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Inferring physical parameters of turbulent flows by assimilation of data measurements
is an open challenge with key applications in meteorology, climate modeling, and astro-
physics. Up to now, spectral nudging was applied for empirical data assimilation as a means
to improve deterministic and statistical predictability in the presence of a restricted set of
field measurements only. Here we explore under which conditions a nudging protocol can
be used for two objectives: to unravel the value of the physical flow parameters and to
reconstruct large-scale turbulent properties starting from a sparse set of information in
space and in time. First, we apply nudging to quantitatively infer the unknown rotation
rate and the shear mechanism for turbulent flows. Second, we show that a suitable spectral
nudging is able to reconstruct the energy containing scales in rotating turbulence by using
a blind setup, i.e., without any input about the external forcing mechanisms acting on the
flow. Finally, we discuss the broad potentialities of nudging to other key applications for
physics-informed data assimilation in environmental or applied flow configurations.
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I. INTRODUCTION

Extracting information from experimental or observational data of fluid flows is a highly
challenging task. While in laboratory experiments one can control and/or measure the properties
of the system (e.g., viscosity, thermal expansion coefficient, large-scale shear, rotation rate, etc.),
this is often impossible when performing observations in the open field, such as for meteorological
data taken from the atmosphere or astrophysical data in the sky. Thus, one has to resort to other
methods to infer the desired parameters, a task which most of the time is obstructed by the
quality of the data at hand. The problem is part of a vaster paradigm that goes under the name
of data assimilation and optimal reconstruction, where one is faced with the need to infer the flow
parameters or to extrapolate measurements from a sparse subvolume of the flow field to the whole
space. The problem is also connected to the need to control and improve predictability for the
evolution of chaotic systems by using only a partial set of information about the full trajectory. These
problems can be encountered in a wide range of fields, going from atmospherics sciences [1,2],
astrophysics [3], optics [4], and medical physics [5]. Several tools have been developed to tackle
these challenges. In the context of numerical weather prediction, variational principles and ensemble
filters have been developed to fine-tune the parameters in the subgrid models [6–9]. Alternatively,
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other techniques coupled with Bayesian inference, machine learning, and deep learning have been
proposed to estimate the parameter phase space in Reynolds-averaged Navier-Stokes models in
engineering problems [10–13]. Also, information theory and statistical mechanics tools such as
belief propagation have been used to infer parameters from turbulent flows by looking at the motions
of transported particles [14]. Another interesting example is the use of sparse regression methods to
discover not only parameters but the actual form of the terms controlling the evolution of a system
[15,16].

In this paper we explore a different avenue and show how to infer the physical flow parameters
from partial data assimilation by exploiting the equations of motion in a dynamical way, using
a technique known as nudging, whose conceptual foundation goes well beyond applications to
physics (see [17]). Contrary to the attempts previously mentioned where the modeled flow is
usually compared with data by using a cost function, nudging introduces an extra term in the
dynamical equation where partial information from field measurements is input and exploited to
reconstruct the unmeasured degrees of freedom. Nudging, has been successfully used and developed
to input the global circulation model into a regional climate model [18–20]. In this case, due to
computational constraints, the global models cannot solve the smallest dynamically active scales
so as to have accurate local weather predictions, while the regional models cannot solve for the
large planetary cyclonic and anticyclonic circulations. Nudging is applied to match the overlapping
scales in each model by forcing the regional model to behave as the global one via a penalty
term. Outside numerical weather prediction, nudging has also been rigorously applied to estimate
bounds in the data assimilation problem in two-dimensional Navier-Stokes equations [21,22], the
three-dimensional Navier-Stokes α model [23], and Rayleigh-Bénard convection [24]. It has also
been used to study synchronization in maps and dynamical systems [25]. Here we attempt to
benchmark and optimize its performances to the three-dimensional Navier-Stokes equations in
the fully developed turbulent regime, characterized by high chaoticity and by a high-dimensional
strange attractor.

