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We study the influence of wettability on the morphology of fluid-fluid displacement
through analog porous media in the limit of vanishing flow rates. We introduce an invasion-
percolation model that considers cooperative pore filling and corner-flow mechanisms
and captures interface motion at the pore scale for all quasistatic flow regimes between
strong drainage and strong imbibition. We validate the method against recent experimental
observations of wetting transition in microfluidic cells patterned with circular posts and
we use it to explore the sensitivity of fluid invasion to wettability heterogeneity, post
spacing, and post height. Our model therefore extends the Cieplak-Robbins description
of quasistatic fluid invasion by reproducing the wetting transition in strong imbibition, a
feature that requires incorporating three-dimensional effects.
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I. INTRODUCTION

Fluid-fluid displacement in porous media is a rich phenomenon, where the interplay between
wettability, pore-scale disorder, viscosity ratio of invading and defending fluids, and magnitude of
viscous forces relative to that of capillary forces (defined by the capillary number Ca) generates
a wide spectrum of interface patterns. The study of the mechanisms behind these patterns is of
relevance to many practical applications. For instance, in the limit of high capillary numbers,
the displacement of high-viscosity fluid by a low-viscosity fluid develops a morphology akin to
diffusion-limited aggregation [1–3] and hence serves as an analog system to dielectric breakdown
[4], electrodeposition [5], and propagation of forest fires [6]. Furthermore, both high- and low-
capillary-number displacement regimes have direct practical significance in soil remediation and
chemical filters [7], fuel cell technology [8], carbon sequestration [9], oil recovery [10], and design
of microfluidic devices [11].

For a given fluid pair, the wettability of the porous medium plays a fundamental role in defining
the nature of the displacement at both pore [12–14] and macroscopic scales [15,16]. Wettability
is often defined through the contact angle θ between the fluid-fluid interface and the solid. We
adopt the convention that θ is measured from the invading phase such that θ > 90◦ corresponds
to drainage and θ < 90◦ corresponds to imbibition. In the limit of low capillary number and
strong drainage (i.e., strongly nonwetting invading fluid), the fluid-fluid interface advances through
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capillary fingering and forms a jagged interface that tends to trap defending fluid throughout
the displacement [17–20]. In weak imbibition (i.e., weakly wetting invading fluid), in contrast,
the interface tends to move as a compact front [15,16,21,22], where capillary forces work to
flatten the interface through cooperative pore filling [23,24]. While the mechanisms of fluid-fluid
displacement in drainage are fairly well explored, fluid-fluid displacement in imbibition continues
to challenge our mathematical descriptions.

Patterned microfluidic devices offer a convenient way to visualize the fluid-fluid displacement
in a controlled and repeatable environment. As a quasi-two-dimensional analog of natural porous
media, these microfluidic devices are typically fabricated by generating a pattern of posts on a solid
surface and confining it between two flat plates, allowing careful control of both pore geometry
and wettability. Early microfluidic experiments [1,17–19] explored the interplay between viscous
and capillary forces in drainage and weak imbibition, and their findings are in line with the theory
[15,16,25,26]. Only recently has this body of work been extended to strong imbibition, where new
displacement patterns emerge [27,28].

Zhao et al. [27] conducted a series of viscously unstable experiments on microfluidic devices with
an irregular pattern of circular posts, where water displaced oil radially from the center of the flow
cell at different injection rates and different contact angles between 150◦ (strong drainage) and 7◦
(strong imbibition). The authors reported a wetting transition in the strong imbibition regime (7◦ <

θ < 45◦): Flow reverts from compact displacement to a corner-flow regime, where the invading
fluid advances by preferentially coating the corners between the posts and top and bottom plates of
the flow cell. Similar observations were recently reported on a regularly patterned microfluidic cell
with square posts [28]. These findings may have significant implications for physical modeling of
the displacement processes with tunable wetting conditions.

Several computational approaches are available to model pore-scale fluid-fluid displacement.
These include, in decreasing order of fidelity (and required computational power) [29], (i) molecular
dynamic simulations, (ii) numerical solutions of the Navier-Stokes equations with interface and
contact-line tracking, (iii) lattice or dissipative particle dynamics based models, and (iv) pore-
network models. The first three approaches require a detailed description of the pore geometry and
are not yet practical for obtaining macroscopic invasion patterns. Pore-network models, on the other
hand, rely on a simplified pore geometry and a simplified description of the flow and are therefore
less computationally demanding [30]. The geometric details as well as simplifying assumptions of
the interface vary widely from one study to another [31–34].

Two particular subclasses of pore-network models are of interest in reproducing the experimental
observations of Zhao et al. [27] in the limit of very low Ca: invasion-percolation algorithms [19,20]
and the quasistatic interface tracking method of Cieplak and Robbins [23,24]. Invasion-percolation
algorithms are robust, but can only capture the invading interface morphology in strong drainage.
The interface-tracking algorithm of Cieplak and Robbins [23,24] is applicable to wettabilities
from strong drainage to weak imbibition, although it is susceptible to the biases of user-defined
conventions in injection pressure increments and scanning order of pore-invasion mechanisms.
Neither method extends to the corner-flow regime of strong imbibition.

Here we implement an invasion-percolation algorithm that qualitatively reproduces fluid-fluid
displacement morphologies for all wettabilities, from strong drainage to strong imbibition. By
building on the work of Cieplak and Robbins [23,24], we are able to explicitly calculate the critical
pressures of pore-scale instabilities, including the instability events potentially responsible for the
corner-flow regime in strong imbibition [27]. This approach eliminates the need for user-assigned
pressure increments, instead advancing the interface in the manner of invasion-percolation. Our
quasistatic algorithm captures the fluid-fluid displacement in the limit of very low Ca, where viscous
forces can be neglected.

