
PHYSICAL REVIEW FLUIDS 3, 104606 (2018)

Orthogonal and antiparallel vortex tubes and energy cascades
in quantum turbulence

Tsuyoshi Kadokura and Hiroki Saito
Department of Engineering Science, University of Electro-communications, Tokyo 182-8585, Japan

(Received 7 July 2018; published 17 October 2018)

We investigate the dynamics of energy cascades in quantum turbulence by directly
observing the vorticity distributions in numerical simulations of the Gross-Pitaevskii equa-
tion. By Fourier filtering each scale of the vorticity distribution, we find that antiparallel
vortex tubes at a large scale generate small-scale vortex tubes orthogonal to those at the
large scale, which is a manifestation of the energy cascade from large to small scales. We
reveal the dynamics of quantized vortex lines in these processes.
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I. INTRODUCTION

As the Reynolds number increases, laminar fluid flow develops into turbulence due to hydrody-
namic instability [1], and energy is transferred from large to small scales. Such an energy cascade
has already been implied in the famous sketch of water turbulence drawn by Leonardo da Vinci,
in which many large and small vortices are tangled with each other. More specifically, the energy
cascade in turbulence was illustrated by Richardson, in which large-scale vortex rings are divided
into small-scale vortex rings [2]. By a statistical approach with universality assumptions, the energy
cascade has been shown to lead to Kolmogorov’s −5/3 power law in the energy spectrum, which
has been thoroughly investigated theoretically and observed experimentally [3–12].

Quantum fluids are different from classical fluids in that, in quantum fluids, vortices are quantized
and viscosity is absent. Despite these differences, it has been shown that classical and quantum fluids
share a variety of hydrodynamic phenomena [13–19]. Energy cascades and power-law spectra have
been observed in quantum turbulence of superfluid helium [20] and ultracold atomic gases [21].
Theoretically, it has been revealed that turbulent quantum fluids exhibit Kolmogorov’s power law
in incompressible kinetic-energy spectra [22–25]. A variety of dynamics and power-law spectra in
quantum fluids have been investigated [26–49].

Recently, Goto et al. [9,10] numerically studied the energy cascade in classical fluids from the
perspective of the vorticity distribution. By taking the Fourier transform of the vorticity distribution
and applying a band-pass filter to the Fourier components, they extracted each scale of the vorticity
distribution of the turbulent flow. They found that the vortex tubes at each scale tend to align in
antiparallel, while vortex tubes generated at smaller scales tend to be orthogonal to the antiparallel
vortex tubes at larger scales. This dynamics leads to the energy transfer from large to small scales
and may be responsible for the energy cascade and Kolmogorov’s power law. Since there are various
similarities between the hydrodynamic phenomena in classical and quantum fluids, we expect that
the dynamics observed at each hierarchy in the vorticity distribution of classical fluids should also
be observed in quantum fluids. We investigate this correspondence in the present study.

In the present paper, we focus on each level of hierarchy in the vorticity distribution in a quantum
fluid. First, so that the expected dynamics can be clearly seen, antiparallel vortex bundles are
imprinted artificially in a uniform superfluid. Using a method of Fourier filtering, these bundles
of quantized vortices are visualized as vortex tubes. We find that antiparallel vortex tubes generate
small-scale vortex tubes orthogonal to the antiparallel vortex tubes. Next, we apply our Fourier
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filtering scheme to isotropic fully developed turbulence that exhibits Kolmogorov’s −5/3 power
law. By calculating the angles between the directions of the vortex tubes, we confirm the existence
of antiparallel correlation at each scale and orthogonal correlations between different scales in the
quantum turbulence, as observed for classical turbulence.

This paper is organized as follows. Section II formulates the problem and describes the numerical
method. The dynamics of the initially located vortex bundles are studied in Sec. III A. Section III B
studies the case of fully developed quantum turbulence. Conclusions are given in Sec. IV.

