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A key interest in geomorphology is to predict how the shear stress τ exerted by a
turbulent flow of air or liquid onto an erodible sediment bed affects the transport load
Mg̃ (i.e., the submerged weight of transported nonsuspended sediment per unit area) and
its average velocity when exceeding the sediment transport threshold τt . Most transport
rate predictions in the literature are based on the scaling Mg̃ ∝ τ − τt , the physical origin
of which, however, has remained controversial. Here we test the universality and study
the origin of this scaling law using particle-scale simulations of nonsuspended sediment
transport driven by a large range of Newtonian fluids. We find that the scaling coefficient
is a universal approximate constant and can be understood as an inverse granular friction
coefficient (i.e., the ratio between granular shear stress and normal-bed pressure) evaluated
at the base of the transport layer (i.e., the effective elevation of energetic particle-bed re-
bounds). Usually, the granular flow at this base is gaslike and rapidly turns into the solidlike
granular bed underneath: a liquidlike regime does not necessarily exist, which is accentu-
ated by a nonlocal granular flow rheology in both the transport layer and bed. Hence, this
transition fundamentally differs from the solid-liquid transition (i.e., yielding) in dense
granular flows even though both transitions are described by a friction law. Combining this
result with recent insights into the nature of τt , we conclude that the transport load scaling
is a signature of a steady rebound state and unrelated to entrainment of bed sediment.

DOI: 10.1103/PhysRevFluids.3.104302

I. INTRODUCTION

The transport of sediment mediated by the turbulent shearing flow of a Newtonian fluid over an
erodible granular bed is responsible for the evolution of fluid-sheared surfaces composed of loose
sediment, such as river and ocean beds, and wind-blown sand surfaces on Earth and other planets,
provided that the sediment is not kept suspended by the fluid turbulence [1–14]. Nonsuspended
sediment transport thus constitutes one of the most important geomorphological processes in which
granular particles collectively move like a continuum flow, and predicting the associated sediment
transport rate Q (i.e., the total particle momentum in the flow direction per unit bed area) and flow
threshold τt (i.e., the value of the fluid shear stress τ below which sediment transport ceases) are
considered central problems in Earth and planetary geomorphology [1–14]. Here we provide the
theoretical base necessary to understand the scaling of Q and τt and, by doing so, show that and
why nonsuspended sediment transport constitutes a class of granular flows with unique properties,
such as a nonlocal granular flow rheology even relatively far from the flow threshold.
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FIG. 1. Visualization of Bagnold interface properties. Vertical profiles of (a) the fraction Q>z/Q of
sediment transport occurring above elevation z, (b) the friction coefficient μ, and (c) the ratio −Pzx/τ between
the particle shear stress −Pzx and fluid shear stress τ . The solid lines correspond to data obtained from direct
sediment transport simulations (see Sec. II) for two representative cases: turbulent bedload (turquoise) and
saltation transport (brown). The black, dashed lines mark the Bagnold interface z = zr .

A. The scaling of the transport rate of nonsuspended sediment

Numerous experimental and theoretical studies (e.g., Refs. [15–67]) have measured or derived
analytical expressions for the transport rate Q as a function of particle and environmental parame-
ters, such as the particle (fluid) density ρp (ρf ), kinematic fluid viscosity ν, characteristic particle
diameter d, gravitational constant g, and τ and τt . Most of the theoretical derivations are based on,
or can be reformulated in the spirit of, Bagnold’s [18–20] pioneering ideas. Defining a Cartesian
coordinate system x = (x, y, z), where x is in the flow direction, z in the direction normal to the
bed oriented upwards, and y in the lateral direction, Bagnold assumed that there is a well-defined
interface z = zr between granular bed (z < zr ) and transport layer (z > zr ), which we henceforth
call the “Bagnold interface,” with the following properties (Fig. 1):

(1) The transport rate Qr above zr well approximates the total transport rate Q (i.e., zr cannot
be too far away from the actual granular bed). Hence, one can separate Q into the mass M =
ρp

∫ ∞
zr

φ dz of particles located above zr per unit bed area, where φ is the particle volume fraction
(i.e., the fraction of space covered by particles), and the average horizontal velocity vx with which
particles located above zr move: vx≡Qr/M � Q/M .

(2) The ratio μ ≡ −Pzx/Pzz between the particle shear stress −Pzx and normal-bed pressure
Pzz, where Pij is the particle stress tensor, at zr does not significantly depend on the fluid shear
stress τ : μb ≡ μ(zr ) �= f (τ ).

(3) The ratio −Pzx (zr )/τ between particle and fluid shear stress increases from nearly zero
at low transport stages (τ/τt − 1 � 1) to nearly unity at large transport stages (τ/τt − 1 � 1).
Two simple expressions that obey this constraint are −Pzx (zr ) = τ − τt and −Pzx (zr ) = √

τ (
√

τ −√
τt ). Note that the former expression is usually attributed to Owen [55] (“Owen’s second

hypothesis” [68]) in the aeolian transport literature [10–12] even though Bagnold [18] was its
originator and also applied it to aeolian transport.

Combining these three properties and using the vertical momentum balance P ′
zz � −ρpφg̃ of

steady, homogeneous sediment transport [69], where the prime denotes the derivative d/dz and
g̃ = (1 − ρf /ρp )g the buoyancy-reduced value of g, then yields

Q � μ−1
b g̃−1(τ − τt )vx if −Pzx (zr ) = τ − τt ,

Q � μ−1
b g̃−1√τ (

√
τ − √

τt )vx if −Pzx (zr ) = √
τ (

√
τ − √

τt ).
(1)

Indeed, the functional behaviors in Eq. (1) resemble the vast majority of theoretical and experimental
threshold shear stress-based expressions for the transport load Mg̃ � Qg̃/vx and transport rate Q in
the literature, which differ only in their prediction of vx . For example, experiments of nonsuspended
sediment transport driven by turbulent streams of liquid (turbulent “bedload”) suggest that vx is
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linear in
√

τ/ρf [29–32], whereas experiments of nonsuspended sediment transport driven by
turbulent streams of air (turbulent “saltation”) suggest that vx is constant with τ [48–50]. The
capability of Eq. (1) to reproduce experimental data is indirect evidence that the Bagnold interface
exists for these conditions. However, there are a number of unsolved problems, even inconsistencies,
regarding the generality and physical origin of the Bagnold interface that currently prevent us from
understanding and predicting the scaling laws of nonsuspended sediment transport for arbitrary
conditions and from integrating nonsuspended sediment transport within the framework of granular
flow rheology.