We implement a spectral nudging technique with two aims. First, we show how to use nudging
as a physics-informed tool to accurately infer key flow parameters, e.g. the rotation rate or the
large-scale stirring mechanism, from a limited subset of data sparsely measured in time and in
Fourier space. Second, we show that the same technique can be used to learn the global physical
turbulent configuration. We do this by using the nudged equations to reconstruct in space the large-
scale energy distribution of rotating turbulence under the presence of a split energy cascade and
without inputting into the algorithm any information about the external forcing mechanism and
about the intensity of the rotation rate. Nudging is thus presented as a general data-driven algorithm
to learn from sparse measurements in a dynamical way and with a broad range of applications.
Finally, we discuss a series of open challenges to adapt and extend the application of nudging to
other turbulent flow configurations using either Eulerian or Lagrangian field measurements and in
different domains.

II. NUDGING TECHNIQUE

As said, nudging means to gently convince a numerical flow to evolve as close as possible to a
reference set supposing it has only partial measurements or observations of the latter [18–20]. The
idea is to use the equation of motion to perform an optimal data and flow-parameter assimilation
in the interval of time t ∈ (0, t ′) and in the whole fluid volume. Suppose we have a reference
three-dimensional turbulent flow uref (x, t ) evolving under the action of a set of external forces
F[uref ,Vref ] parametrized by a set of physical coefficients Vref = (�ref ,Sref , �ref ,�Tref , . . .), where
we denote by �ref the rotation rate, by Sref the amplitude of a large-scale shear with the typical
length scale �ref , and by �Tref the temperature difference across the volume. Suppose that we have
access to the measurements of the reference velocity field uref on a limited set of M anemometers
placed in xj with j = 1, . . . ,M that record the flow properties at N time instants tn with n =
1, . . . , N , i.e., we control uref in a given subdomain of the whole space-time (3 + 1) volume
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FIG. 1. Diagram showing the setup of our numerical experiments. First, a reference simulation is performed
(left). Second, a subset of data is filtered out of the reference field by keeping only data on a given subset of
points in space and instant in times (middle). Third, we interpolate in time the input partial information and
use it to nudge the evolution of a new field to reconstruct the missing data and to infer the correct physics
parameters (right).

only. The idea behind nudging is to evolve an independent three-dimensional incompressible
Navier-Stokes equations with an initially educated guess for the set of parameters V and imposing
a penalty whenever the flow field does not reproduce the input velocity values of the reference field
in the space-time domain V = (xj , tn),

∂u
∂t

+ u · ∇u = −∇p + ν∇2u + F[u,V] − αIV (u − uref ), (1)

where ν is the viscosity, p is the pressure that ensures the incompressibility condition, IV is a
dimensionless linear projector operator given by the characteristic function of the set V , and α is a
parameter that controls the intensity imposed by the nudging control and has units of frequency. In
its crudest form, IV is equal to 1 for (x, t ) ∈ V and 0 otherwise. The simplest and most common
improvement is to linearly interpolate the different measured snapshots between each time tn and
tn+1. So when included in (1), uref will always be assumed to be piecewise differentiable in time
with a characteristic interpolation window τ . In this way the operator IV is only acting on the
spatial part of the fields. The whole protocol is sketched in Fig. 1. It is important to realize that,
in our application, we do not even require one to know the exact way the system is forced, i.e.,
we do not impose V = Vref and the only a priori information that we provide is inside the partial
measurements of the reference field. Clearly, the success of the reconstruction will depend on the
amount of information provided (how many measurements in space and in time), on its quality
(where and what we measure), and on the intensity of the penalization term α. Notice that, because
of potential stiffness and truncation effects arising when α is big, it is not a priori obvious that taking
large α is the best choice. It is intuitive to imagine that in some cases it might be better to allow for
a larger error in some measuring stations to allow the field to be closer to the target globally.