II. FORMULATION OF THE PROBLEM

We consider the dynamics of a dilute quantum fluid at zero temperature, which is described by
the three-dimensional Gross-Pitaevskii equation given by

(i − γ )h̄
∂�

∂t
= − h̄2

2m
∇2� + U (r, t )� + g|�|2�, (1)

where �(r, t ) is the macroscopic wave function, m is the particle mass, U (r, t ) represents an
external potential, and g is the interaction coefficient. The parameter γ in Eq. (1) describes
phenomenological dissipation of the energy of the system. The large-wave-number components
generated by the energy cascade are predominantly damped, which mimics the thermal dissipation
of the energy in classical fluids. If γ = 0, the energy accumulates in the large-wave-number
components due to the energy cascade, and Kolmogorov’s power law cannot be obtained in
fully developed turbulence. We take γ = 0.004 in this study. We normalize the wave function as
ψ̃ = n

−1/2
0 �, where n0 is the particle density |�|2 in a uniform system without U . The length

and time are normalized by ξ = h̄/(mgn0)1/2 and τ = h̄/(gn0), respectively. Equation (1) is then
normalized as

(i − γ )
∂ψ̃

∂t̃
=

[
−1

2
∇̃2 + Ũ + |ψ̃ |2

]
ψ̃, (2)

where ∇̃2 = ξ 2∇2 and Ũ = U/(gn0).
The flux of the mass current is given by

J = 1

2i
(ψ̃†∇̃ψ̃ − ψ̃∇̃ψ̃†) = |ψ̃ |2∇̃φ, (3)

where φ is the phase of ψ̃ . The vorticity � is usually defined as the curl of the velocity field, � =
∇̃ × ( J/|ψ̃ |2) = ∇̃ × ∇̃φ. The vorticity � therefore vanishes everywhere except at the singularity
of the quantized vortex core. To avoid the singularity in the vorticity distribution, we define the
vorticity distribution of the mass current as

W = ∇̃ × J, (4)

which is a smooth function even at the vortex core and numerically tractable. We extract a specific
scale of the vorticity distribution by applying the band-pass Fourier filter [10,11],

W̃ (k, t ; kc ) =
{∫

W (r, t )e−ik·rdr (kc/
√

2 < |k| <
√

2kc )

0 (otherwise)
, (5)

where kc is the characteristic wave number of the band-pass filter. The band-pass filtered vorticity
distribution is thus given by

W (r, t ; kc ) = 1

V

∑
k

W̃ (k, t )eik·r , (6)

where V = L3 is the volume of the system. Let us consider vorticity distributions W (r, t ; kc ) at two
scales, W 1 and W 2, where kc for W 2 is larger than that for W 1. We define an angle θ12 between
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FIG. 1. Dynamics of quantized vortex cores for an initial state with four vortex bundles. The numerical
pixels around which the phase rotates by 2π are visualized. (a) Four bundles with six vortex lines in each bundle
prepared in a uniform system using Eqs. (9) and (10) with rb = 16. The centers of the bundles are located
at (x, y ) = (64, 64), (108, 64), (64, 108), and (108,108). The curly arrows indicate the rotation directions of
the vortices and the arrows in the ±y directions indicate the directions of their propagation. (b) Snapshot at
t = 160. Two pairs of vortex bundles travel in the ±y directions, and vortex rings and ladder structures are
formed. See the Supplemental Material for a movie of the dynamics [51].

W 1(r ) and W 2(r + �r ) as

cos θ12 = W 1(r ) · W 2(r + �r )

|W 1(r )||W 2(r + �r )| . (7)

We also define an angle θ11 between W 1(r ) and W 1(r + �r ) as

cos θ11 = W 1(r ) · W 1(r + �r )

|W 1(r )||W 1(r + �r )| . (8)

In numerical calculations, we collect the values of cos θ12 and cos θ11 by varying r and �r where
|�r| is restricted to some range. We thus obtain the occurrence distributions P12(cos θ12) and
P11(cos θ11) for these angles. These distributions thus correspond to the probability distributions
of the angle between the vorticities, if we choose r (and �r within some range) randomly. If the
vorticities W 1 at r and r + �r tend to be antiparallel with each other, P11(cos θ11) has a peak at
cos θ11 = −1. If the vorticity W 1(r ) at a larger scale generates the vorticity W 2(r + �r ) at a smaller
scale and the latter tends to be orthogonal to the former, P12(cos θ12) has a peak at cos θ12 = 0. These
tendencies in W 1 and W 2 will be numerically shown in the next section.

