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Erosion of unconsolidated beds by turbidity currents
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Turbidity currents are gravity flows of fluids with suspended, denser sediment, which
remains aloft due to turbulence generated by the current motion itself. To remain active,
turbidity currents must have an ability to entrain material from their base to counteract
the sedimentation of particles from the current to the base. A number of decades ago,
Bagnold, Engelund, and Fredsøe proposed a physical picture for erosion as a function
of the overall velocity of the turbidity current (bed stress). Recently, it has been argued
that the high-velocity form of this law is critical in determining the overall mechanics of
turbidity currents, particularly their predeliction to erode or deposit sediment in different
locations. This letter reexamines the Bagnold-Engelund-Fredsøe picture, and determines
the corresponding erosion law in a way that is consistent with turbidity current mechanics,
and has a high-velocity plateau that determines the qualitative features of turbidity
current deposition and erosion. I also address the differential role of fluid and grain
stress transmission in determining erosion; provided the grain stress transmission is less
effective than the fluid stress transmission in eroding sediment, there will continue to be a
high-velocity plateau in the erosion rate.
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I. INTRODUCTION

Turbidity currents are one of the predominant mechanisms by which sediment is moved from the
continents to the deep oceans, in the process creating sand accumulations that can, over time, be
transformed to deep water oil and gas reservoirs [1]. The exploitation of these reservoirs has been a
major stimulus to the oil and gas industry, and the world economy, over the last two decades. The
economic importance of these reservoirs has contributed to a revival of interest in the mechanics of
sub-aqueous turbidity currents and other gravity flows; researchers hope that better understanding
of the physics of these flows might lead to an improved ability to determine, from limited data, the
stratigraphic structure and evolution of deep water sedimentary deposits.

The driving force for turbidity currents is gravity; the sediment suspended in these flows increases
their density, so they move downslope amidst the lighter ambient fluid. The energy generated by
this motion is partially converted into turbulence within the flows, which acts to keep the suspended
grains aloft contrary to their natural inclination to settle. The balance between gravitational force and
hydraulic drag, and between settling and the turbulent mixing of the particles, influences the (still
poorly understood, see [2]) mechanics of these currents. An additional feature, and the primary focus
of this work, is the ability of these currents both to erode or entrain an underlying unconsolidated
granular layer, as well as add grains to this layer through settling of the turbidity current sediment.
The balance between these two phenomena will determine the sediment loading in the current.

The modern era in the understanding of these flows properly begins with a work by Parker,
Fukushima, and Pantin, which established, from conservation laws and hydrodynamic arguments,
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a system of alternatively three or four differential equations describing the evolution of turbidity
current height, depth-averaged momentum, sediment load, and (in the four-equation version) depth-
averaged turbulent kinetic energy [3]. Parker et al. were primarily concerned with determining the
conditions under which turbidity currents auto-ignited, i.e. in which their erosion of underlying
sediment compensated or overcompensated for the settling of sediment out of the current onto
the underlying seafloor, leading to stable or growing turbidity currents downslope. Other authors,
including [4], have used these equations, or modified versions thereof, to address a broader range
of issues in the dynamics of turbidity currents, notably attempting to understand the hydrodynamic
and topographical conditions under which turbidity currents are net erosional, net depositional, or
bypass (neither eroding nor depositing).

II. EROSION

An illuminating feature of this latter work is the role of the sediment entrainment or erosion at
the base of the flow in controlling overall flow dynamics. Although the turbulence generated by the
flow itself is responsible for keeping aloft the (relatively heavier) sediment in the flow, net settling
can still cause the sediment to accumulate in the bed at the base of the flow, over time extinguishing
the flow, unless the flow has a compensating ability to erode or entrain unconsolidated material
from that bed. The erosion rate from an unconsolidated sediment is a function of the bed stress
u2

∗ = τ/ρf , where τ is the shear stress (or drag) across the base of the flow, and ρf is the fluid
density. Often u∗ is nondimensionalized by the particle settling velocity vs , given in its Stokesian
form by

vs = 1

18

Rg

νf

d2, (1)

where νf is the kinematic viscosity of the suspending fluid (water), d the particle diameter, g

the gravitational acceleration, and R (≈1.6 for silica) the excess relative density of the sediment
compared to water.

