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Approximate Bayesian computation (ABC) is a data-driven technique that uses many
low-cost numerical simulations to estimate unknown physical or model parameters (e.g.,
boundary conditions and material properties), as well as their uncertainties, given reference
data from real-world experiments or higher-fidelity numerical simulations. In this study,
ABC is used to estimate unknown parameters in complex thermal-fluid flows, and the
technique is demonstrated on a periodically forced high-temperature jet and a steadily
forced helium-air plume. In the first case, computational reference data are used to
assess the accuracy of ABC when estimating the frequency, amplitude, and mean of the
periodic velocity forcing at the jet inlet. These tests show that ABC provides accurate
and reasonably certain estimates of inflow parameters even when the model simulations
imperfectly represent the physics underlying the reference data. These tests also show that
measurements far from the inlet can be used to perform the estimation, and that temperature
measurements can be used to infer velocity inflow parameters. For the second case, ABC
is used to estimate the inlet Richardson number and its uncertainty given experimental
measurements of the Strouhal number within the plume. Once again, the approach is able
to accurately estimate unknown parameters with relatively low uncertainty. As a result,
ABC is shown to be a versatile technique for estimating unknown physical parameters
when knowledge of a real-world system is limited or incomplete.
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I. INTRODUCTION

Computational simulations are widely used to design and analyze systems involving complex
thermal-fluid flows, from microscale heat transfer in thermal management devices to liquid propul-
sion in heavy-lift rockets. Nearly all such simulations are intended to provide three-dimensional
(3D) spatially and temporally resolved numerical solutions of physics-based governing equations for
realistic geometries, boundary conditions, and material properties. Prior to making simulation-based
design and operational decisions, however, computational accuracy must be demonstrated by
validating against (typically experimental) reference data for realistic or canonical test cases. As
simulation fidelity has improved over the past decade with the development of higher-order and
geometry-resolving numerical techniques, as well as with the increasing use of petascale computing
resources to achieve very fine spatial resolutions and improved physical realism, a long-standing
difficulty in such validation efforts has come into sharper focus.

Namely: Even if a simulation is able to solve physically realistic governing equations with high
accuracy, unavoidable uncertainties in real-world boundary conditions, material properties, and
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other parameters result in ambiguity as to whether the computational and real-world systems are
actually equivalent. That is, there are few assurances that discrepancies between computational and
experimental results during a validation test are not simply due to limitations in the characterization
of the real-world system. Cases where knowledge of a real-world system is limited include
experiments that were not originally intended for validation purposes, systems with limited access,
or parameters that are difficult to measure directly [1].

In broad terms, this difficulty can be addressed by proposing distributions of likely parameter
values, performing simulations with parameters sampled from those distributions to determine the
spread of outcomes in a particular quantity of interest within the flow, and then using statistical
inference to determine distributions for unknown parameter values [1–4]. This approach can, in
principle, be attempted using full Bayesian analyses, which have recently gained popularity for
parameter estimation in engineering applications [5–9]. However, in nearly all such analyses, the
requisite components of Bayes’ theorem (specifically, the likelihood function) may be unknown
or enormously costly to compute, and, consequently, non-physics-based reduced-order surrogate
models have often been used to sample the unknown parameter space [6,7,10–12]. Optimization
techniques have also been used for parameter estimation (e.g., Refs. [13–17]), but these methods
seek to provide single values of unknown parameters, with no intrinsic measure of uncertainty when
using potentially imperfect computational models and real-world data.

In the present study, approximate Bayesian computation (ABC), a data-driven Bayesian tech-
nique adopted from the biological and geophysical sciences, is used to estimate unknown parameters
for complex, turbulent thermal-fluid flows. The power of ABC lies in the fact that far fewer
simulations are required than in full Bayesian analyses since ABC does not require a likelihood
function, thus permitting the use of physics-based models. Rather than attempting to match the
reference data at all locations and times, as in full Bayesian analyses, the ABC method develops
an approximate posterior distribution for unknown parameters through comparison of summary
statistics from the reference data and model simulations. A wide variety of reference data can be
used to drive the estimation, including measurements that are only indirectly related to parameters of
interest. Because the technique naturally provides posterior distributions for unknown parameters,
Bayesian confidence intervals can be obtained along with parameter estimates. Once parameter
estimates are obtained, either they can be used in higher-fidelity numerical simulations of the same
system, or they can be considered as part of the description of the real-world system itself (with
appropriate uncertainty caveats).