The algorithm was implemented on a two-dimensional flow geometry similar to the one in the
experiments of Zhao et al. [27]. We used the model to capture the wetting transition in strong
imbibition and explored the sensitivity of the flow pattern to pore-scale heterogeneity in contact
angle, post spacing, and to three-dimensional effects of finite post height.
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II. METHOD

Experimental observations of fluid-fluid displacement in different wettability regimes provide an
intuitive way to understand the underlying assumptions behind different models of multiphase flow.
In drainage, the invasion pattern advances by overcoming local capillary entry pressures within the
porous medium [18]. In the limit of vanishing Ca, viscous dissipation can be neglected and the
invasion process is well captured by the invasion-percolation algorithm [20,35,36]. This approach
replaces the pore space with a network of nodes (pores) and edges (throats). Throats that contain
a fluid-fluid interface are considered active. Every active throat is ranked according to its critical
capillary pressure, which can be calculated from the throat size. The invading fluid moves by
advancing locally into the throat with the lowest critical capillary pressure, resulting in invasion
avalanches and displacement fronts that often loop on themselves and trap clusters of the defending
fluid behind the advancing front.

While the invasion-percolation algorithm is in good agreement with experiments in drainage [18],
it fails to reproduce the invading fluid pattern during imbibition. Here cooperative pore-filling mech-
anisms make the invading pattern smoother and invasion proceeds through compact fronts [19].

Cieplak and Robbins [23,24] showed that in order to capture cooperative pore-filling effects
during imbibition one needs to account for the local pore geometry [23,24]. They approximated the
porous medium by placing posts on a regular two-dimensional (2D) lattice; every post was assigned
a random radius from a uniform distribution. The interface consisted of a collection of arcs between
the posts. Every arc intersected nearby posts at a prescribed contact angle and curvature defined by
the Laplace pressure �p.

Cieplak and Robbins [23,24] introduced three types of instabilities: burst (no stable arc at given
�p), touch (interface touches opposite post), and overlap (two neighboring interfaces coalesce
within the pore). The algorithm moves the fluid-fluid interface at fixed injection pressures by
searching for unstable arcs and replacing them with new stable configurations (pore invasion). When
no unstable arcs are found, the invading fluid pressure is increased to induce further advance.

Unlike the invasion-percolation algorithm, local interface instabilities are sensitive to geometric
configurations of neighboring arcs, allowing for cooperative pore filling (mostly dominated by
touch and overlap instabilities) during imbibition. Moreover, the algorithm produces results nearly
identical to invasion-percolation algorithm in drainage, where burst instabilities are prevalent [24].
Thus, the model of Cieplak and Robbins [23,24] extends the description of quasistatic fluid-fluid
displacement in porous media from strong drainage to weak imbibition.

At the same time, Cieplak and Robbins [23,24] acknowledged that the arbitrary sequence of
pressure increments affects the morphology of simulated invasion fronts. Unlike the invasion-
percolation algorithm, where the sequence of local interface advances is determined through
global critical pressure ranking, the Cieplak-Robbins [23,24] model advances unstable arcs in the
order they are discovered by a user-defined search convention. Moreover, the choice of pressure
increments often results in more than one type of instability within the same arc; instabilities are
removed by authors’ convention where touch instabilities are removed first and burst instabilities
are removed last.

We found that by reformulating the original approach of Cieplak and Robbins [23,24], one
can explicitly calculate critical pressures of all instability events and advance the interface in an
invasion-percolation-like manner. The interface moves based on the ranking of critical pressures
that are calculated from local arc and post geometries. Thus, this formulation eliminates the need
for arbitrary pressure increments and allows the least stable arcs to advance first. Below we describe
the details of the formulation followed by the algorithm in the spirit of invasion-percolation.

Consider a set of neighboring posts (Fig. 1). On every image, posts are numbered from 1 to 3
(where applicable): The left post is 1, the right post is 2, and the top post is 3 [Figs. 1(b)–1(d)].
Each post is defined through its radius, location expressed in Cartesian coordinates, and a contact
angle. For example, post 1 has radius r1, location (x1, y1), and contact angle θ1 measured from the
invading fluid between posts 1 and 2 [Fig. 1(a)]. Without loss of generality, we rotate and translate
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FIG. 1. (a) Invasion front configuration between two posts. (b) Burst event: An unstable interface (red
line) advances into the pore. (c) Touch event: The interface touches the nearest post. (d) Overlap event: Two
fronts (green lines) coalesce on the post surface and fill the pore. (e) Corner-flow event: The corner meniscus
touches and coats the neighboring post. (f) Capillary bridge event: The corner menisci coalesce mid-post
before reaching the next post. (g) Invading front configuration with post IDs: Red, blue, and green interfaces
correspond to burst, touch, overlap critical interfaces, respectively.

the coordinate system so that points (x1, y1), (x2, y2), and (x3, y3) turn into (0,0), (X2, 0), and
(X3, Y3).

For the description that follows, we assume that the posts are tall enough that the events
considered in Figs. 1(b)–1(d) can be formulated in a two-dimensional sense. The validity and
limitations of this assumption are further explored in Sec. III.