III. SETUP OF THE NUMERICAL SPECTRAL NUDGING EXPERIMENT

We start first by restricting the discussion to the case when the set of external parameters is given
by the intensity of the Coriolis force due to the presence of a rotation � in the vertical direction and
of an external stirring mechanism S,

F[u,V] = 2�ẑ × u(x, t ) + S(x), (2)

where S is a randomly generated, quenched in time, isotropic field with support on wave numbers
with amplitudes k ∈ [kf 1, kf 2] whose Fourier coefficients are given by Ŝ(k) = Sk−7/2eiθk , where
θk are the random phases. In the rest of this paper we will address the most ideal case when the
information is supplied in Fourier space, i.e., we imagine having a periodic array of measurement
stations that allow us to reconstruct the reference flow configuration in a given range of nudged
wave numbers k0 < k < k1. In this case, the IV operator reduces to a bandpass Fourier filter of the
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TABLE I. Parameters used in the different numerical experiments. INFER1 is the setup for the � scan,
INFER2 for the S scan, and PHYS1 for the inverse cascade experiment. The values listed are the total kinetic
energy Ekin = 1

2 〈|u|2〉, the eddy turnover time T = L/(2Ekin )1/2 with L = 2π the largest scale in the flow
(same for all simulations), the viscosity ν, the Reynolds number Re = L(2Ekin )1/2/ν, the forcing intensity
of the reference simulation Sref , the band of forced wave numbers in the reference simulation [kf 1, kf 2], the
rotation frequency of the reference simulation �ref , and the band of nudged wave numbers [k0, k1]. The number
of grid points N 3

grid = 2563, the time step of the simulations dt = 0.001, the nudging intensity α = 10, and the
temporal interpolation window of the nudging field τ = 0.1 are the same for all simulations. The box length
L, the temporal time step dt , the resolution N3

grid, and the viscosity ν are the same for the reference and the
nudged simulations in each set. The kinetic energy and Reynolds numbers are given for the reference run of
each set; the nudged ones have very similar values.

Setup Ekin T ν Re Sref [kf 1, kf 2] �ref [k0, k1]

INFER1 1.84 3.28 0.002 6030 0.005 [1,2] 2 [1,4]
INFER2 1.20 4.06 0.0025 4900 0.02 [1,2] 0 [1,4]
PHYS1 0.0012 128 0.002 150 0.004 [10,11] 20 [8,20]

form

IV u =
∑

k0<|k|<k1

û(k, t ) exp (ik · x) (3)

that projects the velocity field on the window of nudged Fourier modes.
We implement the whole protocol as follows. First, we numerically produce a full space-time

evolution of the whole uref field in an interval t ∈ (0, Ttot ) by solving the Navier-Stokes equations
with a reference rotation rate �ref and a given intensity of the shear Sref [i.e., Eq. (1) with α = 0].
The values of �ref and Sref (and also ν, which is the same for both the reference and the nudged
simulations) are given in Table I. All reference simulations start from rest and are allowed to reach
stationary states (t = 0 denotes the start of the stationary states). Second, we extract the inputting
field in a subset of discrete times tn = nτ with τ chosen as a fraction of the characteristic eddy
turnover time of the flow (see Table I). Third, we define the nudging field (3) by a linear interpolation
between tn and tn+1 for all intervals. The initial condition used for all nudged simulation is just the
first extracted input field (i.e., the field at t = t0) with all the modes outside the nudging region
filtered out. All simulations have been performed with a parallel pseudospectral code. The code
uses a two-step Adams-Bashforth scheme for the time integration, the 2/3 rule for dealiasing,
and periodic boundary conditions in all three directions. In the following we will analyze three
different nudging protocols. The first two cases are about simulations made to infer the physical
flow parameters �ref and Sref (called INFER1 and INFER2 in the following; see also Table I for
details). The third case is about the reconstruction of the large-scale coherent structures and it is
called PHYS1. Numerical details for all setups can be found in Table I. The value of τ is such that
it is smaller than the decorrelation time of the fastest nudged mode, while α was taken as 1/τ ; these
choices follow common practices [26]. A comprehensive report about the performance of nudging
at changing α and τ for fully developed homogeneous and isotropic turbulent flow is beyond the
scope of this paper.