This study is one of a growing number of efforts to use data-driven methods with either
experimental or higher-fidelity computational reference data to improve accuracy and quantify un-
certainty in turbulent flow simulations. For example, ensemble Kalman filtering (EnKF) approaches
have been used to assimilate reference data in simulations [18–21] and to infer turbulence model
discrepancies [22]. In such approaches, reference data are used to update the state of a simulation
or parameters in the simulation as the simulation progresses. Generally, however, EnKF methods
require extensive and high-quality reference data to provide reliable state and parameter estimates.
The maximum a posteriori (MAP) method has also been used to infer both parameter [23] and
model [24] uncertainties. This method maximizes the posterior using either an analytical function
or a Monte Carlo approach, but the analytical function used to represent the posterior (or the
likelihood function) is often known only approximately, and the number of simulations required
in even Markov chain Monte Carlo approaches can be enormous. Recently, the ABC method has
been used to infer Arrhenius parameters for chemical kinetics rate coefficients in the context of
combustion [25].

The present study is specifically targeted at problems for which the reference data are spatially
and temporally sparse, statistical in nature, or otherwise lacking in sufficient detail to update the
model simulations at all locations and times (precluding the use of EnKF methods) and for which
the true posterior is either intractable or prohibitively expensive to compute (precluding the use of
MAP methods). As a demonstration of ABC, this paper outlines the estimation of inflow boundary
conditions for two compressible turbulent flows: (1) a periodically forced high-temperature jet and
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(2) a weakly but steadily forced helium-air plume. Both cases are two-dimensional (2D) but are
physically complex due to compressibility and the corresponding coupling between temperature,
density, buoyancy, and forced advection. The first case is intended to demonstrate the utility and
breadth of ABC by using computational reference data to estimate the frequency, amplitude, and
mean of the forced inflow. Since these parameters and the underlying physical model are precisely
known for the computational data, the success of the ABC approach can be quantified. The second
case is a demonstration of ABC using experimental measurements in an engineering context.

It should be noted that the present study is focused on demonstrating the use of ABC for
estimating physical parameters that are difficult to obtain for real-world systems, as opposed
to calibrating model parameters used in reduced-order or engineering models of more complex
phenomena. Such model parameter calibrations are also possible using ABC and are the subject of
future research [26].

II. APPROXIMATE BAYESIAN COMPUTATION

The ABC framework is a relatively new approach for linking reference data to physical and
model parameters [27–33]. It was first conceived by Rubin [34] and then subsequently applied by
Pritchard et al. [35] to the study of population dynamics. Although the technique has traditionally
been applied in biology [35–41], it has recently gained traction in geophysics [42–48], primarily
for calibrating parameters in reduced-order models of complex phenomena. It has also been used
recently in the context of chemical kinetics modeling for combustion [25].

From a fundamental perspective, the ABC method produces a posterior distribution of unknown
parameters given some reference data. This occurs by comparing observations or summary statistics
from the reference data to corresponding data or summary statistics from lower-cost physics-based
“model” simulations (e.g., simulations with coarse spatial resolutions or lower-order numerical
schemes). The model simulations are repeated many times, with each simulation using parameters
drawn from a prior distribution. The prior distribution is the best guess at the span of the unknown
parameter space; it must be wide enough to contain the true parameter values, but narrow enough
to keep the task computationally manageable. Parameter values are retained if the model data
or summary statistics are similar to the reference observations. Once many such candidates are
obtained, a posterior distribution is formed, providing estimates for the most likely parameter values
as well as their uncertainties, given the reference data.

The specific ABC algorithm used in this work is Method D from Marjoram et al. [28]. Given
the summary statistic S obtained from reference data D, this algorithm involves the following steps
(see also the schematic in Fig. 1):

(1) Generate parameters θ from the prior distribution P (θ ).
(2) Simulate approximate data D̂ using parameters θ and compute the approximate statistic Ŝ.
(3) Calculate the distance δ(S, Ŝ ) between the reference, S, and simulated, Ŝ, statistics.
(4) Accept θ if δ(S, Ŝ ) � ε (where ε is the “rejection distance”) and build the posterior

distribution of accepted parameters, denoted P [θ | δ(S, Ŝ ) � ε].
(5) Return to step 1 and repeat a total of N times until a reasonable estimate is obtained for the

posterior distribution.
In general, the parameters θ , data D and D̂, and summary statistics S and Ŝ are multidimensional

and are correspondingly indicated by boldface notation.
In broad terms, the prior distribution is simply the initial guess for the values of the true

parameters. Greater confidence in the values of unknown parameters permits a more concentrated
prior distribution (e.g., a Gaussian instead of a uniform distribution). The only requirement on the
prior is that its range spans the true values of the unknown parameters. In many practical cases, a
wide prior can be used initially to gain an approximate idea of the true parameter values, and then a
narrower prior can be used to determine parameter values with greater precision.