Consider an interface of radius of curvature rp that meets post 1 at contact angle θ1 [Fig. 1(a)].
We define d1 to be the distance from the center of interface curvature to the center of post 1.
Given an expression for value of ∠ACP , the distance d1 can be determined from the law of
cosines for �ACP . Both ∠PCU and ∠T CA are equal to π/2 and ∠UCT is π − θ1. Since
∠ACP + ∠PCU + ∠UCT + ∠T CA = 2π , then ∠ACP = θ1. Therefore,

d1(rp, θ1) = AP =
√

r2
1 + r2

p − 2r1rp cos θ1. (1)

Equation (1) defines the distance between the center of curvature (Xp, Yp ) and the center of post 1
(0,0). This means that the point (Xp, Yp ) lies on a circle concentric with post 1 and radius d1, where
the interface satisfies the contact angle θ1 and has radius of curvature rp. All points satisfying this
requirement are shown as a dashed line in Fig. 1(a).

A similar construction for an interface intersecting with a second post of radius r2 and a contact
angle θ2 centered at (X2, 0) defines a second circle centered at post 2. For a given rp, this second
circle [dashed line in Fig. 1(a) opening to the right] will share either two, one, or zero common
points with the set of potential centers of curvature for the interfaces which stably contact post 1.
Figure 1(a) shows a case where the interface is stable. Considering only the case when the invading
fluid is sourced from below the X axis, the stable interface touching both posts will be centered at a
point (Xp, Yp ) which is determined to simultaneously satisfy

X2
p + Y 2

p = d1(rp, θ1)2, (2a)

(Xp − X2)2 + Y 2
p = d2(rp, θ2)2, (2b)

Yp � 0. (2c)
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Subtraction of (2a) and (2b) allows for the direct calculation of Xp and then Yp can be trivially
found as the negative root of Eq. (2a). Equation (2c) ensures that one selects the correct root when
solving for Yp [Fig. 1(a)].

The equations considered here are simplified significantly by the choice of post placement. For
posts located at generic grid points, the post centers can be simply translated and subsequently
rotated to achieve this configuration. Following calculations in this modified coordinate system, the
results can be simply rotated and translated back to the original coordinate system.

We are now ready to define several instability events that determine interface propagation.
Following the work of Cieplak and Robbins [23,24], we consider burst, touch, and overlap events
and we additionally introduce a different class of corner events. The order and frequency of these
pore-level events ultimately define the shape of the quasistatic invasion pattern. Below we find
the critical Laplace pressures �p (corresponding to radius of curvature rp via the Young-Laplace
equation 1/rp = �p/γ ) at which each event takes place.

A. Burst event

As the pressure of the invading phase increases, the radius of interface curvature rp decreases.
This results in lower values for both d1 and d2. As a result, increasing �p reduces the radii of the
dashed lines in Fig. 1(a) and the number of their intersection points [solutions for Eq. (2)] changes
from 2 to 1 and eventually 0. This means that there is no longer a stable interface between posts 1
and 2; this event is referred to as burst [see Fig. 1(b)]. The burst event coincides with the last stable
configuration of the interface between two posts at given contact angles θ1 and θ2. This occurs when
there is only a single root to Eq. (2) and also corresponds to the case when Yp = 0 (which implies a
zero discriminant in the quadratic equation). Introducing this condition in Eq. (2) allows finding the
critical radius of curvature rp that corresponds to burst as a tangential intersection of dashed circles
in Fig. 1(a):

X2
p = d1(rp, θ1)2, (3a)

(Xp − X2)2 = d2(rp, θ2)2. (3b)

Equations (3) can be rearranged to give a quadratic equation in rp, with the burst radius chosen to
yield a positive burst pressure.

B. Touch event

The touch event refers to the configuration depicted in Fig. 1(c). Here the interface tangentially
intersects the third post centered at (X3, Y3) and with radius r3. This configuration can be viewed as
the intersection of black dotted lines and the circle of radius rp + r3 centered at (X3, Y3), represented
by the blue dotted line in Fig. 1(c):

X2
p + Y 2

p = d1(rp, θ1)2, (4a)

(Xp − X2)2 + Y 2
p = d2(rp, θ2)2, (4b)

(Xp − X3)2 + (Yp − Y3)2 = (rp + r3)2. (4c)

Equations (4) can be solved analytically for the critical value of rp that satisfies the touch condition.
Again, the touch condition given by the solution of Eqs. (4) can be reduced to a quadratic equation
in rp, although the expansion to this form involves some laborious algebra.

C. Overlap event

Cieplak and Robbins [23,24] defined the overlap event as an instability where two advancing
contact lines meet on the surface of a post [see Fig. 1(d)]. The solution to the overlap radius of
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FIG. 2. (a) Schematic diagram of meniscus coalescence away from the post surface. (b) Drainage overlap
at θ > 90◦: Menisci coalesce inside the pore space, leaving trapped oil on the wall of the invaded post.

curvature can be written as the intersection of three circles, the interface between posts 1 and 2, the
interface between posts 2 and 3, and the circle corresponding to the surface of post 2,

(X − Xp12)2 + (Y − Yp12)2 = r2
p, (5a)

(X − Xp23)2 + (Y − Yp23)2 = r2
p, (5b)

(X − X2)2 + Y 2 = r2
2 . (5c)

Here (Xp12, Yp12) and (Xp23, Yp23), which are also functions of rp, denote the centers of
curvature for interfaces between posts 1 and 2 and posts 2 and 3, respectively. Equations (5) coupled
with solutions for (Xp12, Yp12) and (Xp23, Yp23) can be solved numerically for a critical value of rp.