B. Open questions

1. Existence of the Bagnold interface

Natural granular beds are locally very heterogeneous and undergo continuous rearrangements
during sediment transport, which renders the definition of a bed-transport-layer interface difficult.
For steady, homogeneous transport conditions, four different definitions have been proposed in the
literature: the elevation at which the friction coefficient μ exhibits a certain constant value [70],
the elevation at which the particle volume fraction φ exhibits a certain constant portion of the
bed packing fraction φb [51], the elevation at which the particle shear rate γ̇ exhibits a certain
constant portion of its maximal value [32], and the elevation at which the production rate Pzzγ̇ of
cross-correlation fluctuation energy is maximal [71,72]. However, whether any of these interfaces
is the Bagnold interface and whether the Bagnold interface even exists for nonsuspended sediment
transport in arbitrary environments remain unclear.

In this study, we provide answers to the following questions:

Does the Bagnold interface exist in general settings?

If so, is there a general definition of the Bagnold interface?

2. Physical origin of friction law

Property 2 of the Bagnold interface represents a macroscopic, dynamic friction law, analogous
to Coulomb friction describing the sliding of an object down an inclined plane, where the constant
dynamic bed friction coefficient μb is the analog to the ratio between the horizontal and normal
force acting on the sliding object. In the context of dense (φ � 0.4) granular flows and suspensions,
it is well established that a constant dynamic friction coefficient (the yield stress ratio) characterizes
the transition between solidlike and liquidlike flow behavior [73–92]. Here liquidlike behavior refers
to dense flows that obey a local rheology (i.e., μ depends only on a single local quantity, such as
φ), while solidlike behavior refers to both quasistatic and creeping flows (not to be confused with
Bagnold’s term “surface creep” [1]). Quasistatic flows are associated with very small, reversible
deformations of dense packed granular systems, while creeping flows are associated with an
exponential relaxation of the particle shear rate γ̇ between quasistatic and liquidlike flows [90–96]
and characterized by a nonlocal granular flow rheology [90–92]. Based on the fact that a friction law
characterizes the solid-liquid transition, it has been very common to argue that the Bagnold interface
separates a solidlike granular bed from a liquidlike transport layer on its top and that μb is the
yield stress ratio [21–28], which is in the spirit of Bagnold’s original reasoning [18–20]. However,
this interpretation is inconsistent with Property 3 of the Bagnold interface, which predicts that the
particle shear stress −Pzx (zr ), and thus the particle volume fraction φ(zr ) [69], becomes very small
when the fluid shear stress approaches the flow threshold (τ → τt ). It is further inconsistent with
the fact that the Bagnold interface is also found in highly simplified numerical sediment transport
simulations that do not resolve particle interactions [25,62].

An alternative interpretation of the friction law came from studies on saltation transport [60–
65,97]. They suggested that μb is an effective restitution coefficient characterizing an approximately
constant ratio between the average horizontal momentum loss and vertical momentum gain of
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particles rebounding at the Bagnold interface. However, this interpretation has never been tested
against experiments or numerical particle-scale simulations of sediment transport, and it is unclear
how it can be generalized to the bedload transport regime, in which transported particles experience
long-lasting contacts with the granular bed and each other [98].

In this study, we provide answers to the following questions:

What is the physical origin of the friction law at the Bagnold interface?

Is this origin in some way associated with the rheology of dense granular flows and suspensions?

3. Universality of friction law

For the purpose of understanding the scaling laws of nonsuspended sediment transport in
arbitrary environments, it is crucial to know how much the dynamic bed friction coefficient μb

at the Bagnold interface varies with environmental parameters other than τ . Currently, the literature
suggests that the friction coefficient μ at elevations near the bed surface, and thus near the Bagnold
interface, strongly depends on the fluid driving transport (reported values range from 0.2 in water
[36] to 1.0 in air [62]), which if true would imply that the friction law is not universal. However,
particle stresses are notoriously difficult to measure in erodible granular beds [88], which is
why either measurements of μ have been limited to systems that only crudely represent natural
nonsuspended sediment transport, such as the motion of externally fed particles along rigid beds
[36,99,100], or μ has been estimated as τ/Pzz [101], which makes sense only for intense transport
conditions due to Property 3.

In this study we provide an answer to the following question: How much does the dynamic
friction coefficient μb at the Bagnold interface vary with environmental parameters?

C. Organization of this paper

The method that we use to answer the open questions outlined above, direct sediment transport
simulations with the model of Ref. [51], is briefly introduced in Sec. II. Section III then puts forward
our definition of the bed-transport-layer interface as the effective elevation at which the most
energetic transported particles rebound when colliding with bed surface particles and shows that
this interface is the Bagnold interface. It also shows that the friction law at the Bagnold interface is,
indeed, universal. Section IV links this finding, for the vast majority of sediment transport regimes,
to a steady transport state in which transported particles continuously rebound at the bed surface
and shows that alternative explanations associated with the rheology of dense granular flows and
suspensions in general fail due to the absence of a liquidlike flow regime. Finally, Sec. V summarizes
the main conclusions that can be drawn from our results and discusses our results in the context of
sediment transport modeling.

II. NUMERICAL SIMULATIONS

In this section, we describe the numerical model (Sec. II A), the simulated sediment transport
conditions (Sec. II B), and how we use the simulation data to compute relevant physical quantities
(Sec. II C).

A. Numerical model description

The numerical model of sediment transport in a Newtonian fluid of Ref. [51] belongs to a
new generation of sophisticated grain-scale models of sediment transport [11,51,69–72,85,98,102–
125] and has been shown to reproduce many observations concerning viscous and turbulent
nonsuspended sediment transport in air and water [11,51,71,72,105] and bedform formation [106].
It couples a discrete element method for the particle motion with a continuum Reynolds-averaged
description of hydrodynamics, which means that it neglects turbulent fluctuations around the mean
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turbulent flow. It simulates the translational and rotational dynamics of ≈ 15 000 spheres, including
>10 layers of bed particles (more than sufficient to completely dissipate the energy of particles
impacting the bed surface), with diameters dp evenly distributed within two sizes (0.8d and 1.2d) in
a quasi-2D, vertically infinite domain of length 1181d. Periodic boundary conditions are imposed
along the flow direction, while the bottommost layer of particles is glued to a bottom wall. The
particle contact model considers normal repulsion (restitution coefficient e), energy dissipation,
and tangential friction, where the magnitude of the tangential friction force relative to the normal
contact force is limited through a Coulomb friction criterion (contact friction coefficient μc = 0.5).
The Reynolds-averaged Navier-Stokes equations are applied to an inner turbulent boundary layer of
infinite size, which means that the flow depth of fluvial flows is assumed to be much larger than the
thickness of the bedload transport layer. These equations are combined with an improved mixing
length approximation that ensures a smooth hydrodynamic transition from high to low particle
concentration at the bed surface and quantitatively reproduces the law of the wall flow velocity
profile in the absence of transport. The model considers the gravity, buoyancy, added mass, and
fluid drag force acting on particles. However, cohesive and higher-order fluid forces, such as the lift
force and hindrance effect on the drag force, are neglected, while lubrication forces are considered
indirectly through varying e (Sec. II B). We refer the reader to the original publication [51] for
further details (note that we recently corrected slight inaccuracies in the original model [71]).