The use of summary statistics is intended to reduce the overall computational cost of the
parameter estimation. Although it would be ideal to compare all of the available data D to
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FIG. 1. Schematic of the general ABC approach corresponding to Method D from Marjoram et al. [28] and
of the specific ABC implementation used in the present study.

all of the simulation data D̂, this is typically a very high-dimensional problem and is not
computationally feasible in general. Thus, instead, summary statistics are used. A key challenge
in successfully implementing ABC is to identify relevant summary statistics that significantly
reduce the dimensionality of the data, while still maintaining sufficient identifiability of unknown
parameters [49]. Examples of summary statistics include averages, standard deviations, probability
distribution functions (PDFs), and power spectral densities (PSDs).

The choice of distance function is typically based on the form of the summary statistic. For
example, the root-mean-square error can be used to compare spatial profiles of average quantities,
and the Hellinger distance [50] or Kullback-Leibler divergence [51] can be used to compare
PDFs. The specific choice of rejection distance, ε, is typically determined by a balance between
computational cost and parameter estimate uncertainty. Smaller values of ε lead to higher rejection
rates and reduced uncertainty in estimated parameter values [29] but also increase the number of
model simulations necessary to generate a sufficiently converged posterior.

With respect to evaluating the success of the ABC parameter estimation, “accuracy” can
be assessed either by comparing the approximate posteriors generated using ABC to the true
posteriors, or by comparing the estimated parameter values to the true parameter values, along
with a measure of certainty in the estimated values. In the present study, the true posteriors are not
known analytically, and they are prohibitively expensive to compute numerically. As a result, the
accuracy of the ABC approach is quantified here by computing 95% Bayesian confidence intervals
(sometimes called credible intervals), denoted CB , from the approximate parameter posteriors, then
determining whether CB contains the true parameter value. The ultimate measure of accuracy in the
present study is indicated by how closely a central tendency of the posterior (such as the mean)
matches the true parameter value. The degree of certainty in the estimated parameter value is
determined by the width of CB , where narrower intervals indicate more certain parameter estimates.

Additional details on the specific choices for the prior, summary statistics, distance function, and
rejection distances used in the present ABC implementation are outlined in the following sections
and are summarized in Fig. 1.
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III. DEMONSTRATION OF ABC USING COMPUTATIONAL REFERENCE DATA

As a demonstration of ABC, inflow parameters for a periodically forced high-temperature tur-
bulent buoyant jet [52–56] are estimated using computational reference data. This case is examined
due to the simplicity of the geometry combined with the complexity of the high-temperature
unsteady compressible flow physics. Large eddy and direct numerical simulations (LES and DNS,
respectively) are used as reference data, and model simulations are performed using LES.

The use of computational reference data allows the success of ABC to be assessed when
the physics underlying the reference data, as well as all system parameters, are known exactly.
Three questions, in particular, are addressed: (1) How accurately can ABC estimate unknown
parameters when the reference data physics are exactly reproduced by the model simulations? (2)
How accurately can ABC estimate unknown parameters using model simulations that imperfectly
represent the physics of the reference case? (3) How accurately can ABC estimate unknown
parameters using reference data that are only indirectly connected to the parameters of interest?

The first question represents a “best case scenario” where there is zero model error, and it
is examined using both model and reference data from LES. Despite the exact correspondence
between the governing equations solved in the model and reference LES, however, the flow fields
obtained from each of the simulations differ on a local and instantaneous basis due to the use of
different random initial conditions. The second question pertains to a more realistic application of
ABC where the physics governing the reference data are not exactly represented by the model
simulations. This question is examined here using LES model simulations and DNS reference
data and is further addressed in Sec. IV using experimental reference data. The third question
addresses the identifiability of unknown parameters using different types of reference data and
is examined by performing ABC at different heights above the inlet using either velocity or
temperature measurements.