IV. INFERRING PHYSICAL PARAMETERS IN ROTATING TURBULENCE

We start by asking how to guess the exact value of the rotation rate �ref without any a priori
knowledge of its value. To give an initial idea about the applications of nudging, in Figs. 2(a)–2(d)
we show a series of two-dimensional (2D) slices of the vorticity field in the direction parallel to
the rotation axis for the reference simulation [Fig. 2(a)] and for three different nudged simulations
[Figs. 2(b)–2(d)], two with wrong rotation rates � = 0 and � = 2�ref and one with the correct
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FIG. 2. Nudging with different rotation rates. Simulations from setup INFER1 (see Table I). Two-
dimensional slices of the vorticity field ω = ∇ × u in the direction parallel to the rotation axis are shown
for (a) the reference simulation with a rotation frequency �ref and three nudged simulations performed with
(b) � = 0, (c) � = �ref , and (d) � = 2�ref . (e) Energy spectra of the reference simulation compared with
error spectra E�(k) [see Eq. (4)] for different values of the rotation frequency �. All spectra were computed
at the same instants of time. The shaded gray area indicates the modes where the nudging is acting. (f) Time
evolution of E(k, t ) for k = 5 for � = �ref and � = 0, compared to the reference data. (g) Evolution of total
energy for the reference field and for the three nudged simulations at changing �.

104604-5



CLARK DI LEONI, MAZZINO, AND BIFERALE

value � = �ref . Furthermore, in this set of simulations we took S = 0, i.e., we assume to not know
the forcing mechanism (all simulations are from setup INFER1 shown in Table I). All snapshots
were taken at the same instant in time. Comparing the four panels, it is clear that the simulation
nudged with the correct rotation rate [Fig. 2(c)] does reconstruct the reference flow [Fig. 2(a)]
much better than the other two [Figs. 2(b) and 2(d)]. It is also worth pointing out that the standard
deviation of the vorticity fields is recovered when rotation is present, with the values being around
2.8 for the reference and the simulations of both Figs. 2(c) and 2(d), but this is not the case in the
absence of rotation [Fig. 2(c)], where the standard deviation takes a value around 5.4. All fields have
zero mean by construction. These qualitative results already provide a first glance at the two main
points we make: (i) Spectral nudging works well also for fully turbulent 3D flows, as it reproduces
nontrivial features with high accuracy, and (ii) by optimizing the reconstruction properties, one can
infer the unknown flow parameters of the nudging flow. It is worth noticing that the percentage of
nudged modes is very small, of the order of Nnudged ∼ 1 × 10−4, as we are nudging up to k = 4,
while the maximum possible wave number in this simulation is k = 85. The nudged modes are the
ones containing the largest amount of energy, but the flow is not completely determined by their
evolution, as many more scales should be controlled in order to achieve this [27]. This fact is clear
when looking at the error spectra in Fig. 2, where the error in the unnudged scales is of the order
of the energy at those scales even though the large-scale reconstruction is very good, meaning the
unnudged scales are not slaved to the energy containing modes. Some synchronization of the small
scales is nonetheless present, especially for the case with � = �ref . Understanding how much one
needs to nudge in order to fully control a turbulent flow is an open question that is left for future
work.

In order to control the performance of the nudging protocol in quantitative terms and scale by
scale, we introduce a field given by the difference among the exact input and the one reconstructed
via (1), �u = u − uref , and we study its spectral properties:

E�(k, t ) = 1

2

∑
k�|k|<k+1

|û(k, t ) − ûref (k, t )|2. (4)

Clearly, the smaller the spectrum E�(k), the better the reconstruction. This spectrum will be referred
to as the error spectrum.