We numerically solve Eq. (2) using the pseudospectral method, and therefore, a periodic
boundary condition is imposed. The numerical space is taken to be L3 = 1283 with mesh of
�x = �y = �z = 1.

III. NUMERICAL RESULTS

A. Dynamics of vortex bundles

First we consider the dynamics starting from an artificial initial state to clearly see how large-
scale vortex bundles generate vortices at a small scale. Four large-scale vortex bundles are imprinted
in a uniform system, as shown in Fig. 1(a) [50]. Each bundle consists of six quantized vortex lines,
expressed as

ψ̃ (r ) = ψ̃0(r )
5∏

n=0

x − xn ± i(y − yn)

|x − xn ± i(y − yn)| , (9)

(
xn

yn

)
=

(
rb cos

(
nπ
3 ± πz

L

)
rb sin

(
nπ
3 ± πz

L

)
)

, (n = 0, 1, . . . , 5), (10)
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where ψ̃0 is a uniform wave function, rb is the bundle radius, and the rotation directions of the
vortices are determined by the ± sign in Eq. (9). The time evolution of the system is obtained by
solving Eq. (2) with Ũ = 0. To extract the vortex cores in Fig. 1, we calculate the phase winding
around each numerical mesh. In the time evolution, the two pairs of vortex bundles with opposite
circulations first travel in the ±y directions. Because of the twisted configuration, fast spreading of
the vortices in the bundles is avoided. At a later time, small vortex rings are created between the
bundles, which are stretched to become ladder-like vortices perpendicular to the bundles, followed
by the creation of new vortex rings, as shown in Fig. 1(b).

Figure 2 shows this process in detail. Small vortex rings are nucleated between the vortex
bundles, as shown in Fig. 2(b), since the flow velocity in this region exceeds a local critical velocity.
We note that such vortex-ring creation is peculiar to the Gross-Pitaevskii model and never occurs
in the vortex-filament model [12]. The created vortex rings are then stretched and touch one of
the vortices in the bundle, at which vortex reconnection occurs, as shown in Figs. 2(c)–2(e). After
the reconnection, the vortices form bridges between the bundles and a ladder structure is formed.
Subsequently, new vortex rings are then created between the bundles, as shown in Fig. 2(f). The
dynamics of the quantized vortex cores thus clarifies the elementary process of vortex stretching
in quantum fluids. The band-pass filtered vorticity distributions |W 1| and |W 2| are shown in
Figs. 2(a′)–2(f ′). The wave-number ranges of the band-pass filters are 4/

√
2 � |k| < 4

√
2 for W 1

and 7/
√

2 � |k| < 7
√

2 for W 2; i.e., W 1 and W 2 are larger and smaller scale vorticity distributions,
respectively. At t = 40, the vorticities W 2 are distributed in and around W 1, as shown in Fig. 2(a′).
As the vortices in the bundles expand, the distribution W 1 diffuses, and the tubelike isodensity
surfaces of W 1 become thinner. Although the distribution of W 2 is fragmented for t � 120, the
vortex tubes of W 2 that are orthogonal to those of W 1 are established at t = 160, as shown in
Fig. 2(f ′). These dynamics clearly show that a large-scale structure produces a small-scale structure,
which causes the energy cascade. Similar dynamics are also observed in classical fluids [10,52],
which are attributed to vortex stretching. On the other hand, in the present case, the orthogonal
structure is generated through stretching of quantized vortex rings and their reconnection [53].