It should be noted that the test where both the model and reference data are obtained from LES
most closely resembles an observing system simulation experiment (OSSE), which is a common
technique used for the validation of data assimilation methods [57,58]. In the present context, the
OSSE represented by this test allows the choices of prior, summary statistic, distance function, and
rejection distance to be evaluated in the absence of model error. In this sense, these tests indicate
whether the ABC approach can ever be expected to succeed and to what extent. The following
analysis illustrates that, even in such a “best case scenario,” the ABC parameter estimation does not
perfectly recover the true parameter values due to the presence of stochasticity in the model and
reference data. That is, the model and reference data are never in perfect local and instantaneous
agreement because each of the simulations are initialized with different random temperature fields
(even when using identical boundary parameter values). Thus, the true parameter values are only
ever recovered approximately, even when the governing equations used to generate the model and
reference data are identical.

The test where the model data are obtained from LES and the reference data from DNS is
intended to address a common concern when parameter estimation methods are evaluated using
OSSEs: namely, that assessments of the method are likely to be overly optimistic due to the exact
correspondence between the physics and numerics underlying the model and reference simulations.
This issue, sometimes referred to as an “inverse crime” [59,60] or the “identical/fraternal twin
problem” [61,62], is typically resolved by using different models, for example with different
discretizations, numerics, or physics, for the generation of the reference data and for the parameter
estimation. Here the LES-DNS tests are intended to provide a more realistic assessment of the
accuracy of the ABC method than the LES-LES tests, since both the grid resolution and underlying
governing equations in the LES and DNS are different. The test using experimental reference data
and LES model data in Sec. IV is similarly intended to enable a more realistic assessment of the
accuracy of the ABC approach.
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FIG. 2. Representative fields of speed v (a) and temperature T (d) from DNS for the periodically forced
turbulent buoyant jet. Panels (b) and (c) show reference probability density functions (PDFs) and power spectral
densities (PSDs), respectively, of v at heights of 5, 10, 15, and 20 cm. PDFs and PSDs at different heights are
shifted vertically for clarity. Panels (e) and (f) show corresponding PDFs and PSDs of T . Solid black lines in
panels (b), (c), (e), and (f) show DNS reference data and dash-dot blue lines show LES reference data. PSDs
are computed using Thomson’s multitaper estimate [69].

A. Physical and numerical setup

The reference buoyant jet has a sinusoidally varying inlet velocity with a frequency of 4 Hz,
an amplitude of 0.2 m/s, and a mean of 0.5 m/s. The inflow velocity is spatially uniform across
the inlet. The physical domain is 1 × 2 m, and the inlet is 0.1 m wide. The ambient and inlet
temperatures are 300 K and 1700 K, respectively, resulting in substantial density differences and
buoyancy-driven flow. Instantaneous fields of velocity magnitude (i.e., speed) and temperature are
shown in Fig. 2.

All of the computations were performed using the FireFoam solver [63] within OpenFOAM
[64,65]. The simulations were restricted to two dimensions to minimize computational cost,
although the ABC method is equally applicable in three dimensions. For the LES, the compressible
filtered Navier-Stokes equations were solved with second-order accuracy in space and time using
the one-equation eddy viscosity model [66] for closure of subgrid-scale stresses. The LES domain
was discretized using 61 088 cells, with grid stretching in the vertical direction and two levels of
refinement near the jet inlet. For the DNS computations, the compressible Navier-Stokes equations
were solved in conjunction with the total energy equation at a high spatial resolution, again using
a second-order accurate numerical scheme in space and time. The DNS domain was discretized
using 745 472 cells with two levels of grid refinement, giving a grid that was more than an order of
magnitude larger than the LES grid.