There are various turbidity current erosion laws given in the literature as functions of the
dimensionless tractive stress Z, defined by

Z = √
Rep

u∗
vs

, (2)

with the particle Reynolds number given by

Rep =
√

Rgd3/2

νf

. (3)

One characteristic form is given by Garcia and Parker in [5], in terms of a slightly modified tractive
stress Z′,

Z′ = Re0.6
p

u∗
vs

, (4)

as

ES = vs

A(Z′)5

1 + A
0.3 (Z′)5

, (5)

with A = 1.3 × 10−7. This gives the full or “bare” erosion rate, which can be adjusted by deposition
arising from sedimentation of particles near the surface to give net erosion. Equation (5), with the
tractive stress defined by Eq. (2) or Eq. (4), can be contrasted with the normal description of the
threshold of erosion in fluvial settings (the “Shields curve” [6]), which gives this threshold as a
function of the scaled stress,

τ̂ = u2
∗

Rgd
, (6)
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and a boundary layer Reynolds number

Reb = u∗d
νf

. (7)

Some simple algebra allows us to rewrite Z or Z′ in terms of τ̂ and Reb. Let us first generalize

Zγ ≡ (Rep )γ
u∗
vs

. (8)

It is straightforward to show that

Zγ

18
= τ̂ 1−γ /2

Re1−γ

b

, (9)

so that the claim that the erosion rate is determined by Zγ implies that, in the Shields diagram, the
erosion threshold (however defined) appears on a locus

τ̂ ∝ Re
1−γ

1−γ /2

b . (10)

Since the Shields curve is nonmonotonic, this cannot, in general, be true. Thus, the result of Garcia
and Parker should be viewed as a fit to a relatively small region of the full Shields curve.

It is important to recognize that Eq. (5) was originally advanced as an empirical fit to observed
erosion data. It is a feature both of this Garcia and Parker form [5] and of alternative erosion
relations, such as that in [3], that the erosion rate goes to a constant for large values of the bed stress
u∗. In these works, the data shown do not actually support the appearance of an erosion plateau,
since these data are predominantly available only for tractive stresses well below that at which the
plateau (as specified in the empirical fit) would emerge. The strongest argument for the appearance
of the plateau is instead given by Engelund and Fredsøe in theoretical work from the related field of
fluvial erosion [7], an argument which I repeat below.

Halsey, Kumar, and Perillo [4] have argued that this “plateau form” for the erosion rate is critical
in determining the qualitative features of the turbidity flows, since balancing an erosion rate that is
insensitive to bed stress against a sedimentation rate that depends on sediment load, or concentration
in the flow, will tend to drive flows towards a fixed, “universal” value of sediment concentration. By
contrast, these authors argue that the precise details of the erosion rate, e.g., the power law appearing
in Eq. (5), do not dramatically affect the turbidity current physics; these details will not concern us
here.

Given the importance of this plateau in controlling the dynamics of turbidity currents, it is
disquieting that its existence is supported by theoretical arguments rather than by experimental
observations. In this paper I will reexamine the motivation for ascribing a plateau to the erosion rate,
as in Eq. (5). Although the existence of the plateau is not strongly corroborated by the experiments
to which we have referred, the dependence of the erosion rate upon Z′ (or, approximately, Z) is
supported by this work. This work has nothing to add to the experimental basis for the erosion law,
but focuses instead on clarifying and deepening the theoretical arguments for its existence, which
are more subtle than perhaps expected.