B. Simulated sediment transport conditions

Using the numerical model, we simulate steady, homogeneous sediment transport for a
particle-fluid-density ratio s ≡ ρp/ρf within the range s ∈ [1.1, 2000], a Galileo number Ga ≡√

(s − 1)gd3/ν within the range Ga ∈ [0.1, 100], and a normal restitution coefficient of dry binary
collisions of e = 0.9. For small density ratio (s � 2.65), we also carry out simulations with e = 0.01
because e can become very small for small Stokes numbers due to lubrication forces [126–128].
For each set of s, Ga, and e, we vary the dimensionless fluid shear stress (“Shields number”)
� = τ/[(ρp − ρf )gd] in regular intervals above its threshold value �t = τt/[(ρp − ρf )gd], which
we obtain from extrapolation to vanishing transport [72]. The simulated conditions cover four
major, and very distinct, natural transport regimes, which depend on the transport layer thickness
and the thickness of the viscous sublayer of the turbulent boundary layer [72]: viscous bedload
transport, such as the transport of sand by oil; turbulent bedload transport, such as the transport of
gravel by water; viscous saltation transport, such as the transport of sand by wind on Mars; and
turbulent saltation transport, such as the transport of sand by wind on Earth. They also cover five
orders of magnitude of the “impact number” Im ≡ √

s + 0.5Ga� √
sGa, which characterizes the

mode of entrainment of bed sediment under threshold conditions [71]: Im � 20 when entrainment
by particle-bed impacts dominates entrainment by the mean turbulent flow, Im � 5 when direct
entrainment by the mean turbulent flow dominates, and transitional behavior when 5 � Im � 20.

C. Computation of local averages and particle stresses

We use the simulation data to compute local averages of particle properties and the particle stress
tensor, which is explained in the following.

1. Local, mass-weighted time average and particle volume fraction

We compute the local, mass-weighted time average 〈A〉 of a particle quantity A through [69]

〈A〉 = 1

�φ

∑
n

V n
p Anδ(z − zn)

T

, (2)

φ = 1

�

∑
n

V n
p δ(z − zn)

T

, (3)
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where � = 1181d2 is the simulation area, φ is the local particle volume fraction, zn (V n
p = πdn3

p /6)

is the elevation (volume) of particle n, δ the δ distribution, and ·T = 1
T

∫ T

0 · dt denotes the time
average over a sufficiently long time T . The δ kernels have been coarse grained through spatial
averaging over a discretization box of size 1181d × d × �z, where �z varies between 0.05d in
dense and dilute flow regions (φ � 0.1) and larger values in rarefied regions. Henceforth, the δ

symbol should thus be interpreted as the associated coarse-graining function.

2. Particle stress tensor

The particle stress tensor Pij is composed of a kinetic contribution due to the transport of
momentum between contacts (superscript t) and a contact contribution (superscript c) and computed
through [69]

Pij = P t
ij + P c

ij , (4a)

P t
ij = ρpφ〈cicj 〉, (4b)

P c
ij = 1

2�

∑
mn

Fmn
j

(
xm

i − xn
i

)
K (z, zm, zn)

T

, (4c)

where K = ∫ 1
0 δ{z − [(zm − zn)s̃ + zn]} ds̃, c = v − 〈v〉 is the fluctuation velocity, and Fmn the

contact force applied by particle n on particle m (Fmm = 0). We confirmed that these definitions
are consistent with the steady momentum balance P ′

zi = ρpφ〈ai〉 [69], where a is the particle
acceleration due to noncontact forces.

III. EXISTENCE OF THE BAGNOLD INTERFACE IN ARBITRARY ENVIRONMENTS

In Sec. III A, we first put forward our definition of the bed-transport-layer interface. In Sec. III B,
we then show with data from our direct transport simulations that this definition, in contrast
to common alternative definitions, obeys the properties of the Bagnold interface (except for a
slight restriction regarding Property 3) with a universally approximately constant bed friction
coefficient μb.

A. Definition of the bed-transport-layer interface

In order to motivate a definition of the bed-transport-layer interface that results in the Bagnold
interface, we exploit the fact that numerical studies that represent the granular bed surface by
a rigid bottom wall found that this wall obeys Properties 1–3 of the Bagnold interface [36,62].
This finding suggests that an appropriate definition should have characteristics that mimic those of
particle rebounds at rigid boundaries. One such characteristic is the production of particle velocity
fluctuations. For example, gravity-driven granular flows down an inclined, rigid base exhibit a
maximum of the granular temperature 〈c2〉 near this base [129]. The probable reason is that such
rigid boundaries induce strong correlations between the velocities of descending particles before
rebound and ascending particles after rebound.

In steady sediment transport, the mass balance dictates 〈vz〉 = 0 [69], which can be achieved
only if rebounds of transported particles at the granular bed partially convert horizontal momentum
of descending particles into vertical momentum of ascending particles (i.e., negative correlation).
Similar to gravity-driven granular flows, this constraint implies that particle-bed rebounds are a
strong source of the negative cross-correlation fluctuation energy density −ρpφ〈czcx〉.