For both the LES and DNS, the ideal gas equation was used to relate state variables, and fluid
viscosity and specific heat varied with temperature according to the Sutherland model [67] and
JANAF tables [68], respectively. The LES and DNS numerical schemes were also the same, with
Crank-Nicolson time stepping and Gauss integration with linear interpolation for spatial derivatives.
Pressure-velocity coupling was accomplished using the PIMPLE algorithm, which combines the
pressure-implicit split-operator and the semi-implicit method for pressure-linked equations. An
adaptive time step was used to limit the maximum CFL condition to 0.5 for the LES and 0.2 for
the DNS.
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B. ABC implementation

In this demonstration, ABC is used to estimate the frequency, amplitude, and mean of the
periodic forcing at the inlet of the buoyant jet given either LES or DNS reference data, with model
simulations from LES. The reference data consist of time series of speed or temperature measured
at nine heights above the inlet, ranging from roughly 0.5 mm up to 0.2 m. Time series at each height
were recorded over approximately 14 s after a 1 s initialization period, and PDFs and PSDs were
computed for each time series; these are the ABC summary statistics. The PSDs were calculated
using Thomson’s multitaper estimate [69,70], which provides a robust estimate of the PSD by
reducing energy leakage across frequencies and reducing variance [71].

To ensure statistical convergence of the reference data, ensembles of 100 statistically independent
simulations were created using both LES and DNS. Each simulation had the same periodically
forced inflow at a frequency of 4 Hz, an amplitude of 0.2 m/s, and a mean of 0.5 m/s, but was
initialized using different stochastically generated temperature fields. The final reference data for
both the LES and DNS cases were then created by averaging the PDFs and PSDs for each of the
100 simulations in each ensemble, at each of the nine heights, giving the reference data sets shown,
for example, in Figs. 2(b) and 2(c) for speed and in Figs. 2(e) and 2(f) for temperature. Moreover,
Fig. 2 shows that the LES and DNS reference data are in reasonably good agreement.

Approximately 104 additional LES model cases were generated for the parameter estimation.
Each simulation was executed with a unique set of inlet parameters randomly sampled from prior
distributions for the frequency, amplitude, and mean of the sinusoidal velocity oscillations at the
inlet. The priors were uniform with bounds of 3.6–4.4 Hz for the frequency, 0.0–0.4 m/s for the
amplitude, and 0.0–1.0 m/s for the mean. Uniform priors were chosen to avoid the creation of
anomalous biases in the posterior distributions. The width of the priors for the amplitude and mean
were selected to be ±100% the true parameter values, while the width of the frequency prior is
±10% the true value; it will be seen in the following that even with such a narrow frequency prior,
the posteriors go to zero at the edges of the prior for all heights. Although wider priors would result
in greater recovery of the edges of the posterior distributions, nearly all of the posteriors obtained in
this study display a pronounced maximum within the range of values present in the priors. It should
also be noted that the current priors are centered on the true values and that off-centered priors
could be formed, for example, by using widths that are [−100%,+200%] the true values for the
amplitude and mean and [−10%,+20%] for the frequency. However, once more, the success of the
ABC method will not be affected by the use of such off-centered priors provided that the posteriors
already display a distinct maximum within the bounds of the current centered priors, as is the case
for nearly all of the tests performed here.

The Hellinger distance [50] was used to quantify the agreement between summary statistics from
the reference and model data. Values for ε were chosen such that a fixed percentage of the tested
parameters were retained in the final posterior [37,40]. Parameter rejection was first performed using
the Hellinger distance for the PSD, where ε was selected to reject 80% of all parameters tested.
Subsequently, rejection was performed using the Hellinger distance for the PDF, with ε chosen to
reject 95% of the remaining parameters. With this sequential approach, only 1% of the parameters
tested were included in the final posteriors.

C. Inflow parameter estimation using LES reference data

Figure 3 shows marginal posterior distributions for each inflow parameter using both speed
and temperature reference data from LES at different heights. The posteriors are represented by
Gaussian kernel estimations with bandwidths from Scott’s normal reference rule [72]. As noted
previously, these tests represent a best-case scenario for the ABC method where both the model and
reference data physics are identical. Correspondingly, Figs. 3(a), 3(c), and 3(e) show that the true
parameter values are captured by the ABC posteriors when using speed reference data from LES.
In general, the uncertainty is smallest at locations close to the inlet, although reasonable estimates
of the true parameters are still obtained at higher locations.
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FIG. 3. Top row: Marginal posterior distributions from ABC (visualized using Gaussian kernel estimation)
for the frequency (a, b), amplitude (c, d), and mean (e, f) of the periodically forced turbulent buoyant jet using
speed (a, c, e) and temperature (b, d, f) reference data from LES. Posteriors are calculated using measurements
at heights from 0 to 20 cm (indicated by colors from blue to yellow). True parameter values are shown by
vertical black dashed lines. Horizontal dash-dot lines and gray regions show the priors. Bottom row: Vertical
profiles of 95% Bayesian confidence intervals, CB , for the marginal posterior distributions in all panels. Blue
dash-dot lines and gray shading indicate the 95% Bayesian confidence regions, and the solid red lines show the
mean values of the posteriors. True parameter values are shown by vertical black dashed lines.