Figures 3(a) and 3(b) show the vortex-core distribution and band-pass filtered vortex distributions
of the ladder structure in Figs. 2(f) and 2(f ′) seen from different angles. The rotation directions
of W 1 and W 2 are shown in Fig. 3(b), indicating that the adjacent small-scale vortex tubes have
opposite rotation directions. To quantify the distributions of the angles between the vortex tubes,
we calculate the distributions of cos θ12 and cos θ11 for the state in Fig. 3(b), which are shown
in Figs. 3(c) and 3(d). The distance |�r| in Eqs. (7) and (8) is taken to be 48–50, which is the
typical distance for the distances between vortex tubes in Fig. 3(b). The distribution P12(cos θ12)
is large around cos θ12 = 0, which indicates that W 1(r ) and W 2(r + �r ) tend to be orthogonal to
each other. The distribution P11(cos θ11) is large at cos θ11 = −1, which indicates that W 1(r ) and
W 1(r + �r ) tend to be antiparallel with each other. The peak at cos θ11 = 1 is trivial: the case in
which W 1(r ) and W 1(r + �r ) are in the same vortex tube. These results are similar to those in
classical fluids with a similar setup [10].

B. Fully developed isotropic turbulence

We next consider the case of isotropic quantum turbulence generated by a time-dependent
random potential, in which the artificially distributed vortex bundles in Sec. III A are not used and
the initial state is the homogeneous state. We numerically solve Eq. (2) with a time-dependent
random potential U (r, t ) generated by the method given in Appendix A. The system evolves until
the steady turbulent state is reached. The isodensity surfaces of |ψ̃ |2, the vortex-core profiles, and
the power spectra E(k) are shown in Figs. 4(a)–4(c), 4(a′)–4(c′), and 4(a′′)–4(c′′), respectively. The
power spectrum E(k) is defined in Appendix B. Since the characteristic spatial scale of the random
potential is of the order of the system size, long-wavelength modes are excited at t = 20. An energy
cascade from the long-wavelength to short-wavelength modes then occurs. Kolmogorov’s power
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FIG. 2. The same dynamics as in Fig. 1. The vortex cores are shown in panels (a)–(f), and the isodensity
surfaces of band-pass filtered vorticity distributions |W 1| and |W 2| are shown in panels (a′)–(f ′). The ranges of
the wave numbers in the Fourier filters are 4/

√
2 � |k| < 4

√
2 for W 1 (red or dark gray) and 7/

√
2 � |k| <

7
√

2 for W 2 (yellow or light gray). The outline in panel (b) indicates the created vortex rings. The outlines in
panels (c)–(e) highlight vortex reconnection. See the Supplemental Material for movies of the dynamics [51].

law, E(k) ∝ k−5/3, first appears in the small region of k, as shown in Fig. 4(b′′), which grows in
time, and the power spectrum reaches a steady profile for t � 2000, as shown in Fig. 4(c′′).

To investigate how the energy is transferred from large to small scales, we calculate the band-pass
filtered vorticity distributions W 1 and W 2. Figure 5(a) shows the isodensity surfaces of |W 1| and
|W 2| at t = 13 405. The definitions of W 1 and W 2 are the same as those in Sec. III A; i.e., W 1
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FIG. 3. (a) Vortex cores, (b) isodensity surfaces of |W 1| and |W 2|, (c) normalized distribution of angles θ12

between W 1(r ) and W 2(r + �r ), and (d) normalized distribution of angles θ11 between W 1(r ) and W 1(r +
�r ) at t = 160 in the dynamics shown in Fig. 2. The curly arrows in panel (b) represent the directions of the
circulations. In panels (c) and (d), the data are taken for the range 48 � |�r| < 50. The dashed lines in panels
(c) and (d) indicate P12 and P11 in the case that θ12 and θ11 would distribute randomly.