The balances of −ρpφ〈czcx〉 and of the actual fluctuation energy density ρpφ〈c2〉 can be derived
rigorously from Newton’s axioms. For steady sediment transport (∂/∂x = ∂/∂y = ∂/∂t = 0), they
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FIG. 2. Exemplary vertical profiles of quantities associated with the (cross-correlation) fluctuation energy
balance. (a, b) Vertical profiles relative to the rebound location zr of Pzzγ̇ /(ρpg̃

√
g̃d ). (c, d) Vertical profiles

of −Pzxγ̇ /�coll
ii . Symbols correspond to viscous bedload transport [s = 2.65, Ga = 0.1, �/�t = (1.9, 6.2)],

turbulent bedload transport [s = 2.65, Ga = 20, �/�t = (2.0, 7.2)], and turbulent saltation transport [s =
2000, Ga = 5, �/�t = (2.3, 49)], where the data with smaller values of the rescaled Shields number �/�t are
shown in (a) and (c) and those with larger values of �/�t in (b) and (d). For the bedload transport conditions,
the restitution coefficient has been varied to mimic the minimal (e = 0.9) and nearly maximal (e = 0.01)
possible effect of lubrication forces.

read [69] (Einsteinian summation)

−q ′
z(xz) = 1

2Pzzγ̇ + �
drag
(xz) + �coll

(xz), (5a)

q ′
zii = −Pzxγ̇ − �

drag
ii − �coll

ii , (5b)

respectively, where the parentheses denote the symmetrization in the indices [A(ij ) = 1
2 (Aij +

Aji )]. Furthermore, qijk = ρpφ

2 〈cicj ck〉 + 1
2�

∑
mn Fmn

j ck (xm
i − xn

i )K (z, zm, zn)
T

is the flux tensor

of fluctuation energy, γ̇ = 〈vx〉′ the particle shear rate, �
drag
ij = −ρpφ〈aicj 〉 the drag dissipation

rate tensor, and �coll
ij = − 1

2�

∑
mn Fmn

i (vm
j − vn

j )δ(z − zm)
T

the collisional dissipation rate tensor.

In Eq. (5b), −Pzxγ̇ corresponds to the production rate and �
drag
ii and �coll

ii to the dissipation rate of
ρpφ〈c2〉 by fluid drag and collisions, respectively. In Eq. (5a), 1

2Pzzγ̇ corresponds to the production

rate and −�
drag
(xz) and −�coll

(xz) to the dissipation rate of −ρpφ〈czcx〉 by fluid drag and collisions,
respectively. Hence, if we identify the bed-transport-layer interface as the average elevation of
energetic particle-bed rebounds and use that such rebounds are a strong source of −ρpφ〈czcx〉, it
makes sense to define this interface through a maximum of the local production rate of −ρpφ〈czcx〉:

max(Pzzγ̇ ) = [Pzzγ̇ ](zr ), (6)

which is exactly the definition that we applied in two recent studies [71,72].
Figures 2(a) and 2(b) show exemplary vertical profiles relative to zr of Pzzγ̇ for (a) weak and

(b) intense viscous and turbulent bedload transport and turbulent saltation transport, where the
bedload cases have been simulated using two different restitution coefficients to mimic the minimal
(e = 0.9) and nearly maximal (e = 0.01) effect that lubrication forces can possibly have. It can
be seen that the value of e does not significantly affect these profiles. As we will see later, the
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FIG. 3. Test of Bagnold interface properties. Test of (a) Property 1, (b) Property 2, and (c) Property 3 of the
Bagnold interface with data from our direct transport simulations for various combinations of the particle-fluid-
density ratio s, Galileo number Ga, Shields number �, and thus impact number

√
sGa. For conditions with

s � 2.65 (corresponding to bedload transport), the restitution coefficient has been varied to mimic the minimal
(e = 0.9) and nearly maximal (e = 0.01) possible effect of lubrication forces. The vertical bars indicate the
range of values the quantities cover with varying � above about 2�t . This lower limit is imposed to separate
the random variability due to bad statistics when � is close to �t [e.g., see Fig. 4(c)] from the actual variability.
Indications that the Bagnold interface properties are obeyed: (a) the sediment transport rate ratio Qr/Q is near
unity, (b) the bed friction coefficient μb is approximately constant with � (relatively small vertical bars), and
(c) the quantity −(τ − τt )/Pzx (zr ) is near unity.

influence of e on bedload transport properties is very small in general, consistent with previous
studies [70–72,122,130].

The interface z = zr defined by Eq. (6) shares some similarities with the region in which the
production rate of fluctuation energy is nearly balanced by the collisional energy dissipation rate:
−Pzxγ̇ � �coll

ii . For turbulent bedload transport, it has been speculated that this region is a distinct
granular layer (the “dense algebraic layer”) with a thickness of several particle diameters d and that
the bottom of this layer corresponds to the bed-transport-layer interface [39,40]. However, Figs. 2(c)
and 2(d) show for the same cases as before that the thickness of the region in which −Pzxγ̇ /�coll

ii � 1
is usually very small (�d), especially for bedload transport, regardless of whether transport is weak
or intense. In order words, the dense algebraic layer usually does not exist. One of the reasons
may be the fact that drag dissipation (�drag

ii ), which has been neglected in Refs. [39,40], actually
dominates collisional dissipation (�coll

ii ) in bedload transport [Fig. 1(b) in Ref. [69], which is based
on the same numerical model].

B. Test of interface definition against data from our direct transport simulations

Figures 3 and 4 show that the interface z = zr defined by Eq. (6) obeys Properties 1–3 of the
Bagnold interface for most simulated conditions. In fact, the numerical data support that most
transport (80%–100%) occurs above zr [Figs. 3(a) and 4(a)], that the bed friction coefficient μb

does not change much with τ [Figs. 3(b) and 4(b)], and that the expression −Pzx (zr ) = τ − τt

is approximately obeyed for conditions with
√

sGa � 10 [Figs. 3(c) and 4(c)]. Furthermore, μb

varies overall between about 0.5 and 0.9 with environmental parameters different from τ [Fig. 3(b)],
which is surprisingly small given the large variability of the simulated conditions. That is, μb can be
considered an approximate universal constant for the purpose of sediment transport modeling, which
is, indeed, what we did in a recent study [72]. In contrast, interfaces defined through a constant
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FIG. 4. Exemplary trends of quantities associated with Bagnold interface properties. (a) Sediment transport
rate ratio Qr/Q, (b) bed friction coefficient μb, and (c) −(τ − τt )/Pzx (zr ) versus rescaled Shields number
�/�t . (d) Rescaled surface fluid shear stress τf (zr )/τt versus Shields number �. The interface z = zr is
calculated by Eq. (6) if not otherwise stated in the legends. Symbols correspond to viscous bedload transport
(s = 2.65, Ga = 0.1), turbulent bedload transport (s = 2.65, Ga = 20) and turbulent saltation transport (s =
2000, Ga = 5). For the bedload transport conditions, the restitution coefficient has been varied to mimic the
minimal (e = 0.9) and nearly maximal (e = 0.01) possible effect of lubrication forces.

value of φ/φb [line-connected symbols in Fig. 4(b)], through a constant value of μ [line-connected
symbols in Fig. 4(c)], or through other definitions proposed in the literature (not shown) in general
do not fulfill the requirements of the Bagnold interface.

