynolds numbers within the
log region as identified in the mean flow].

This log trend is further clarified in Fig. 2 (right) where the small-scale turbulence is plotted
in compensated form (i.e., the log trend determined above was subtracted from the data with the
given constants). This compensated form is similar to the indicator function (where the gradients
are plotted); however, this compensated form is preferred here to avoid numerical differentiation of
coarsely sampled (in y direction) experimental data. The figure clearly exhibits a residue of nearly
zero over a wide range of wall-normal locations, which is a reflection of the presence of the log
region of the above form. The figure also shows the logarithmic region exhibited by the mean flow
and dashed lines show a conservative estimate of the log region (at each Reynolds number) in the
mean flow following [13], 3

√
Reτ � y+ � 0.15Reτ . It is clear that the log decay in small-scale

turbulence overlaps with the log region in the mean flow. In fact, the figure seems to indicate that
the log region for small-scale turbulence is over a wider range compared to the mean flow.

The value of these constants are expected to depend on the choice of A+. The values reported
here are for A+ = 0.005. The value of α does not appear to change (for example, for A+ = 0.001);
however, the intercept does depend on the amount of energy retained in the filtering process.
Regardless of the intercept, the above finding indicates that the rate of change of small-scale
fluctuations with wall-normal location (i.e., gradient of wall-normal fluctuations with wall-normal
location) is inversely proportional to the distance from the wall (far enough away from the wall).

The large-scale variance increases with increasing Reynolds number. This seems to confirm that
the value of A+ should indeed be independent of wall-normal location (at least in the near-wall
and logarithmic region). It should be noted that this value of A+ is a conservative bound on the
frequency. In time scale, this corresponds to 200 wall units. The physical significance of 200 wall
units as the cut off timescale is obvious. The near-wall streaks in boundary layers, pipes, and
channels all last approximately 100 wall-based time units (and is equivalent to 1000 wall units’
length scale) and their features are very robust regardless of the type of flow (see reviews [14–16]
and references therein). Therefore, the cutoff of 200 wall units essentially captures the energy
contained in these near-wall streaks that self-sustain themselves given a certain mean wall shear
stress.

The quoted value of A+ should be considered as frequency bound above which spectral law of
the wall is expected to hold. It is possible that at increasing Reynolds numbers, spectral collapse is
observed up to lower values of f + (i.e., lower frequencies or equivalently wave numbers, which is
indeed the case in Fig. 1) due to increasing scale separation between inner and outer scales. In fact,
there is also evidence that a cutoff wavelength of 7000 to 10 000 wall units results in the collapse
of small-scale turbulence statistics in the near-wall region (see Refs. [16,17]). This length scale
is derived from frequency spectra in liaison with Taylor’s local hypothesis. Reference [11] used a
cutoff wavelength of 7000 wall units, which approximately corresponds to f + ≈ 0.001, to separate
the inner and outer scales to measure amplitude modulation. Moreover, recently, Refs. [18,19]
showed that the spectral coherence between two probes (one located in the near-wall region and
another in the outer region) at high Reynolds numbers reduced to zero at around 7000 wall units,
indicating a value of A+ = 0.005 would also not have any coherence. Very recently, the authors
of Ref. [20] performed measurements in the Melbourne facility using the Nanoscale Thermal
Anemometry Probe (where the measurements are fully resolved) and showed that the spectrum
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FIG. 3. Inner-normalized premultiplied spectra at y+ ≈ 15 for different levels of free-stream turbulence
(FST). Lines are colored from lightest to darkest in order of increasing turbulence intensity (the range is from
7% to 13%). The Taylor microscale of FST ranges from 300 to 760. The abscissa shows inner-normalized
frequency f +. Further details on the different turbulence intensities, integral length scales, and boundary layer
characteristics can be found in Ref. [21].

indeed collapses with inner scaling across a range of wall-normal positions. In fact, they claim
that the collapse is up to wavelengths of 10 000 wall units (that corresponds to approximately
1000 viscous time units) and most certainly up to wavelength of 2000 wall units (200 time units).
Therefore, the proposed timescale of 200 wall units is a very conservative estimate for the cutoff
frequency above which spectral similarity should hold.

The influence of outer region on the collapse of near-wall high-frequency spectra can be further
examined by using data from experiments where the outer influence is artificially enhanced by
the introduction of free-stream turbulence. Figure 3 shows spectra obtained at y+ = 15 in an
experiment that was designed to increase the strength of outer influence [21–23]. The figure shows
the premultiplied power-spectral density (normalized by Uτ ) versus inner normalized frequency.
In these experiments, the outer influence was exacerbated by using free-stream turbulence and
this turbulence intensity would penetrate the boundary layer and alter the mean skin-friction
characteristics as well as spectral properties [22]. However, when this altered skin friction is taken
into account, the collapse of the spectra at y+ = 15 over a wide range of external forcing is really
clear (free-stream turbulence levels up to 13%). It can be seen that for low free-stream turbulence
intensity, the collapse is excellent until f + = 0.001. However, as the FST levels increases, the
energetic outer scales penetrate down to the wall and the collapse is worse. Yet, the spectra appear
to collapse up to f + = 0.005 regardless of the intensity of forcing in the outer layer.

IV. CONCLUSIONS

The dimensional analysis approach of Refs. [1,5] to obtain spectral scaling is reinterpreted in the
context of experimental observations in high-Reynolds-number turbulent boundary layers. A scaling
relation for the high-frequency regime of streamwise energy spectra (in frequency domain) in the
near-wall region is proposed based on the hypothesis of law of the wall for the small-scale turbulence
intensity. It is noted that the inner scale and Kolmogorov scales are related to each other, yet there
are subtle important differences. The inner viscous scale based on Uτ and ν captures the effects of
both large and small scales (in the integrated sense). The Kolmogorov scale (η) depends on mean
turbulent-kinetic-energy dissipation (〈ε〉) and ν where 〈ε〉 captures the effect of small and large
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scales (depending on how much dissipation resides in the low wave numbers or low frequencies).
The value of 〈ε〉 changes with wall-normal location while Uτ does not. Therefore, the value of η

and vη changes with wall-normal location while the inner scales remain fixed. Therefore, the choice
of Uτ as the relevant velocity scale and ν/Uτ as the length scale will situate the mean flow and the
small-scale turbulence intensity in the same framework. This does not negate Kolmogorov scaling,
as other studies have found that the Kolmogorov scales (η and vη) exhibit universal behavior with
inner scaling across different Reynolds numbers.

We observe that when the energy spectra is scaled in inner units, there is a collapse beyond a
certain frequency. This value appears to be a universal inner-scaled value across Reynolds numbers.
If this was scaled with η, then this value would not be the same for all wall-normal locations.
Moreover, the inner-scaled value has a physical significance in that the length scale corresponding
to this value is related to the size of the near-wall streaks. The observations here are consistent
with the findings related to spectra and Kolmogorov scales in internal and external flows [5,7,20].
In frequency domain, the spectra at similar wall-normal positions are found to collapse down to
f + ≈ 0.005 across a whole range of Reynolds numbers. The corresponding small-small turbulence
intensity also appears to collapse across all wall-normal positions, confirming the law-of-the-wall
hypothesis. The profile follows a logarithmic decay with wall-normal position farther from the wall,
which is consistent with Kolmogorov scalings used in Ref. [4]. These observations were further
confirmed using experimental data where the boundary layer is under the influence of free-stream
turbulence and the collapse of the spectra up to the near-wall streaks appears to be robust.
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