For the speed reference data, Figs. 3(g), 3(i), and 3(k) show that CB is narrowest near the inlet
when using LES reference data. This indicates that identifiability of the unknown parameters is
greatest near the inlet when using the speed as reference data, although even higher in the domain
it is still possible to estimate inflow parameters, albeit with less confidence. Figures 3(g), 3(i), and
3(k) also show that mean values from the posteriors are in good agreement with the true values,
particularly near the inlet for the amplitude and mean, and at all heights for the frequency.

The identifiability of unknown parameters using different measured quantities can be assessed
by repeating the ABC procedure using PDFs and PSDs computed from temperature time series.
Figure 3(b) shows that frequency predictions based on temperature reference data are all roughly
centered on the true parameter value, and Fig. 3(h) shows that the posterior means are in good
agreement with the true value. The amplitude and mean posteriors in Figs. 3(d) and 3(f) are centered
around the true parameter values in the region from approximately 0.5 to 1.5 jet widths above the
inlet. Below these heights, however, there is not enough variation in the temperature field to aid in
parameter estimation, given the uniform inflow temperature. Because the PDFs were nearly identical
at such low heights, the ABC procedure was modified such that 15% of the simulated parameters
were accepted based solely on the PSD comparison. Higher than 1.5 jet widths above the inlet,
the connection between the temperature field and the inlet velocity becomes weaker, resulting in
reduced identifiability of velocity boundary conditions using temperature measurements. Despite
these limitations, as shown in Figs. 3(h), 3(j), and 3(l), all parameters are predicted for all heights
within the CB intervals for each posterior.

The amount of information gained about the unknown parameters during the ABC procedure
can be quantified using the Kullback-Leibler (KL) divergence [51] between the prior and posterior
distributions. Higher values of the KL divergence indicate that the posterior is significantly different
than the prior, while values close to zero indicate that the posterior is similar to the prior and that
little information about unknown parameters has been gained during the ABC procedure.

Figure 4 shows vertical profiles of the KL divergence for speed and temperature reference data
from LES, revealing that, in all cases, at least some information about the unknown parameters
is gained at nearly all locations within the domain. For the speed reference data in Fig. 4(a), the
greatest information about the unknown parameters is obtained near the jet inlet, and the posteriors
for the frequency generally provide more information higher in the domain than the posteriors for
the amplitude and mean. By contrast, for the temperature reference data in Fig. 4(b), the greatest

104602-8



PARAMETER ESTIMATION FOR COMPLEX THERMAL- …

FIG. 4. Vertical profiles of Kullback-Leibler (KL) divergences for the marginal posterior distributions in
Fig. 3 obtained using LES reference data. Divergences for the frequency (black solid lines), amplitude (red
dash-dot lines), and mean (blue dashed lines) posteriors are shown for speed (a) and temperature (b) reference
data. Each KL divergence vertical profile is normalized by its respective maximum value.

information is obtained higher in the domain, close to 10 cm (corresponding to one jet width above
the inlet). In general, only the temperature reference data near the jet inlet fail to provide significant
information regarding unknown parameter values.

D. Inflow parameter estimation using DNS reference data

As noted previously, evaluations of the ABC method based on tests where the same model is
used for the reference data and the parameter estimation (as in the LES-LES tests described in the
previous section) are likely to be overly optimistic. To address this issue, tests where the reference
data are generated by DNS and the parameter estimation is performed using LES have also been
carried out.

Figure 5 shows marginal posterior distributions for each inflow parameter using both speed and
temperature reference data from DNS at different heights. As with the LES-LES results shown

FIG. 5. Top row: Marginal posterior distributions from ABC (visualized using Gaussian kernel estimation)
for the frequency (a, b), amplitude (c, d), and mean (e, f) of the periodically forced turbulent buoyant jet using
speed (a, c, e) and temperature (b, d, f) reference data from DNS. Posteriors are calculated using measurements
at heights from 0 to 20 cm (indicated by colors from blue to yellow). True parameter values are shown by
vertical black dashed lines. Horizontal dash-dot lines and gray regions show the priors. Bottom row: Vertical
profiles of 95% Bayesian confidence intervals, CB , for the marginal posterior distributions in all panels. Blue
dash-dot lines and gray shading indicate the 95% Bayesian confidence regions, and the solid red lines show the
mean values of the posteriors. True parameter values are shown by vertical black dashed lines.