In Fig. 2(e) we show three different curves for E�(k, t ) obtained by averaging over all times
when we provide the information tn and for the three different values of the rotation rate � =
0,�ref , 2�ref , already discussed in Figs. 2(a)–2(d), together with the spectrum of the reference
field Eref (k) = ∑

k�|k|<k+1 |ûref (k, t )|2, averaged on the same set of times. In the figure, the set of
nudged wave numbers is denoted by the gray area. From Fig. 2(e) it is clear that the optimal nudging
is obtained when � = �ref is used in (1), as revealed from the scale-by-scale nudging error E�(k)
that becomes much smaller than Eref (k) for k ∈ (k0, k1). In all cases, there is a dip in the error
spectra at k = 3, as this is the first scale at which the forcing is not present in the reference flow,
so the nudging is able to do a better job reconstructing the data. At k = 4 the error spectra increase
again, mainly because some unnudged modes are integrated when calculating the spectra at this
wave number. For � = �ref , the scale-by-scale error stays smaller than the reference spectrum up
to k ∼ 10, suggesting the ability to assimilate data outside the set of nudged degrees of freedom
also. This latter fact is also confirmed by the inset [Fig. 2(f)], where we show the temporal evolution
of Eref (k, t ) for an unnudged wave number k = 5 compared with the spectra of the reconstructed
field evolving with � = 0 and � = �ref . In this experiment we started the nudged simulations from
zero velocity. As one can see, after a short transient, only the field evolving with the correct � rate
is indeed able to synchronize with the time evolution of the inputting data. Finally, we also show
the evolution of the total energy in Fig. 2(g) for the same simulations. While the case with � = 0
is easy to discern, the other two are too close to tell which one produces a better reconstruction of
the flow. This indicates that comparing averaged quantities (such as the total energy) may not be the
most precise way to determine the value of a parameter.
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FIG. 3. (a) Value of the mean error committed to reconstruct the reference field in the nudged window C for
two different scans of the phase-space parameters. Blue circles show the case with a fixed stirring mechanism
and changing rotation rate � (setup INFER1 in Table I). Green triangles show the case with fixed rotation
rate and changing intensity of the stirring parameter S (setup INFER2 in Table I). Magenta squares show a
further scan for � following INFER1 but nudging all wave numbers up to k = 10. In all cases a clear depth
is measured only when the scanning values correspond to the ones used for the reference data �ref and Sref ,
respectively. Error bars for each data point were calculated by measuring the standard deviation of C. (b) Scan
of � performed without nudging but adding the forcing term (i.e., same as INFER1 but with α = 0 and S =
Sref ).

To be more quantitative about the sensitivity to infer the unknown rotation rate, we have
performed also a detailed scan of � values around �ref . In Fig. 3(a) we show the performance
of the nudging reconstruction by plotting the value of the spectrum E�(k) as a function of � and
averaged in time and in the nudged window

C = 1

NK

N∑
n=1

∫ k1

k0

dk E�(k, tn), (5)