Conditions with
√

sGa � 10 deviate from Property 3 [Figs. 3(c) and 4(c)], the reason for which
can be seen in Fig. 4(d). It shows that the local fluid shear stress τf = τ + Pzx at zr is near the flow
threshold τt at low transport stages and remains constant or decreases with increasing �, consistent
with Property 3. However, once a critical value � ≈ 0.5 is exceeded, τf (zr ) begins to increase and
enters a regime in which it becomes proportional to �t τ . This proportionality causes −Pzx (zr )/τ
to approach a limiting value at large transport stages that is smaller than the value unity required
by Property 3, with larger values of the flow threshold Shields number �t corresponding to larger
deviations. In fact, the sediment transport regime that exhibits the largest values of the flow threshold
for cohesionless particles [max(�t ) ≈ 0.2] is viscous bedload transport, which is characterized by
comparably small values of

√
sGa [72].

IV. PHYSICAL ORIGIN OF FRICTION LAW

As explained in Sec. I B 2, there have been two interpretations of the friction law (Property 2)
in the literature. In Sec. IV A, we show that the first interpretation based on the rheology of
dense granular flows and suspensions in general is inconsistent with data from our direct transport
simulations. In particular, we present strong evidence for the absence of a liquidlike flow regime at
low transport stages. In Sec. IV B, we show that the second interpretation associated with particle
rebounds at the bed surface is consistent with the simulation data for most conditions. In particular,
we explain why this kinematic interpretation also applies to bedload transport, in which the particle
dynamics are dominated by long-lasting intergranular contacts rather than particle kinematics.

104302-9



THOMAS PÄHTZ AND ORENCIO DURÁN

100 101 102

Rescaled Shields number, Θ/Θt

10-3

10-2

10-1

100

P
ar

ti
cl

e
vo

lu
m

e
fr

ac
ti

on
,
φ
(z

r)

φmax
salt 0.14

φmax
bedl 0.45

10-4 10-3 10-2 10-1 100

Particle volume fraction, φ

10-2

10-1

100

101

F
ri

ct
io

n
co

effi
ci

en
t,

μ

Θ < 19Θt

Θ ≥ 19Θt

Θ < 7.6Θt

Θ ≥ 7.6Θt

μ μs

0 0.2 0.4 0.6 0.8 1
Viscoinertial number, K

0

0.2

0.4

0.6

0.8

F
ri

ct
io

n
co

effi
ci

en
t,

μ

(b) s = 2.65,Ga = 20

s = 2000,Ga = 5

Arrows: Increasing Θ

(c)(a)

Open symbols: e = 0.9
Filled symbols: e = 0.01

√
sGa ≤ 1

FIG. 5. Failure of dense rheology interpretation. (a) Particle volume fraction φ(zr ) at the Bagnold interface
versus Shields number �. (b, c) Friction coefficient μ versus (b) particle volume fraction and (c) viscoinertial
number K . Symbols in (a) correspond to data from our direct transport simulations for various combinations of
the particle-fluid-density ratio s, Galileo number Ga, and �. For symbol legend, see Fig. 3. For conditions with
s � 2.65 (corresponding to bedload transport), the restitution coefficient has been varied to mimic the minimal
(e = 0.9) and nearly maximal (e = 0.01) possible effect of lubrication forces. The turquoise and brown
lines in (b) and (c) correspond to the conditions (s, Ga, e) = (2.65, 20, 0.9) and (s, Ga, e) = (2000, 5, 0.9),
respectively, which are representative for turbulent bedload and saltation transport, respectively.

A. Dense rheology interpretation of friction law

Figure 5(a) shows that the particle volume fraction φ(zr ) at the Bagnold interface, obtained
from our direct transport simulations, increases with the Shields number � until it approaches at
large � a constant maximal value that depends on whether the simulated condition corresponds
to bedload (φmax

bedl � 0.45) or saltation transport (φmax
salt � 0.14). This behavior rules out the dense

rheology interpretation of the friction law for most conditions as the liquidlike regime requires
φ � 0.4, particularly when considering that the values of φ(zr ) are near 10−3 for some simulated
conditions and could possibly be even lower for conditions more extreme than those simulated.
However, conditions corresponding to sufficiently intense bedload transport [e.g., conditions with√

sGa � 1 and � � 2�t ; see ellipse in Fig. 5(a)] pose a notable exception as φ(zr ) � 0.4. For these
conditions, the dense rheology interpretation of the friction law may, indeed, be consistent with the
simulation data.

1. Absence of liquidlike granular flow regime

The simulation data indicate that a liquidlike granular flow regime does not necessarily exist. For
example, Fig. 5(b) shows for saltation transport with sufficiently low �/�t (brown, dashed lines)
that the local friction coefficient μ can remain well below the yield stress ratio μs � 0.277 [81]
within the dense flow region (φ � 0.4). Furthermore, the thickness of the transient zone in which
the particle volume fraction changes from quasistatic (φ � 0.58) to gaslike (φ � 0.4) values is,
regardless of the transport regime, very thin (<d) at low transport stages (Fig. 4 in Ref. [51], which is
based on the same numerical model). In this transient zone and slightly beyond, the average particle
velocity 〈vx〉 and thus the particle shear rate γ̇ obey an exponential relaxation behavior (Fig. 7 in
Ref. [51]), and the Bagnold interface (z = zr ) is located within this relaxation zone [Fig. 2(a) in
Ref. [71], which is based on the same numerical model]. Hence, one may interpret the Bagnold
interface as the base of the gaslike transport layer.
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Furthermore, an exponential relaxation of γ̇ is reminiscent of granular creeping [91,92,95],
which is associated with a nonlocal rheology [91–94]. In fact, if the rheology was local, μ would
solely depend on the particle volume fraction φ or, alternatively, on the dimensionless number
that characterizes the rapidness of the granular shearing motion relative to particle rearrangement
processes: the viscoinertial number [81–84]

K =
√

(ρpd2γ̇ 2 + 2ρf νγ̇ )/Pzz ≡
√

I 2 + 2J . (7)

The viscoinertial number K reconciles inertial granular flows, characterized by the inertial number
I = γ̇ d/

√
Pzz/ρp, with viscous suspensions, characterized by the viscous number J = ρf νγ̇ /Pzz.

However, a data collapse of μ(φ) and μ(K ) is found only when � is sufficiently far from the flow
threshold �t (consistent with Ref. [85]), where “sufficiently” usually refers to relatively intense
transport conditions, as shown in Figs. 5(b) and 5(c) for two cases that are exemplary for turbulent
bedload (turquoise lines) and saltation transport (brown lines).