104602-9



JASON D. CHRISTOPHER et al.

FIG. 6. Vertical profiles of Kullback-Leibler (KL) divergences for the marginal posterior distributions in
Fig. 3 obtained using DNS reference data. Divergences for the frequency (black solid lines), amplitude (red
dash-dot lines), and mean (blue dashed lines) posteriors are shown for speed (a) and temperature (b) reference
data. Each KL divergence vertical profile is normalized by its respective maximum value.

in Fig. 3, Figs. 5(a), 5(c), and 5(e) show that the true parameter values are captured by the ABC
posteriors when using speed reference data, with generally narrower posteriors close to the inlet.
This is also indicated by the variations of CB in Figs. 5(g), 5(i), and 5(k), where it can be seen
that CB is narrowest near the inlet when using speed reference data. The width of CB consistently
increases with height as the distance from the inlet increases. For each of the unknown parameters,
posterior means are generally close to the true parameter values.

For the temperature reference data from DNS, Figs. 5(b), 5(d), and 5(f) show that the marginal
posterior distributions once again capture the true parameter values with reasonable success. There
is some bias in the posteriors for the DNS reference data (particularly for the estimates of the
amplitude and mean), but the true parameter values are nevertheless contained within reasonably
narrow 95% Bayesian confidence intervals. This is also shown in Figs. 5(h), 5(j), and 5(l), where
CB is widest for the temperature-based DNS reference data near the inlet and narrowest roughly one
jet width above the inlet.

Vertical profiles of the KL divergence for the DNS reference data are shown in Fig. 6. As with the
LES-LES results shown in Fig. 4(a), Fig. 6(a) shows that speed reference data from DNS provides
the greatest information about unknown parameters near the jet inlet, with the frequency posteriors
providing more information higher in the domain than the posteriors for the amplitude and mean.
For the temperature reference data in Fig. 6(b), the greatest information is once again obtained
roughly one jet width above the inlet. In general, the trends shown in Figs. 4 and 6 are similar for
the LES and DNS reference data, respectively.

Taken together, the results for the DNS reference data in Figs. 5 and 6 indicate that the ABC
approach is successful even in non-overly optimistic tests where the reference and model data are
significantly different. Overall, the parameter estimation is generally more accurate using LES, as
opposed to DNS, reference data, but this is unsurprising given the additional model error introduced
when using the DNS reference data. As a result, ABC is able to provide predictions for unknown
parameters using either exact or imperfect model simulations (as compared to the reference data),
and for locations that are indirectly related to the parameters of interest (i.e., using measurements at
locations far from the inlet).

IV. DEMONSTRATION OF ABC USING EXPERIMENTAL REFERENCE DATA

To demonstrate the utility of the ABC approach when the reference data are obtained from
an experiment, the ABC technique is next applied to a steadily forced planar plume for which
experimental data are available from Cetegen et al. [73]. In this experiment, a helium-air mixture
is weakly forced into 300 K ambient air, resulting in a natural oscillatory behavior of the plume.
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FIG. 7. Representative 2D fields of density (kg/m3) from LES at six different times (a–f) for the steadily
forced plume described in Sec. IV. The fields shown begin at an arbitrary time t0 late in the LES and are
separated by a time interval spanning one complete period, tP (tP = 1/f = 0.22 s).

By spanning a range of inflow conditions, Cetegen et al. [73] determined the empirical relation
St = 0.55Ri0.45 between the Strouhal, St = f w/vi , and Richardson, Ri = (1 − ρi/ρ∞)gw/v2

i ,
numbers, where ρi is inlet density, ρ∞ is ambient density, g is gravity, w is inlet width, vi is inlet
velocity, and f is the frequency of the natural oscillation.