where tn are the instants in time where we have measurements and K = ∫ k1

k0
dk Eref (k) is a

normalization factor. Notice that C is defined using information about the nudging data only, i.e.,
the filtered reference field at the specific times when the information is provided. In contrast, E�(k)
needs the whole uref , which in most practical applications would not be available, but which we can
nevertheless access in our numerical experiment.
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From Fig. 3(a) the existence of a minimum in the error when evolving (1) with � ∼ �ref is clear.
Furthermore, we can determine the correct value of � with a 6.25% error. The error is calculated
by looking at which values the error bars for C overlap. We performed another experiment (setup
INFER2 in Table I) to test if the intensity S of mechanical forcing of the reference simulation could
also be discovered with our nudging protocol. In this experiment a reference simulation with �ref =
0 and Sref = 0.02 was produced and used to extract the nudging fields (see Table I for details). In
Fig. 3(a) we show that the protocol is able to infer the intensity of the stirring mechanism also, with
a clear minimum of the error (5) in the proximity of S ∼ Sref . In this case, the correct value of S can
be pinpointed with a 12.5% error. A third experiment, following INFER1 but nudging more wave
numbers (so using more information from the reference as well) is shown. Here all wave numbers
up to k = 10 where nudged. By doing this we can reduce the error in the estimation of � to 3.125%.
All numerical experiments show that spectral nudging can be used in a physics-informed way to fit
parameters to data and thus extract information from it. Furthermore, in setup INFER1, where no
information about the external stirring mechanism is used, performing a one-dimensional scan (i.e.,
varying only the rotation rate) works well. Having said this, we cannot conclude that this must be
the case for a generic search in a multidimensional phase space, where the only systematic way to
proceed would be to adopt a local gradient-descent algorithm.

A similar scan was performed for the rotation rate but without using the nudging (i.e., α = 0).
In this case, the forcing term was also added (with S = Sref ); otherwise there would be no energy
injection mechanism present. All other parameters are the same as for setup INFER1. The results
are shown in Fig. 3(b). It is clear that obtaining an accurate value of � from scan is very difficult
because even though a minimum is readily seen, the error bars of several data points close to it
overlap. So while running simulations with different parameter values and performing a posteriori
analysis in order to infer the desired information is possible, our results suggest that using nudging
greatly improves the sensitivity and accuracy of the search.

V. INFERRING THE LARGE-SCALE VELOCITY DISTRIBUTION WITHOUT INPUT ROTATION

In this section we describe how to use nudging to infer, under some circumstances, the entire
set of large-scale physical flow structures of the reference data without detailed knowledge of the
forces acting on flow. To test this idea we performed an experiment by using a turbulent flow under
rotation and in the presence of an inverse energy cascade. It is well known that if rotation is strong
enough and energy is injected at large wave numbers the flow undergoes a transition from a direct
to a split turbulent energy cascade, accumulating kinetic energy and producing a nontrivial cyclonic
distribution of vortices at larger and larger scales [28–30]. This regime does not occur naturally
in homogeneous isotropic three-dimensional turbulence [31], but it is argued to be important in
many geophysical setups in oceans [32,33] and the atmosphere [34]. Here we show how a suitable
nudging strategy is indeed able to reconstruct the inverse energy cascade even in the absence of any
explicit rotation term in the nudged equations (1), provided the uref is inputting information around
the injection scale. To do this we use a rotating turbulent flow forced at kf = 10 and with �ref = 20
and Sref = 0.004 as a reference (setup PHYS1 in Table I) where an inverse energy cascade develops.
We then evolve (1) without any rotation and any external forcing,

F[uref ,Vref ] = 0;

in this way we are completely ignorant about the physics we want to reproduce. In Fig. 4 we show
that by nudging in the region around the injection mechanism, the energy spectrum of the reference
simulation is well reproduced by the nudged simulation even, and in particular, in the inverse energy
cascade range. The presence of a strong peak around the forced wave number is typical of systems
where an inverse cascade is present, as this is a slow and inefficient transfer mechanism [28–30,35].
Even though the only information we input is the nudging filtered field, the nudged evolution is able
to reconstruct the inverse cascade and the correct spectrum slope even for scales much smaller than
the ones where we nudge. It is remarkable how the spectrum error E�(k) is small also for modes
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FIG. 4. Nudging for the case of rotating turbulence in the inverse energy cascade regime. Simulations are
from setup PHYS1 (see Table I). The nudged window is given by the gray area between k0 = 8 and k1 = 20.
The reference spectrum Eref and the nudged spectrum Eu almost coincide for k > 8, making it hard to discern
between the two. Both the intensity of the forcing S and the rotation rate � are zero in the nudged simulation,
so all energy injection and anisotropic effects are coming from the nudging term. Notice the strongly reduced
error spectrum E�(k) for a large set of wave numbers, indicating an optimal reconstruction quality.

outside the nudging window k < k0 and k > k1, indicating the presence of strong nonlocal spectral
correlation in the split-energy cascade mechanism which is fully reconstructed by our protocol.