The underlying assumption in the above equations is that both interfaces in Fig. 1(d) have the
same radius of curvature rp. In a quasistatic process, as assumed here, the pressure is spatially
uniform in both invading and defending fluids with a Laplace pressure drop between them. Thus,
we can assume that �p12 = �p23 in overlap event calculations. Therefore, from the Young-Laplace
equation, we have that γ

rp12
= γ

rp23
or rp12 = rp23 = rp.

D. Drainage overlap event

The original definition of overlap event by Cieplak and Robbins [24] is valid only for θ � 90◦.
When θ > 90◦, the two menisci coalesce away from the post, trapping some defending liquid on
the post wall [11], as illustrated for θ = 120◦ in Fig. 2(b). This effect has been largely ignored in
pore-level simulations and a careful experimental investigation was only reported recently by Lee
et al. [11].

Consider the drainage overlap configuration in Fig. 2(a), where overlap occurs at θ > 90◦ and a
distance a away from post 2. The solution for this coalescence can be obtained as an intersection of
the two menisci and a circle of radius (r2 + a) concentric with post 2:

(X − Xp12)2 + (Y − Yp12)2 = r2
p, (6a)

(X − Xp23)2 + (Y − Yp23)2 = r2
p, (6b)

(X − X2)2 + Y 2 = (r2 + a)2. (6c)

Noting that (r2 + a)2 = d2 − r2
p, where d2 is analogous to Eq. (1), unknown a can be eliminated

from the above expressions. This allows solving drainage overlap numerically for the critical value
of rp.

E. Corner and capillary bridge events

In addition to the events described above, all of which, apart from overlap for θ > 90◦, had
already been identified previously [23,24], Zhao et al. [27] experimentally observed a transition
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from pore invasion in weak imbibition to corner flow in strong imbibition. In order to capture this
transition it is necessary to consider the shape of the fluid-fluid interface in three dimensions. When
the solid walls have high affinity for the invading liquid, the liquid accumulates in corners between
the posts and the top and bottom plates of the cell, adopting a constant-curvature configuration
shown in Fig. 1(e).

In our model, a corner event occurs when the interface swells sufficiently to touch a neighboring
post; this allows flow towards the corner of the neighbor post. The distance from the center of the
wetted post to the surface of its nearest neighbor is denoted by rn. This distance can be estimated
from a force balance on the corner liquid in the vertical direction [37]

2r1 cos θ1 − 2rn sin θ1 + (
r2
n − r2

1

)
�p/γ = 0. (7)

Equation (7) can be used to determine the critical pressure differential across the interface that is
required for a corner event for every post on the invasion front. This equation is valid when the
height of the posts is significantly taller than the spacing between the posts.

When the post height is comparable to the post spacing, the top and bottom corner menisci might
intersect in the middle of the post before a corner event. This results in the coalescence of the two
interfaces, and invading liquid coats the post in the shape of a capillary bridge [Fig. 1(f)]. In this
case, we use the constant interface curvature equation shown in Appendix A to find the pressure at
which mid-post coalescence takes place. A more detailed discussion of the corner liquid interface
shape and validity of Eq. (7) is given in Appendix A.

F. Invasion algorithm

The closest analog to the invasion algorithm presented here is the invasion-percolation method
[20,35,36], where the invasion front advances by overcoming threshold pressures associated with
pore throats. At every step, a pore with the lowest threshold pressure gets invaded first; the
interface is updated and the algorithm proceeds to the next invasion step. The simplicity of invasion-
percolation leaves very little room for misinterpretation, but it has traditionally been applied only in
strong drainage.

The quasistatic invasion of the fluid-fluid interface is governed entirely by the critical pressures of
burst, touch, overlap, and corner events. To illustrate how the pore-level threshold pressures combine
to determine the evolution of the invasion front, consider the initial configuration in Fig. 1(g). This
initial invasion front is obtained by connecting the innermost posts, a procedure which does not
necessarily produce a stable front. Here every post has an identification number.

We calculate the critical invasion pressures for pore-scale events by solving Eqs. (3)–(7) for every
post on the invasion front. To advance the invading fluid, we traverse the invasion front and select
the post with the smallest critical invasion pressure �p [e.g., a touch instability for the interface at
post 5 in Fig. 1(g)].

The manner in which the invasion front changes following an event depends on the type of
instability that takes place. If a burst or touch instability occurs, the nearest post to the interface is
added to the invasion front [Figs. 1(b) and 1(c)]. If the least stable event is overlap, the post where
the contact lines meet is removed from the invasion front.

Finally, if a corner flow event occurs, a newly captured post is added to the list of corner invasion
posts. We keep track of this list separately from all other events because the manner in which corner
menisci advance is distinctly different. As we show later, this leads to competition between corner
invasion and cooperative pore-filling invasion at some contact angles, leading to the transition in
pore-level displacement mechanism observed by Zhao et al. [27]. We assume that cooperative pore-
filling front posts are also coated in their corners, so the corner list is at least as long as the other
list, an assumption that is reasonable for the quasistatic description we employ here, but which will
likely be inaccurate at very high capillary numbers, when viscous forces dominate and films of the
defending fluid are left behind.
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By following these simple rules, one can capture the complexity of invasion patterns and their
relation to substrate wettability. Although this method was built with the framework initially
proposed by Cieplak and Robbins [24] in mind, there are several features of our approach that
are important to note.