Put together, the fact that μ < μs within the dense flow region, the very thin creepinglike
transient zone from quasistatic to gaslike particle volume fractions, and the absence of a local and
thus liquidlike rheology are strong evidence for a granular solid-gas transition around the Bagnold
interface, where the solidlike and gaslike regime are connected by the creepinglike zone. Note that
a granular solid-gas transition and the absence of a liquidlike granular flow regime at low transport
stages are rather unusual in the context of granular flows and suspensions. To our knowledge, they
have previously been found only in viscous bedload transport experiments [86]. Further note that
the absence of a liquidlike rheology at low transport stages implies that two-phase flow models
of sediment transport that are based on local rheology models [85,131] can be applied only to
sufficiently intense transport conditions.

2. Very viscous bedload transport

For conditions corresponding to very viscous bedload transport (
√

sGa � 1), the absence of a
liquidlike granular flow regime is limited to Shields numbers relatively close to the flow threshold
(� � 2�t ). In fact, for � � 2�t , both the friction coefficient μ [Figs. 3(b) and 4(b)] and particle
volume fraction φ [ellipse in Fig. 5(a)] are approximately constant at zr , which is consistent with
a local rheology μ(φ) around the Bagnold interface (i.e., liquidlike flow behavior due to φ � 0.4).
Figure 6(a) shows that very viscous bedload transport conditions (but no other conditions) also
exhibit an approximately constant value of the viscous number J (zr ) for � � 2�t , which is
consistent with a local rheology μ(J ). Consistently, Figs. 6(b) and 6(c) show exemplary for the
case (s, Ga, e) = (2.65, 0.5, 0.01) that the simulation data of the effective friction coefficient τ/Pzz

collapse as a function of J for sufficiently large �/�t , whereas this local rheology behavior is
disobeyed for small �/�t . This finding and the shape of the profiles of [τ/Pzz](J ) shown in
Figs. 6(b) and 6(c) are in qualitative agreement with recent viscous bedload transport measurements
(cf. Fig. 9 in Ref. [86]).

We now show that the approximate constancy of J (zr ) for sufficiently large �/�t can be inferred
from the definition of the Bagnold interface [Eq. (6)] applied to viscous conditions. First, using μ =
−Pzx/Pzz and the fact that the local viscous fluid shear stress can be expressed as τf = τ + Pzx =
ρf ν(1 − φ)u′

x [51,71], where ux is the mean horizontal fluid velocity, we obtain from Eq. (6) that
the following condition must be obeyed at the Bagnold interface (z = zr ):

(Pzzγ̇ )′ = Pzzγ̇
′ − μ′Pzxγ̇ − ρf νμγ̇ [(1 − φ)u′

x]′ = 0. (8)

Second, we neglect spatial changes of the particle volume fraction φ because it is close to the
packing fraction in dense systems, and thus we also neglect spatial changes of μ as they are of the
same order [81]. Using these approximations and the shear rate definition γ̇ = 〈vx〉′ in Eq. (8), we
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FIG. 6. Dense rheology interpretation for very viscous bedload transport. (a) Viscous number J (zr ) at the
Bagnold interface versus rescaled Shields number �/�t . Symbols correspond to data from our direct transport
simulations for those combinations of the particle-fluid-density ratio s, Galileo number Ga, and Shields number
� that obey

√
sGa � 1. The two conditions (s, Ga, e) = (2.65, 20, 0.9) (turbulent bedload transport, turquoise

circles) and (s, Ga, e) = (2000, 5, 0.9) (turbulent saltation transport, brown triangles) from Figs. 5(b) and 5(c)
are also shown for comparison. (b, c) Effective friction coefficient τ/Pzz versus J for the case (s, Ga, e) =
(2.65, 0.5, 0.01) and several �/�t in (b) log-linear and (c) log-log scale.

approximately obtain

J (zr ) ≈ [〈vx〉′′/u′′
x](zr )

μb[1 − φ(zr )]
. (9)

The quantity [〈vx〉′′/u′′
x](zr ) is expected to exhibit an approximately constant value smaller than

unity as the particle velocity profile 〈vx〉(z) is strongly coupled to the flow velocity profile ux (z)
when the bed is fully mobile (i.e., liquidlike) due to a strong viscous drag forcing [71], which
explains the approximate constancy of J (zr ) for sufficiently large �/�t [Fig. 6(a)]. Hence, for
conditions corresponding to very viscous bedload transport (

√
sGa � 1) sufficiently far from the

flow threshold (� � 2�t ), μb ≈ const can be explained in the context of dense granular flows and
suspensions.

B. Rebound interpretation of friction law

The gaslike transport layer is composed of particles that hop, slide, and/or roll along a solidlike
granular bed at low transport stages or a liquidlike granular bed at large transport stages [Figs. 5(b)
and 5(c)]. Except for very viscous bedload transport (which is therefore excluded from the following
considerations), the hopping motion is significant and usually even dominates above the Bagnold
interface (z > zr ) [72]. Now we argue that a steady transport state in which particles hop along
a granular bed (Fig. 7) causes the kinetic friction coefficient μt ≡ −P t

zx/P
t
zz to be approximately

constant at zr : μt
b ≡ μt (zr ) ≈ const.

1. Constant kinetic friction coefficient

First, defining the average 〈A〉↑(↓) = φ〈AH [+(−)vz]〉/φ↑(↓) of a quantity A over ascending
(descending) particles, where H the Heaviside function and φ↑(↓) = φ〈H [+(−)vz]〉 the volume
fraction of ascending (descending) particles, we approximately obtain

φ〈vzvi〉 = φ↑〈vzvi〉↑ + φ↓〈vzvi〉↓ ≈ φ↑〈vz〉↑〈vi〉↑ + φ↓〈vz〉↓〈vi〉↓ = φ↑〈vz〉↑(〈vi〉↑ − 〈vi〉↓), (10)
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FIG. 7. Sketch of the trajectory of a particle hopping along a granular bed. Driven by the flow, a transported
particle (blue) hops along the solidlike or liquidlike granular bed (yellow particles). Instants of particle contacts
are colored deep blue, and the ones for which the center of mass of the transported particle is above the Bagnold
interface (z > zr ) are numbered consecutively (for illustrating the mathematical derivation in the Appendix).

where we neglected velocity correlations and used the steady-state mass balance φ〈vz〉 = φ↑〈vz〉↑ +
φ↓〈vz〉↓ = 0 [69]. Further using the definition of the kinetic stresses [Eq. (4b)] and 〈czci〉 = 〈vzvi〉
(which follows from 〈vz〉 = 0), we then obtain from Eq. (10)

μt = −P t
zx

P t
zz

= −φ〈czcx〉
φ
〈
c2
z

〉 = −φ〈vzvx〉
φ
〈
v2

z

〉 ≈ 〈vx〉↓ − 〈vx〉↑
〈vz〉↑ − 〈vz〉↓ . (11)

As the Bagnold interface is the effective elevation of energetic particles rebounding at the bed
surface (Sec. III A), Eq. (11) implies that μt

b is a measure for the ratio between the average horizontal
momentum loss [∝ (〈vx〉↓ − 〈vx〉↑)(zr )] and vertical momentum gain [∝ (〈vz〉↑ − 〈vz〉↓)(zr )] of
hopping particles rebounding at the bed surface.