In this demonstration, ABC is performed assuming that the oscillation frequency above the jet
inlet, f , has been measured experimentally and that the density of the inflow mixture, ρi/ρ∞, is
unknown (where ρi/ρ∞ = 0.14 for pure helium and 1 for pure air). All other properties of the
inflow, including vi and w, are assumed to be known. This case thus serves as the first experimental

FIG. 8. Relationship between Strouhal number St = f w/vi and inlet Richardson number Ri = (1 −
ρi/ρ∞)gw/v2

i for the steadily forced helium-air plume. Experimental results from Cetegen et al. [73] are
indicated by open circles, and the empirical fit St = 0.55Ri0.45 is shown as a blue dash-dot line. ABC results
are indicated by filled red circles located at the mean Ri of the posterior distribution. Uncertainty bars show the
minimum and maximum values of Ri in the posteriors.
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demonstration that ABC is able to accurately estimate unknown parameters in complex thermal-
fluid flows, while also providing measures of uncertainty in the parameter estimates.

The model simulations were once again performed using LES in FireFoam [63]. The plume
had a width of w = 0.07 m and a steady uniform inflow velocity of vi = 0.067 m/s. The
reference Strouhal number was assumed to be St = 4, which is close to several values measured
experimentally (see Fig. 8). The inlet width and velocity were held fixed for 100 LES runs while
the inlet density ratio varied from 0.14 to 0.6, corresponding to the published range of density ratios
from Ref. [73]. The lowest density ratio corresponds to pure helium while the upper value was found
in Ref. [73] to be the bounding case beyond which the characteristic natural oscillation was not
observed. The Strouhal number was obtained from the peak frequency in a fast Fourier transform of
vertical velocity a distance w above the inlet; this was the summary statistic. The distance function
consisted of an L1 error norm between reference and model peak frequencies, and ε was chosen to
retain 20% of the parameter values from the model simulations. The characteristic oscillation of the
plume is captured by the LES, as shown in Fig. 7.

Figure 8 shows that the estimated value of Ri from ABC for St = 4 agrees closely with the
experimental data. Additional tests for St = 2 and 3 were also performed using vi = 0.1 m/s
and 0.15 m/s, respectively. These different inlet velocities were necessary to span a range of Ri
while constraining the physically allowable values of ρi/ρ∞ to between 0.14 and 0.6. Once again,
Fig. 8 shows that ABC provides estimates of Ri that are in close agreement with experiments. As a
result, ABC correctly identifies the unknown Ri that would provide the desired natural oscillation
frequencies for known inlet velocity and width.

V. CONCLUSIONS

Approximate Bayesian computation (ABC) has been used to estimate unknown physical param-
eters in complex thermal-fluid flows. As a demonstration of the approach, ABC was used to estimate
the frequency, amplitude, and mean of the velocity inflow in a periodically forced turbulent buoyant
jet, as well as the inlet Richardson number for a steadily forced helium-air plume. In the former
case, computational reference data were used to drive the parameter estimation, while in the latter
case experimental reference data were used. For both cases, ABC provided accurate estimates of
unknown physical parameters even when the model simulations did not exactly match the physics
underlying the reference data (e.g., when using LES for the model simulations and reference data
from either DNS or experiments), and when the reference data were only indirectly connected to
the unknown parameters of interest (e.g., when using measurements distant from the jet and plume
inlets, or when using temperature measurements to infer velocity inlet parameters). The primary
impacts of using imperfect model simulations or only indirectly connected measurements were
observed in the width of the Bayesian confidence intervals. As the physics of the model simulations
more closely matched that of the reference data, and as the connection between the measurements
and unknown parameters improved, the confidence intervals were found to become narrower.

Although the present demonstration indicates that ABC provides accurate estimates of parameter
values with relatively little uncertainty, there are many directions for future research. Different
choices for the prior, summary statistic, distance function, and rejection distance can all potentially
lead to slightly different parameter estimates. Further work is required to determine the specific
effects of each of these choices on the accuracy and uncertainty of ABC. Markov chains can also
be used to significantly reduce the cost of ABC by limiting the number of parameter values that
are rejected, even for relatively small rejection distances [28]. Such approaches have become more
popular in recent years but have yet to be applied in the present context. Finally, the true power of
ABC lies in its ability to predict unknown parameters in real-world systems, and future work will
more deeply explore the use of experimental reference data to drive parameter estimates, particularly
taking into account experimental uncertainty in the context of validation efforts for simulations of
complex thermal-fluid problems. An important direction for future research is therefore to apply the
ABC method to problems where the true parameter values are unknown.
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