First, the evolution of the interface in the algorithm of Cieplak and Robbins [24] was somewhat
sensitive to the arbitrary selection of pressure increments and the order in which the invasion
mechanisms were scanned. In the Cieplak-Robbins [24] study, after each pressure increment, every
interface was scanned for burst, touch, and overlap in sequence and an unstable interface was
allowed a single step forward. This means that the natural order of the instability events could be
disturbed with a poor choice of pressure increments or scanning order, a shortcoming acknowledged
by the authors [23,24]. In contrast, our algorithm always advances the least stable interface within
the invasion front, therefore eliminating arbitrariness.

Second, by maintaining the list of critical pressures, new computations only need to be performed
in the neighborhood of newly invaded pores. This feature may prove to be especially useful should
the algorithm be extended to a dynamic invasion front (i.e., when taking into consideration the
pressure changes associated with viscous forces during the motion of the invasion front as in
Ref. [31]).

Finally, within the current framework, we can easily assign unique contact angles to individual
posts. We utilize this feature to generate different realizations of the same invasion experiment.
That is, for every realization, we assign a random contact angle for every post from a narrow
distribution centered around a global mean. This brings us closer to experimental conditions, where
small local deviations from the average contact angle of the substrate exist due to material impurities
and inhomogeneity from the fabrication process.

III. RESULTS AND DISCUSSION

We use the model described in the preceding section to address the following objectives. (i) We
test whether our method is able to fully capture the invasion-pattern morphology through the
wetting transition from strong drainage to strong imbibition. (ii) We explore the sensitivity of the
wetting transition to local perturbations in contact angles through pore-level event statistics and
the macroscopic fractal dimension. (iii) We study the links between pore spacing and mechanisms
of pore-level displacement. (iv) Finally, we explore the limits of our model by introducing three-
dimensional effects with finite post heights within the flow geometry.

The baseline pore geometry used in this work was generated in a similar manner to Zhao
et al. [27]. MATLAB’s pdemesh was used to generate a circular Hele-Shaw cell configuration with
a diameter of 15 cm. Centers of the posts were placed at the nodes of the generated irregular mesh.
Then the radius of each individual post was assigned to 45% of the smallest edge at a corresponding
node. The final geometry of posts and the histograms of the resulting post radii and throat sizes are
shown in Fig. 3.

A. Invasion front morphology through the wetting transition

We simulated radial invasion of water into the oil-filled microfluidic cell described above, with
substrate contact angles between 160◦ (strong drainage) and 10◦ (strong imbibition). Pore-invasion
simulations in Fig. 4 demonstrate that the morphology of the invasion pattern depends strongly
on the wettability of the substrate. In particular, the invasion pattern becomes more compact as
the scenario changes from strong drainage (θ = 160◦) to weak imbibition (θ = 45◦) and this is
accompanied by a reduction in the amount of trapped oil behind the invasion front. In strong
imbibition, the invading fluid starts to preferentially accumulate in the corners formed by the posts
with the top and bottom plates. This results in an invasion mechanism that competes with burst,
touch, and overlap events.

Consider a single post with invading liquid accumulating in its corners with top and bottom
plates. As the pressure of the invading fluid increases, the size of the corner meniscus increases,
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FIG. 3. Generated pore geometry along with post diameter and pore throat size histograms. Posts were
placed on irregular triangular lattice generated with MATLAB’s pdemesh and post radii were assigned to 45%
of the smallest connected edge.

and at some critical pressure the liquid extends far enough to reach the post’s closest neighbor. At
this point, the invading liquid flows into the corner of the next post. Here invasion proceeds akin
to invasion-percolation, albeit on a dual network, where the sites are the posts and the links are the
edges of the corresponding Delaunay tessellation. This mode of invasion leads to fingering patterns,
in contrast with the compact invasion characteristic of weak imbibition. The pattern at θ = 40◦
in Fig. 4 is particularly noteworthy: Here frequencies of cooperative pore-filling and corner-flow
events are comparable and the invasion front advances in a mixed regime.

More generally, the invading front morphology in Fig. 4 can be classified into three categories:
(i) invasion-percolation in strong drainage (mostly burst events, θ = 160◦), (ii) cooperative pore
filling in weak imbibition (mostly touch and overlap events, θ = 45◦), and (iii) post chaining due to
corner-flow or capillary bridge events in strong imbibition (θ = 10◦). The first two categories take
place at contact angles between 160◦ and 45◦ and they are very much in line with the quasistatic
simulations of Cieplak and Robbins [23,24]. The latter category was experimentally observed only
recently [27].

Furthermore, we find that the finger width measurements (Fig. 12) of the emerging patterns
are in line with experimental observations [15,16,27] and numerical predictions [23,24]. In strong
drainage, the invading patterns have finger width comparable to the size of a typical pore. When
the flow is dominated by cooperative pore-filling events, the finger width diverges to a size of about
18 pores. Finally, the finger width reduces to a fraction of a pore size in the corner-flow-dominated

FIG. 4. Immiscible fluid invasion simulation results: The algorithm presented in Sec. II covers the full
range of pore wettabilities, from strong drainage (θ = 160◦) to strong imbibition (θ = 10◦). Dark blue regions
represent fully invaded pores; light blue regions represent partially invaded pores with coated post corners. We
include video files of the invasion process at different wettabilities in the Supplemental Material [38].
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Corner 
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FIG. 5. Cooperative pore-filling and fractal dimension plots, showing invasion patterns for different
realizations at each fixed global contact angle. As the system moves from strong drainage (θ = 160◦) to weak
imbibition (θ = 45◦), the percentage of cooperative pore-filling events gradually increases. The transition from
weak to strong imbibition is marked with a sharp drop in both fraction of cooperative pore-filling events and
fractal dimension.

regime. We include the detailed discussion on finger width measurements in Appendix C and we
include video files of the invasion process at different wettabilities in the Supplemental Material
[38].