and W 2 correspond to larger and smaller scale vorticity distributions, respectively. The right-hand
panel in Fig. 5(a) shows an enlarged view of the meshed region. In the enlarged view, we can
clearly see that the pair of vortex tubes in W 1 aligns in parallel and the vortex tubes in W 2 tend
to be orthogonal to those in W 1. This configuration of vortex tubes in W 1 and W 2 is similar to
that in Fig. 3(b) in which the vortex bundles are artificially generated. By contrast, we note that
the structures shown in Fig. 5(a) are formed by a random potential. Figures 5(b) and 5(c) show
the angular distributions P12 and P11 of the vorticities W 1 and W 2, defined in Eqs. (7) and (8).
These were calculated for the whole L3 = 1283 region. Although the turbulent state is induced by
a random potential, there are significant correlations between the vorticities. The vorticities W 1(r )
and W 2(r + �r ) tend to be orthogonal to each other, and P12(cos θ12) has a peak at cos θ12 = 0. The
vorticities W 1 at r and r + �r tend to be antiparallel with each other, and P11(cos θ11) has a peak
at cos θ11 = −1. (The peak at cos θ11 = 1 is due to the correlation within a single vortex tube.) To
assure that these tendencies are not incidental, we calculate the time-averaged angular distributions
for 13 000 � t < 14 000. The characteristic timescale of the random potential is κ−1 = 20, which is
long enough to observe the ensemble averaged behaviors. We find that the tendencies in Figs. 5(d)
and 5(e) are the same as those in Figs. 5(b) and 5(c), respectively, and therefore the above angular
correlations in the vorticity distributions can be observed constantly.

Thus, we have shown that in quantum turbulence, large-scale vorticity W 1 tends to have antipar-
allel structures and small-scale vorticity W 2 tends to be perpendicular to W 1. These results indicate
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FIG. 4. [(a)–(c)] Isodensity surfaces of |ψ̃ |2, [(a′)–(c′)] vortex-core profiles, and [(a′′)–(c′′)] power spectra
E(k) (arbitrary units) for the dynamics driven by the random potential U (r, t ) in Eq. (A1) with κ = 0.05, A0 =
0.5, and l = 8π . The size of the cubes in panels (a)–(c) and (a′)–(c′) is 1283. The slope of the lines in panels
(a′′)–(c′′) is −5/3. See the Supplemental Material for a movie of the dynamics in panels (a′)–(c′) [51].

that the energy is transferred from large to small scales through vortex stretch dynamics, which
implies that this is one of the mechanisms of the energy cascade and emergence of Kolmogorov’s
law in quantum turbulence, in addition to the simple vortex reconnection dynamics [26,48].

IV. CONCLUSIONS

We have investigated the dynamics of vortices in quantum fluids using the numerical simulation
of the Gross-Pitaevskii equation. We defined band-pass-filtered vorticity distributions to study the
dynamics at each scale. In Sec. III A, we examined the dynamics of the vortex bundles and observed
that large-scale antiparallel vortices nucleate small-scale vortices orthogonal to those at the large
scale. These processes are induced by nucleation of quantized vortex rings and their reconnections.
In Sec. III B, we applied our method to the homogeneous isotropic turbulent state. Despite the
fact that the turbulent state is generated by a random potential, there are significant correlations in
the vorticity distributions. We found that intrascale vorticities tend to align in antiparallel and the
smaller scale vortices tend to be orthogonal to larger scale vortices. These vortex dynamics may
play an important role in the energy cascade and Kolmogorov’s law in quantum turbulence.