III. BAGNOLD-ENGELUND-FREDSØE PICTURE

The most complete discussion of the theoretical rationale for a plateau-type erosion form is
found in the work by Engelund and Fredsøe [7], although they attribute the physical reasoning to
Bagnold [8,9]. The basic observation of Engelund and Fredsøe is that while the transverse stress
(the bed stress) is constant as one passes through the bedload layer and into the underlying packed
bed, the part of that stress mediated by the fluid versus the part mediated by grain interactions will
in general change as one passes through this layer.
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The kinetics of the fluid-mediated stress, which combines an overall average hydrodynamic stress
with turbulent bursts and fluctuations, differs from that of the grain-mediated stress in a dispersed
or suspended state, which will be communicated between layers parallel to the average flow either
by particle motion between layers or by sharp, intermittent impulses when a mobile grain strikes
another grain. If only the fluid-mediated force is effective in eroding (or mobilizing) the particles,
then if this fluid-mediated force on the mobile layer above the bed exceeds that on the immobile
underlying bed (because a component of the stress has been transmitted to the grains, which are now
transmitting their portion to the underlying immobile bed), then it is possible for the “effective” bed
stress, that part of the stress available to induce erosion of the immobile bed, to be at or below the
Shields threshold, while the overall stress exceeds the Shields threshold.

The claim that the grain-transmitted portion of the stress is not effective in eroding or mobilizing
immobile bed particles is perhaps surprising. In subaerial situations, it is well known that mobilized
grains can dislodge multiple additional grains when striking the surface of a sand dune [8]. Of
course, in the subaqueous case the relative excess density of sand particles is R ≈ 1.6, while in
the subaerial case it is R ≈ 750, so the impact dynamics will clearly be quite different in the two
cases, due to differences in the roles of inertial vs viscous forces. While it is thus conceivable that
the Bagnold-Engelund-Fredsøe approach is correct, the physics involved is rather complex, and its
elucidation by experiment will be more convincing than theoretical explanations. I will initially
assume that only the fluid-transmitted shear stress is effective in mobilizing bed particles; I will
return to the more general case below. Note that I am not claiming that only the time-averaged
fluid-transmitted stress is effective in mobilizing the particles; it is well known that under certain
circumstances turbulent bursts or eddies can play a significant role in erosion, which is why the
classical Shields curve depends on Reynolds number as well as bed stress [6]. It remains an open
question why the effect of grain-grain collisions (which will be controlled by elastic time scales)
should be less important than the effect of fluctuations in fluid-mediated forces.

The overall typology of granular flows beneath a driven suspension flow was most recently
demonstrated in work of Allen and Kudrolli [10]. An underlying jammed bed, at or near a random
close-packed volume fraction φ ≈ 0.6, is overlain by a creeping flow region [11] with 0.45 < φ <

0.6 (the transition values should be viewed as approximate), which is in turn overlain by less dense
bedload and ultimately suspended flows, which continuously transition to the sediment suspension
in the turbulent fluid well above the bed. Some authors [12] have argued that at intermediate values
of volume fraction the “dense granular flow” rheology proposed by Pouliquen and co-workers [13]
may pertain.

Throughout this entire region, in steady state, the shear stress τ will obey

∂zτ = ρ(z)g sin θ, (11)

where ρ(z) is the full density as a function of the coordinate z perpendicular to the bed and θ is the
overall bed inclination to the vertical. Thus the shear stress varies slowly enough with z that we can
regard it as constant through the boundary between the suspended and the creeping flow granular
states. In the solid and creeping flow layers, the shear stress will be predominantly transmitted by
grain-grain collisions and interactions; we call this the “condensed” region [10]. Towards the top of
the this region, the shear stress is communicated by both the fluid (through its viscosity and strain
rate gradient) and by the grain interactions, while, in the suspended region, the shear stress will be
mostly fluid-transmitted. At the boundary between the suspended and condensed granular regions,
we follow Bagnold-Engelund-Fredsøe and write

τ = τF + τG, (12)

decomposing the full shear stress into its fluid-transmitted and grain-transmitted components. The
overall situation is illustrated in Fig. 1.