B. Sensitivity of macroscopic invasion to local contact angle perturbations

Any real substrate is bound to have imperfections that perturb local contact angles from the
global mean. In the context of the experiments by Zhao et al. [27], local imperfections in contact
angle could arise from dust deposition on the substrate during fabrication of the microfluidic cell
and one typically takes a great deal of care in minimizing these effects.

In practice, no two invasion tests look exactly the same, even when conducted following the same
experimental protocol. However, while different realizations of the same experimental conditions
can be expected to produce nonidentical invasion patterns, those patterns should possess a common
quality. This raises an interesting question of quantifying the similarity of the invasion patterns.

We mimic local imperfections in contact angle by assigning unique contact angles to every post
in the flow geometry. In particular, we select the contact angles from a uniform distribution with 2◦
range centered around the global mean. Figure 5 presents the summary from multiple realizations.
Every experiment was repeated four times for contact angles between 160◦ and 10◦, producing four
different realizations for each set of invasion conditions.

The degree of similarity of the resulting invasion patterns was assessed by means of two metrics:
(i) the percentage of cooperative pore-filling events (touch and overlap) and (ii) the fractal dimension
of the invasion pattern. The fractal dimension was calculated using the box-counting method
[39,40]. The details of the box-counting calculations are included in Appendix B.
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FIG. 6. (a) Schematic diagrams of the drainage overlap and overlap event of Cieplak and Robbins [23,24].
(b) Percentage of cooperative pore-filling events for posts spaced out by a factor of λ from the original post
geometry. The colored circles represent simulations with drainage overlap considered; solid lines represent
simulations with the original overlap definition of Cieplak and Robbins [23,24]. (c) Schematic diagram of post
spacing and the fluid-fluid interface.

The results in Fig. 5 demonstrate that the percentage of cooperative pore-filling events is a robust
classifying metric for the invasion shapes; it exhibits negligible variability among realizations. As
the contact angle changes from 160◦ to 45◦, touch and overlap events become dominant. At contact
angles below 45◦, corner-flow events take over.

In contrast, the fractal dimension shows a higher variability from one realization to another, and
here we can appreciate the difference in invasion shapes quantitatively. For example, consider the
two realizations with θ = 84◦ in Fig. 5. At a glance, the two invasion patterns look similar, but
there are subtle differences in the invaded regions and clusters of trapped oil. The fractal dimension
reflects this difference, resulting in appreciable scatter of points at θ = 84◦ in Fig. 5.

The fractal dimension data reported in Fig. 5 are computed with box-counting method and show
reasonable values for all flow regimes. The mean fractal dimension for invasion-percolation is 1.83,
for cooperative pore filling it is between 1.83 and 1.96, and in the corner-flow regime it is 1.65.

Overall, we were able to mimic the simulation of the same experimental conditions with local
imperfections in the wetting properties of the substrate. While every simulation produces a unique
pattern, each pattern falls into one of the shape categories (invasion-percolation, cooperative filling,
and corner flow) based on the percentage of cooperative pore-filling events plot.

C. Influence of drainage overlap and post spacing on cooperative pore filling

Consider the schematic diagrams of drainage overlap and the original overlap events in Fig. 6(a).
During the invasion process, the drainage overlap always precedes the original overlap event
of Cieplak and Robbins [23,24] and thus corresponds to a lower critical pressure. Since we
advance the invasion front into pores with lowest critical pressures, by overestimating the critical
pressures of overlap events, one would erroneously advance the invasion front through spurious
burst instabilities. This is especially likely to happen when the spacing between the posts is large.
We examine the significance of drainage overlap by increasing the spacing between posts in the
original pore geometry by a factor λ > 1.

Figure 6(b) shows that by considering drainage overlap, we recover a considerable number of
cooperative pore-filling events otherwise lost if one follows the original definition of overlap event
of Cieplak and Robbins [23,24]. Simulations with drainage overlap result in about 30% cooperative
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pore-filling event ratio at θ = 160◦ for λ = 4, while the original overlap produces no cooperative
filling events at θ = 160◦ for all λ.

One can intuitively understand why larger spacing between posts increases the frequency of
cooperative pore-filling events by examining two posts and a fluid-fluid interface between them
at λ = 1 and λ = 4 [Fig. 6(c)]. In drainage, as the pressure of the invading fluid increases, the
interface approaches its burst configuration. When the spacing between the posts is small (λ = 1),
the fluid-fluid interface remains mainly within the gap between the two posts. In contrast, when the
spacing is wide (λ = 4), the interface extrudes significantly away from the gap between two posts
before reaching the burst configuration. As a result, this interface is more likely to encounter (and
coalesce with) the neighboring fluid interfaces. In the extreme limit, when λ � 1, we expect the
fluid front to advance mainly through cooperative pore filling via drainage overlap events, even in
strong drainage. Therefore, the drainage overlap presented in Sec. II is crucial for the validity of the
quasistatic invasion model on a wide range of pore geometries, especially in simulating multiphase
flow through highly porous materials such as low-density micropillar arrays [21] or fibrous media
[41–43].

The drainage overlap events (see Sec. II) result in trapping of the defending liquid on the surfaces
of the posts at θ > 90◦ [Fig. 2(b)]. Furthermore, the earlier onset of cooperative pore filling due to
λ changes the amount and the manner in which the defending fluid is trapped behind the invasion
front. Trapping of the defending liquid is an interesting problem on its own, but it is not the focus
of this work.