To go beyond spectral properties and to check the ability to reconstruct the large-scale coherent
structures in the rotating flow, we plot in Fig. 5 the probability density functions (PDFs) of the
space-dependent kinetic energy for the reference simulation |uref |2/2, the nudged simulation |u|2/2,

FIG. 5. (a) Probability density functions of the pointwise kinetic energy for the reference simulation
|uref (x)|2 (solid black line), the nudged simulation |u(x)|2 (circles), and the nudging input field |IV uref (x)|2
(triangles) for the inverse cascade experiment (setup PHYS1 in Table I). (b)–(d) Two-dimensional slices of
planes perpendicular to the rotation axis of the absolute velocity fields.
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and the nudging field |IV uref |2/2. As one can see, the reconstructed field has a PDF very close to the
reference case, even if the nudging input field does not. In the same figure we also show 2D slices of
the absolute velocity fields in planes perpendicular to the rotation axis for the three fields as before.
As one can see, the nudged simulation [Fig. 5(d)] is able to extrapolate the unknown large-scale
reference flow structures extremely well [Fig. 5(b)], for a case where the nudged inputting data
do not contain any information about those scales [Fig. 5(c)]. The apparent patterns seen in these
visualizations are a product of the strong forcing present in the system acting around k = 10.

VI. CONCLUSION

Spectral nudging is a physics-informed technique commonly used to guide the evolution of
chaotic dynamical systems inputting measured data. Giving examples for both isotropic and rotating
3D turbulence, we have shown how this technique can be efficiently used to infer both the physical
parameters of the external stirring forces and the large-scale velocity distribution for the inverse
energy cascade regime, typical of strongly rotating turbulent flows. The method can be further
improved and optimized by using different nudging parameters for different degrees of freedoms,
e.g., by changing α and τ with k. A detailed study of nudging performances for homogeneous and
isotropic turbulence at different Reynolds numbers, at different nudging windows, and at changing
spatial locations of the measurements stations is left for future work.

Other strategies used to estimate parameters, such as variational methods [36] or ensemble based
methods [7–9], require the need to postulate an error correlation matrix and make assumptions about
the behavior of the errors and deviations, need to use linearized models (for variational methods),
or are based on minimizing complicated functions (again for variational methods). Nudging-based
strategies require one to perform several forward simulations, similar to the ensemble-based method.
One advantage other methods have compared to nudging is the ease to incorporate information on
observables (such as precipitation, for example) and not just state variables (such as the velocity
field, as was used here). Interestingly, variational data-assimilation schemes have been exploited to
determine vectors of optimal nudging coefficients [37]. Here we reversed the point of view: Given
the coefficients α and τ , we employed nudging to estimate the physical flow parameters. Finally,
the method is also general and extendable to other problems, opening the route to applications
for parameter extrapolation to a vast set of hydrodynamic situations including the most promising
cases such as (i) optimizing subgrid-scale models in large-eddy simulations by inferring parameters
against data extracted from either observation or benchmark direct numerical simulations, (ii)
large-scale turbulent transport to determine eddy viscosity and eddy diffusivity [38,39], (iii) the
identification of ambient air sources and the quantification of their contribution to pollution levels
(the so-called source apportionment problem) [40], (iv) partial field reconstruction using advanced
lidar systems [41] to reveal the free parameters characterizing the atmospheric boundary layer, and
(v) correction of velocity fields in ocean circulation models with Lagrangian data (e.g., from drifting
buoys) [42,43] and/or other sources including high-frequency radar data [44].
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