The equilibrium in particle exchange between the condensed and suspended flows will be
determined by the kinetics at the boundary between these flows. Particles within the condensed
layer will experience lift from the hydrodynamic forces communicating (at least part of) the bed
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FIG. 1. The granular base underneath a turbidity current is a jammed solid (below A), which transitions
to a creeping flow (between A and B) and ultimately a bedload and suspended load flow (above B). The inset
displays the fluid-mediated (τF ) and grain-mediated (τG) components of the overall stress. The stress across A
is primarily transmitted by granular interactions, while that across B is transmitted both by fluid forces and by
granular collisions. Note that the fluid component of the stress at B (τB ) is less than the total stress.

stress, and may be advected into the suspended region; while particles within that region will settle
back onto the condensed layer under the influence of gravity.

Since the fluid turbulence will not penetrate deeply into the condensed layer, at the base of the
suspended layer the sedimentation of the particles into the dense granular layer can be approximated
by Stokesian settling, as hypothesized by Parker et al. [3], or, in a different context, in [14]. If the
concentration at the base of the suspended layer is φ0, the rate at which particles settle into the dense
granular layer will be

D = vs ν̃φ0, (13)

with the settling velocity vs given by Eq. (1), and the factor ν̃ accounting for the change in the one-
particle settling rate due to the finite concentration of particles near the bed (“hindered settling”). It
has been shown [10] that the Krieger-Dougherty form [15] for the dependence of the viscosity on
concentration seems to be adequate near a sheared granular bed, so we use this form to write

ν̃ =
(

1 − φ0

φCP

)1.5

, (14)

where φCP = 0.6 is the close-packing concentration at which the granular viscosity diverges.
For the erosion or entrainment rate of particles from the dense granular layer into the suspended

layer, we rely on a phenomenological approach. Let us presume that the dimensionless tractive
stress Z (which is approximately equal to Z′) controls the threshold of particle entrainment in the
low Reynolds number limit that pertains to the hydraulics of typical turbidity currents.

Since we are assuming that only the fluid-mediated stress contributes to entrainment, we
introduce the fluid-mediated stress parameter ZF , defined by

ZF (τF ) = √
Rep

√
τF /ρf

vs

. (15)

For values of ZF beyond the threshold of entrainment, we expect the entrainment rate to increase
rapidly, given the activated nature of the process. It is simplest to choose the classic activation form
for the entrainment rate E as a function of ZF ,

E = vs exp(ZF − Z0), (16)
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where we can choose the set point Z0 to fix the prefactor, arbitrarily, to equal vs . Based on [3]
and [5] we choose Z0 = 15 for illustrative purposes in this work.

Note that we could as easily have chosen an activated process in which the argument of the
exponential was the stress τF rather than ZF , which would have the advantage of being more easily
generalized to cases beyond that in which ZF encodes the correct Reynolds number dependence of
erosion. Qualitatively, the results of such an approach would be similar, so we continue to use ZF

for simplicity and for ease of comparison to the turbidity current literature.
To close this system of equations, it is sufficient to identify the dependence of τG on the

concentration φ0 and on u∗ (or τ ). This is a classic problem in the kinetic theory of granular systems.
While there are some modern calculations of the shear stress corresponding to a granular flow,
notably [16] and [17], unfortunately such calculations are performed in a vacuum, in which particle
inelasticity is the only dissipation mechanism. Since we are in search of semiquantitative results
only, it is sufficient to use the original formula determined by [9], as adapted by [7],

τG = 0.027ρf (1 + R)λ2u2
∗, (17)

with the “linear concentration” λ(φ0) set by

φ0 = φCP

(1 + λ−1)3
, (18)

where φCP, as above, is the close packed concentration. We can now solve for τF , using τ = ρf u2
∗

and Eq. (12):

τF (τ, φ0) = τ [1 − 0.027(1 + R)λ2] (19)

and, hence,

ZF = Z
√

1 − 0.027(1 + R)λ2. (20)

Our purpose now is to determine the erosion rate as a function of Z. The net erosion is

E − D = vs[exp(ZF − Z0) − ν̃(φ0)φ0]. (21)

Setting this equal to zero, we obtain

Z = Z0 + ln ν̃ + ln φ0√
1 − 0.027(1 + R)λ2

, (22)

which is an implicit equation for the volume fraction φ0 as a function of tractive stress Z. Since in
equilibrium E = D = vsν(φ0)φ0, this is equivalent to a relation between E and Z. Note, however,
that it is a feature of the Krieger-Dougherty form Eq. (14) that the deposition flux is actually
maximum for φ0 = 0.24, and declines beyond this value.