D. Three-dimensional effects: Out-of-plane curvature

In the simulations described so far, we neglected the out-of-plane curvature contributions in the
Young-Laplace equation when calculating critical pressures of burst, touch, and overlap events in
Sec. II, akin to the simulations of Cieplak and Robbins [23,24]. The ascribed correction to the critical
pressures is that �p

γ
= 1

rp
is replaced by �p

γ
= 1

rp
− 2 cos θ

h
for burst, touch, and overlap events.

As the height of the posts decreases, the relative magnitudes of the critical pressures change. This
in turn alters the final patterns of the invasion fronts (Fig. 7). As the post heights approach 100 μm,
the critical pressures of burst, touch, and overlap events become lower than critical pressures of
corner and capillary bridge flow events, leading to a dominance of cooperative pore filling at low
contact angles. However, in reality, Zhao et al. [27] observed the corner-flow-dominated regime at
θ = 7◦.

This discrepancy between the experiment and our quasistatic simulations can be due to several
factors. First, this out-of-plane curvature adjustment is rather crude and was only implemented to
test the limits of our 2D model. A full three-dimensional consideration of the invasion would be
more accurate, although the formulation would also be significantly more complex. Second, and
perhaps more importantly, we have likely overestimated the critical pressures of corner events. This
can be appreciated from a close examination of invasion progression at strong imbibition in the
experiments of Zhao et al. [27]. There, on average, corner menisci appeared to grow only up to
about the middle of pore throats, at which point the neighboring posts were coated. In our model,
the critical pressures of corner-flow events were calculated assuming the full growth of the corner
meniscus across the throat, which results in higher critical pressures. Indeed, imposing the half-
throat rule in our model produces a transition to corner flow at around θ = 22◦. This earlier coating
of the posts could be due to the establishment of a conductive film ahead of the corner meniscus
that was not visible in the experimental images. Indeed, the fluid invasion through thin-film flow
in strong imbibition and accumulation of invading fluid in the corners was also observed by Odier
et al. [28]. Resolving the detailed dynamics of post bridging in the strong imbibition regime warrants
further experimental and theoretical investigations.

Furthermore, solid surface roughness in realistic 3D rock geometries may provide continuity
to the wetting layers. In the presence of strong surface roughness, growth of the corner menisci
would still dominate in strong imbibition, but the morphology of the invading pattern would likely
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FIG. 7. Figure showing how post heights alter the shapes of the invasion fronts: The onset of the corner-
flow-dominated regime is heavily influenced by the out-of-plane curvature correction of the burst, touch, and
overlap instabilities. The magnitude of the correction is controlled by the height of the posts. Invasion fronts
on the right are plotted for different h at θ = 10◦.

be controlled by the heterogeneity in surface roughness rather than the spacing between the posts.
While the considerations of roughness and film flow in realistic 3D geometries are outside the scope
of this work, they are, however, potentially important mechanisms in strong imbibition.

IV. CONCLUSION

Overall, our approach to immiscible fluid invasion in disordered micropillar arrays can be viewed
as an extension of the invasion-percolation algorithm to include wettability through critical invasion
pressures for cooperative filling and corner-flow events. This approach eliminates the need for
(and thus the sensitivity to) arbitrary increments in the invading pressures and scanning order of
the interface for instability events observed in the earlier work [23,24]. Our algorithm also allows
assigning a unique contact angle to every post, to study the sensitivity of the invasion patterns to
local wettability variations.

The invasion model presented here was coded into an efficient simulation algorithm, making it
an attractive starting point for dynamic pore-invasion simulations. A natural way of extending this
algorithm is through incorporating viscous forces with a coupled pore-network model [31,44,45].

We have tested the invasion model by comparing the simulation outputs with the experiments
of Zhao et al. [27]. Our quasistatic model was able to capture the nature of the invasion fronts at
low capillary numbers for the full range of substrate wettabilities, including the transition from
invasion-percolation to cooperative filling to corner flow as a function of contact angle. This
can have important implications in enhanced oil recovery, carbon sequestration, and microfluidic
applications. For example, in petroleum production, a more compact invasion pattern is preferred
when displacing oil from the reservoir by water injection. In some instances of reactive transport
in microfluidic applications, however, one might want to induce the fingering invasion to maximize
the interface area between invading and defending liquids.

Fluid injection can result in localized redistribution of stress loads within porous media
accompanied by dilation of the pore space [44,45]. Some of the recent experimental observations
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FIG. 8. Shape of the corner meniscus around the post with radius r1. Here AM and AN are the principal
radii of curvature at point A, where AM is in plane and AN is perpendicular to the plane.

of pore-scale poroelasticity include localized fluid-induced deformation of hydrogel packs [46]
and glass bead pack deformation caused by immiscible liquid infiltration [47–49]. The dynamic
extension of the model presented here could be further extended to include pore deformations due to
changes in effective stress under different wettability conditions, which could capture the potential
interplay between pore wettability and deformation during fluid-fluid displacement.
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APPENDIX A: CORNER MENISCUS

In this Appendix we examine the shape of the corner meniscus around a typical post. We follow a
similar derivation to that of the droplet shape on a fiber [37]. We treat our post as a fiber and impose
desired contact angles as boundary conditions at the interface ends, imposing that contact angles
of θ are maintained at both post and plate contacts. Finally, we examine the growth and potential
mid-post coalescence of the top and bottom menisci.