In the present study, we have only considered vorticity distributions at two scales W 1 and W 2.
Performing numerical simulations in a larger system will provide vorticity distributions at multiple
scales, which will reveal the multistage generation of antiparallel and orthogonal vortices.
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FIG. 5. Vorticity distribution of fully developed turbulence for the dynamics shown in Fig. 4. (a) Isodensity
surfaces of vorticity distributions |W 1| and |W 2| at t = 13405, where the wave-number ranges of the Fourier
filtering are the same as those in Fig. 2. The magnified region clearly shows that W 1 and W 2 tend to be
orthogonal to each other. (b) Distribution of angles θ12 between W 1(r ) and W 2(r + �r ). (c) Distribution of
angles θ11 between W 1(r ) and W 1(r + �r ). Panels (b) and (c) were obtained by a single shot at t = 13405
and panels (d) and (e) are averages of 1000 shots for 13 000 � t < 14 000. The dashed lines [(b)–(e)] indicate
P12 and P11 in the case that θ12 and θ11 would distribute randomly. The distributions P11 and P12 are calculated
over the whole 1283 region [not restricted to the selected region as in the right panel in panel (a)]. See the
Supplemental Material for the dynamics and rotating view of panel (a) [51].
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APPENDIX A: TIME-DEPENDENT RANDOM POTENTIAL TO GENERATE
QUANTUM TURBULENCE

To generate homogeneous isotropic quantum turbulence, we use a random potential. The
potential is expanded as

U (r, t ) =
∑

k

Ck(t )eik·r . (A1)

The time-dependent Fourier components Ck (t ) follow the Langevin equation

dCk(t )

dt
= −κCk(t ) + fk(t ), (A2)

where the constant κ > 0 determines the timescale of potential variation and fk(t ) is the Gaussian
noise with an average,

〈fk(t )〉 = 0, (A3)

and correlation function,

〈fk(t )fk′ (t ′)〉 = Akδkk′δ(t − t ′). (A4)

The magnitude Ak is given by

Ak = A0e
−( l

2 |k|)2
, (A5)

where the parameter l determines the characteristic scale of the random potential. Using the solution
of the Langevin equation in Eq. (A1), we have

〈Ck(t )Ck′ (t ′)〉 = Ak

2κ
δkk′e−κ|t−t ′ |, (A6)

which gives

〈U (r, t )U (r ′, t ′)〉 ∝ e−κ|t−t ′ |e|r−r ′|2/l2
. (A7)

In the numerical simulation in Sec. III B, the coefficients Ck(t ) numerically evolve according to
Eq. (A2). The inverse Fourier transform in Eq. (A1) thus gives the time-dependent random potential
with spatial and temporal scales of l and κ−1, respectively.

APPENDIX B: INCOMPRESSIBLE KINETIC-ENERGY POWER SPECTRUM

The kinetic energy of a quantum fluid is expressed as

Ekinetic = −1

2

∫
d rψ̃∗∇̃2ψ̃, (B1)

= 1

2

∫
d r|∇̃ψ̃ |2. (B2)

Using the transformation, ψ̃ (r ) = √
ρ(r )eiφ(r ), the kinetic energy can be divided into two terms as

Ekinetic = 1

2

∫
d r[ρ(∇̃φ)2 + (∇̃√

ρ )2], (B3)

= E1 + E2, (B4)
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where E1 = 1
2

∫
d rρ(∇̃φ)2 corresponds to the classical kinetic energy and E2 = 1

2

∫
d r (∇̃√

ρ )2

comes from the quantum pressure. We define w(r ) = √
ρ(r )∇̃φ̃(r ) and its Fourier transform,

w̃(k) =
∫

w(r )e−ikrd r. (B5)

The field w is divided into compressible and incompressible parts as

w̃(k) = k · w̃(k)

k2
k + (k × w̃) × k

k2
, (B6)

w̃L = k · w̃(k)

k2
k, (B7)

w̃T = (k × w̃) × k
k2

. (B8)

The kinetic energy can be rewritten as

E1 = 1

2

∫
d r|w(r )|2, (B9)

= 1

2

∫
d r[|wT(r )|2 + |wL(r )|2]. (B10)

We focus on the incompressible part of the kinetic energy,

Eic
1 = 1

2

∫
|wT(r )|2d r, (B11)

= 1

2

∫
dk

(2π )3
w̃T(k) · w̃T(−k), (B12)

=
∫

dkE(k), (B13)

which is the definition of the power spectrum E(k) of the incompressible flow.
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