The erosion rate E is plotted against the tractive stress Z in Fig. 2 for the case R = 1.6, φCP = 0.6,
and Z0 = 15. Note that, at higher bed stress, the bare erosion rate does saturate.

IV. SEDIMENT EXCHANGE WITH BULK CURRENT

Of course, φ0 is not necessarily the same as the depth-averaged concentration of the turbidity
current, φ̄. It has been found that in steady state, approximating φ0 = r0φ̄ with r0 = 1.6, a constant,
appears to be adequate [18]. The question remains of whether it is the equilibration at the top of the
condensed granular layer or rather the equilibration of φ0 with φ̄ (driven by the turbulent mixing
of the overall turbidity current) that will be the rate limiting step in the dynamics. Suppose that the
turbidity current has an overall height h, while the region near the surface in which the concentration
is φ0 is of height h′. Then writing the advective derivative (applied to an arbitrary function ψ)
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FIG. 2. The “bare” erosion rate E/vs , from Eq. (16), vs the tractive stress Z, as determined from Eq. (22),
for φ0 < 0.25. As hypothesized by Garcia and Parker [5], a clear saturation is evident at larger values of tractive
stress.

Dtψ = ∂tψ + ∇(	uψ ), we see that we can write the phenomenological equations

Dt (hφ̄) = ϒ(φ0 − r0φ̄), (23)

Dt (h
′φ0) = −ϒ(φ0 − r0φ̄) + (E − D), (24)

with ϒ a constant determined by the details of the turbulent mixing; we expect that if the depth-
averaged velocity in the bulk flow is u, then ϒ ∼ u.

V. EFFECT OF GRAIN-TRANSMITTED STRESS

Finally, we return to the question of the role of the grain-transmitted shear stress τG. A more
general approach than the one used thus far would acknowledge that the grain stress can play a role
in moving particles from the dense granular to the suspended layer, but with an effectiveness that is
perhaps different from that of the fluid stress τF . If we suppose that the relative effectiveness of the
grain stress is reduced by a factor α, then we can write, defining Zα = √

Rep

√
τF + ατG/ρf /vs ,

E = vs exp[Zα − Z0)]. (25)

Repeating the derivation above, and noticing that τF + ατG = τ − (1 − α)τG, we find that

τF + ατG = ρf (u∗)2[1 − 0.027(1 − α)Rλ2]. (26)

Thus the overall effect of setting α �= 0 is identical to one obtainable simply by changing the
density of the particles. The qualitative form of the erosion rate will be the same, although the
limiting value of the erosion at high Z will be increased with respect to the α = 0 result. Obviously
this will break down for larger values of α.

VI. DISCUSSION

I have demonstrated that, provided that the erosion or entrainment phenomenon is dominated
by the fluid-mediated stress, and not the full stress, then the standard Shields curve picture of
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particle erosion is consistent with the appearance of a plateau in erosion rate beyond a threshold
in bed stress. Although I took advantage of an equilibrium condition to compute the “bare”
erosion rate evincing this plateau, my ambition is to apply this computed bare erosion rate
in nonequilbrium circumstances as well, thereby connecting erosion-deposition dynamics to the
formation or destruction of sedimentary bodies by turbidity current processes. Studies of turbidity
current dynamics have now reached a stage where the existence (or nonexistence) of such a plateau
is certainly relevant in connecting modeling results [4] to observations [19]. Although my arguments
were general, and physically motivated, the example (mentioned above) of the role of granular
collisions in subaerial flows suggests that we should be cautious in assuming that qualitatively new
phenomena will not arise from a proper treatment of granular collisions, which is not only beyond
the scope of this study, but is also a potentially fruitful area for experimental research.
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