Second, provided that the influence of fluid drag on the vertical motion of hopping particles
can be neglected (this precondition is indirectly verified by the fact that the final result is
consistent with data from our direct transport simulations), a steady hopping motion requires
〈vz〉↑(zr ) ≈ −〈vz〉↓(zr ) due to energy conservation. On average, only an approximately constant
impact angle αi = − arctan[〈vz〉↓/〈vx〉↓](zr ), resulting in an approximately constant rebound angle
αr = arctan[〈vz〉↑/〈vx〉↑](zr ), can ensure this constraint [64,65,97], which combined implies μt

b ≈
const.

2. Approximate equality of friction coefficients

Until here our reasoning is largely in line with previous studies [60–65,97]. These studies now
concluded μb ≈ const from μt

b ≈ const, which is consistent with our direct transport simulations,
as shown in Fig. 8(a). In fact, it can be seen that μt

b/μb is relatively close unity for most simulated
conditions, except for very viscous bedload transport conditions (

√
sGa � 1) with �/�t � 2.

However, exactly for these conditions, μb ≈ const has been explained from the local rheology
of dense viscous suspension (Sec. IV A). Interestingly, conditions with

√
sGa � 1 and �/�t � 2

exhibit values of μt
b/μb that are again relatively close to unity, as shown for an exemplary case in

the inset of Fig. 8(a). This suggests that the rebound interpretation of μb ≈ const explained in this
section may actually apply to very viscous bedload transport at low transport stages even though the
hopping motion is dominated by particles sliding and rolling along the granular bed [72].

Figure 8(b) shows that the contact friction coefficient μc ≡ −P c
zx/P

c
zz is relatively close to μb for

all simulated conditions. Furthermore, Fig. 8(c) tests the hypothesis of previous studies [60–65,97]
that P t

ij (zr ) ≈ Pij (zr ) is the reason why μt
b ≈ μb. It can be seen that, while this reasoning works

well for saltation transport conditions, it does not hold for bedload transport conditions because
μt

b ≈ μb despite P t
ij (zr ) � Pij (zr ).

In the Appendix, we derive μt
b ≈ μc

b ≈ μb from first physical principles. In summary, this
derivation mainly exploits that the granular transport layer is gaslike, which means that collisions
between particles located above the Bagnold interface are predominantly binary. This property
allows us to write the contact stress tensor component P c

zi (zr ) as the total impulse per unit bed area
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FIG. 8. Approximate equality of friction coefficients. Friction ratios (a) μt
b/μb and (b) μc

b/μb and pressure
ratio (c) [P t

zz/Pzz](zr ) versus impact number
√

sGa. Symbols correspond to data from our direct transport
simulations for various combinations of the particle-fluid-density ratio s, Galileo number Ga, and Shields
number �. For symbol legend, see Fig. 3. For conditions with s � 2.65 (corresponding to bedload transport),
the restitution coefficient has been varied to mimic the minimal (e = 0.9) and nearly maximal (e = 0.01)
possible effect of lubrication forces. The vertical bars indicate the range of values the quantities cover with
varying � above about 2�t . This lower limit is imposed to separate the random variability due to bad statistics
when � is close to �t [e.g., see Fig. 4(c)] from the actual variability. Inset of (a): friction ratio μt

b/μb versus
rescaled Shields number �/�t for very viscous bedload transport (s = 2.65, Ga = 0.1, e = 0.9).

per unit time generated by collisions between particles transported above the Bagnold interface with
bed particles below the Bagnold interface. Using Eq. (10) (which is based on the steady-state mass
balance) and that the Bagnold interface (z = zr ) is the effective elevation of energetic particle-bed
rebounds (Sec. III A), it can then be shown that each such collision approximately generates the
impulse equivalent per unit bed area per unit time of the associated kinetic stress tensor component
P t

zi (zr ), which implies P c
zi (zr ) ≈ R↑zr

P t
zi (zr ), where R↑zr

is the average number of such collisions
per crossing of the Bagnold interface from below. As R↑zr

is the same for i = x and i = z, it
eventually follows μc

b ≈ μt
b and thus μt

b ≈ μc
b ≈ μb.

V. DISCUSSION AND CONCLUSIONS

We have used numerical simulations that couple the discrete element method for the particle mo-
tion with a continuum Reynolds-averaged description of hydrodynamics to study the physical origin
and universality of theoretical threshold shear stress-based models of the rate of nonsuspended
sediment transport for a large range of Newtonian fluids driving transport, including viscous and
turbulent liquids and air. The vast majority of such models are based on, or can be reformulated in the
spirit of, Bagnold’s [18–20] assumption that there is a well-defined interface between granular bed
and transport layer, which we have called the “Bagnold interface,” with certain special properties
(Properties 1–3 in the Introduction). From our study, we have gained the following insights:

(1) Our simulations support the hypothesis that the Bagnold interface corresponds to the
effective elevation at which the most energetic particles rebound, which can be mathematically
defined through a maximum of the local production rate of cross-correlation fluctuation energy
[Eq. (6)].

(2) Our simulations indicate that, in general, the transition between the solidlike granular bed
and gaslike granular transport layer occurs through a very thin granular creepinglike zone, which
contains the Bagnold interface and which is associated with a nonlocal granular flow rheology. A
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local rheology, which is required for liquidlike behavior, is usually found only for relatively intense
transport conditions [Figs. 5(b) and 5(c)]. The absence of a liquidlike rheology at low transport
stages implies that two-phase flow models of sediment transport that are based on local rheology
models [85,131] can be applied only to sufficiently intense transport conditions.

(3) As the majority of sediment transport is gaslike, the transport rate above the Bagnold
interface well approximates the overall transport rate, as supported by our simulations [Figs. 3(a)
and 4(a)] and demanded by Property 1.

(4) Our simulations indicate that the ratio between the particle shear stress and normal-bed
pressure at the Bagnold interface, the bed friction coefficient μb, varies between about 0.5 and 0.9
for the entire range of simulated conditions [Figs. 3(b) and 4(b)]. In particular, μb is insensitive
to the fluid shear stress τ , as demanded by Property 2. The physical origin of this universal
approximate invariance of μb has been physically linked to a steady transport state in which particles
continuously rebound at the bed surface (Fig. 7).

(5) Very viscous bedload transport (
√

sGa � 1) not too far above the flow threshold (� � 2�t )
poses a notable exception: our simulations indicate that the granular flow around the Bagnold
interface is liquidlike [Figs. 5(a) and 6], and the friction law has been physically linked to the
local rheology of dense viscous suspensions.

(6) As the friction law is obeyed at the base of the gaslike transport layer, μb fundamentally
differs from the constant yield stress ratio associated with the solid-liquid transition in dense
granular flows and suspensions. This finding challenges a large number of studies [18–28] according
to which μb is the yield stress ratio.

(7) Our simulations indicate that the local fluid shear stress τf (zr ) at the Bagnold interface
reduces to a value near the flow threshold τt at low transport stages and remains constant or
decreases with increasing Shields number �, consistent with Property 3. However, once a critical
value � ≈ 0.5 is exceeded, τf (zr ) begins to increase and enters a regime in which it becomes
proportional to �t τ . This behavior results in a deviation from Property 3 for sufficiently viscous
bedload transport (

√
sGa � 10).

Concerning the last point, it is commonly argued that τf (zr ) reduces to the smallest value that
just allows entrainment of bed sediment (by the splash caused by particle-bed impacts and/or by
the action of fluid forces), which is assumed to be near τt [18–28,54–63]. However, according
to our recent study [72], τt is not an entrainment threshold but rather a rebound threshold: the
minimal fluid shear stress needed to compensate the average energy loss of rebounding particles
by the fluid drag acceleration during particle trajectories. That is, τf (zr ) reduces to the smallest
value that just allows a long-lasting rebound motion. This interpretation (which was originally
proposed by Bagnold [1] for turbulent saltation transport but later discarded) is independent of
whether the bed is rigid or erodible and consistent with our finding that μb ≈ const is linked to a
steady rebound state rather than the constant yield stress ratio at the granular solid-liquid transition.
In fact, based on this rebound picture, we have proposed a universal analytical flow threshold model
[72], which uses μb = 0.63 (the simulation mean) and which predicts τt for arbitrary environmental
conditions in simultaneous agreement with available measurements in air and viscous and turbulent
liquids despite not being fitted to any kind of experimental data. That is, the only ingredient that
remains missing for a universal scaling law predicting the rate of nonsuspended sediment transport
[i.e., a version of Eq. (1) that is applicable to arbitrary environmental conditions] is a universal
scaling law for the average particle velocity vx in the flow direction. So far, we have succeeded
in deriving an expression for vx for sufficiently low �/�t [72], and we are currently working on
a generalization to arbitrarily large �/�t . Finally, we would like to emphasize that bed sediment
entrainment, even though it does not seem to affect the functional structure of the scaling laws of
nonsuspended sediment transport, is still required to sustain the equilibrium state described by such
laws [72].
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APPENDIX: PHYSICAL DERIVATION OF EQUALITY OF FRICTION COEFFICIENTS

First, we use the steady momentum balance with respect to contact forces: −P c′
zi = ρpφ〈ac

i 〉 [69],
where ac is the particle acceleration due to contact forces (Fcm = ∑

n Fmn). Integrating this balance
over elevations z > zr yields

P c
zi (zr ) = 1

T �

∑
n

∫ T

0
Fcn

i H (zn − zr ) dt, (A1)

where we used
∫ ∞
zr

δ(z − zn) dz = H (zn − zr ) and Eq. (2). Above the Bagnold interface (z > zr ),
the granular flow is gaslike [Fig. 5(a)], implying that particle contacts between hopping particles
mainly occur during binary collisions. Because a binary contact between a particle m and a particle
n does not contribute to Eq. (A1) due to Fcm + Fcn = 0, the contacts contributing to Eq. (A1) are
predominantly particle-bed rebounds (colored deep blue in Fig. 7). The term

∫ T

0 Fcn
i H (zn − zr ) dt

thus describes the total impulse gained by particle n in time T during those particle-bed rebounds in
which its center of mass is located above the Bagnold interface (zn > zr ). Consecutively numbering
such particle-bed rebounds by rn = 1, 2, . . . , Rn

T (Fig. 7), where Rn
T is the total number of rebounds

of particle n that occur in time T above zr , and denoting the velocity change caused by each rebound
as δvrn

i , which implies that ρpV n
p δvrn

i is the gained impulse at each rebound, we obtain from Eq. (A1)

P c
zi (zr ) � 1

T �

∑
n

Rn
T∑

rn=1

ρpV n
p δvrn

i = ρpδvr
i

T �

∑
n

Rn
T V n

p , (A2)

where δvr
i is the average of δvrn

i over all particles and particle-bed rebounds above zr . Now we
separate Rn

T into the number of instants #n,T
↑zr

particle n crosses the Bagnold interface from below in
time T and the average number Rn

↑zr
of rebounds of particle n per such crossing that occur above

zr : Rn
T = Rn

↑zr
#n,T

↑zr
. Furthermore, as the Bagnold interface is the effective elevation of energetic

particle-bed rebounds (Sec. III A), we approximate δvrn

i by the average velocity gain at zr : δvrn

i ≈
〈vz〉↑(zr ) − 〈vz〉↓(zr ). Combining these mathematical manipulations and using Eqs. (4b) and (10),
and the fact that the vertical upward-flux [φ↑〈vz〉↑](zr ) of particles through the Bagnold interface
equals the total particle volume

∑
n #n,T

↑zr
V n that crosses the Bagnold interface from below per unit

bed area � per unit time T , we approximately obtain from Eq. (A2)

P c
zi (zr ) ≈ ρp[〈vz〉↑ − 〈vz〉↓](zr )

T �

∑
n

Rn
↑zr

#n,T
↑zr

V n
p

= R↑zr
ρp[φ↑〈vz〉↑](zr )[〈vz〉↑ − 〈vz〉↓](zr ) ≈ R↑zr

P t
zi (zr ), (A3)

where R↑zr
is the average number of particle-bed rebounds above zr per crossing of the Bagnold

interface from below. Equation (A3) means that the contact contribution P c
zi (zr ) to the stress tensor

Pzi (zr ) is approximately proportional to the kinetic contribution P t
zi (zr ), where the proportionality

factor R↑zr
is the same for i = x and i = z. Hence, Eq. (A3) implies μt

b ≈ μc
b ≈ μb.
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