1. Corner meniscus shape

Here we determine how far the meniscus extends in the horizontal and vertical directions for
a given Laplace pressure and check whether the force balance equation suggested in this work
adequately captures the horizontal extent of the meniscus. Figure 8 shows a cross section of the
corner meniscus around a post with radius r1. By developing an argument very similar to the
formulation of the droplet shape on a fiber of de Gennes et al. [37], we can find the meniscus shape
equation. We start with the Young-Laplace equation for an arbitrary point A on the liquid interface

1

AN
− 1

AM
= �p

γ
. (A1)

Noting that r = AN cos α and ds = AMdα, Eq. (A1) can be written as

cos α

r
− dα

ds
= cos α

r
− dα

dr

dr

ds
= �p

γ
. (A2)
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FIG. 9. Interface shape of a corner meniscus outside a post. Equation (A7) is solved with θ = 40◦,
r1 = 500 μm, and rn = 1200 μm. Here �pf represents the Laplace pressure obtained from the force balance
equation (7). The condition ẋ(rn) = tan θ1 is exactly satisfied when �p = �pf .

Furthermore, dr = sin αds, so the Young-Laplace equation takes the form

cos α

r
− dα

dr
sin α = �p

γ
. (A3)

Noting that dr = sin αds and dx = cos αds,

dx

dr
= ẋ = cot α. (A4)

Squaring both sides of Eq. (A4) leads to the equations

sin α = 1

(1 + ẋ2)1/2
, (A5a)

cos α = ẋ

(1 + ẋ2)1/2
. (A5b)

Differentiating Eq. (A4) with respect to r yields

ẍ = − 1

sin2 α

dα

dr
. (A6)

Finally, substituting Eqs. (A5) and (A6) into Eq. (A3), we obtain the final equation for the liquid
interface

ẋ

r (1 + ẋ2)1/2
+ ẍ

(1 + ẋ2)3/2
= �p

γ
. (A7)

Now Eq. (A7) with ẋ(r1) = cot θ1 and x(r1) = 0 can be used to find the corner meniscus profile.
Figure 9 shows the solution of Eq. (A7) for r = (r1, rn) with a typical geometry and contact angle
used in this study.
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(a) (b)

FIG. 10. Laplace pressure for a growing corner meniscus. Initially, the invading liquid is confined to the
corners. As the horizontal extent of the liquid grows, the top and bottom corners meet at the mid-height of the
post and the shape changes into a capillary bridge. This transition point corresponds to the negative jump in
Laplace pressure. (a) Evolution of the corner menisci for contact angles between 4◦ and 44◦ and r1 = 500 μm.
(b) Evolution of the corner menisci for post radii between 300 and 800 μm and a contact angle of 40◦.

The pressure drop across the interface should be such that ẋ(rn) = tan θ1. It turns out that this
condition is exactly satisfied when �p is calculated from the force balance equation (7). This
verifies the validity of the force balance approach in finding critical values of �p for corner flow.

At the same time, Fig. 9 shows that the extent of the corner meniscus is of comparable size in
horizontal and vertical directions. Since the height of the posts in the Zhao et al. [27] experiments is
100 μm, we need to consider two cases: (i) corner menisci at the top and bottom that do not touch
and (ii) corner menisci that meet and merge at the mid-height of the cell. When the liquid menisci
do not meet in the middle of the post, the critical �p for corner flow can be estimated from the
force balance equation (7). However, when corner liquids meet, the shape of the interface can be
estimated as a capillary bridge between two flat plates, described by the equation [37]

1

rn − h
2 cos θ1

(1 − sin θ1)
− 2 cos θ1

h
= �p

γ
. (A8)

2. Corner meniscus growth

We now consider the growth of the corner meniscus on a post with a height of 100 μm
[Fig. 10(a)]. At first, the invading liquid is confined to the top and bottom corners of the post;
growth of the meniscus in the horizontal direction increases the Laplace pressure requirement. Top
and bottom menisci grow to the point that they touch at mid-height of the post. At this point, the
shape of the corner liquid changes into a capillary bridge.

We make the following observations. First, before the menisci merge, the Laplace pressure
increases with growing rn. After they merge, the shape turns into a capillary bridge and the Laplace
pressure decreases with growing rn. This means that if the liquid invasion was stimulated with small
pressure increments, the corner liquid would grow gradually with increasing �p and then grow
spontaneously after assuming a capillary bridge shape.

Second, the magnitude of the discontinuity in �p at the corner liquid merger point is smaller at
low contact angles [Fig. 10(a)]. This can be explained intuitively by visualizing the corner merging
instant at contact angles of 0◦ and 45◦. For θ = 0◦, when two corner liquids meet at the mid-height
of the post, dr

dx
|x=h/2 = 0 both before and after the merger. However, for θ = 45◦, dr

dx
|x=h/2 = 1
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FIG. 11. Fractal dimensions calculated with the box-counting method: (a) color image (1200 × 1200
pixels) produced by the invasion algorithm for θ = 40◦, (b)–(d) black and white versions of the invasion pattern
placed on a grid of size ε = [1, npix], and (e) fractal dimension measured as a slope of number N of filled boxes
against ε on a log-log plot, with the slope calculated from points with ε = [1,

npix

8 ].

before and dr
dx

|x=h/2 = 0 after the merger. This means that at 45◦ the invading liquid needs to snap
from the corner to bridge shape. The magnitude of this snap is small at contact angles near 0◦.

Finally, Fig. 10(b) shows that the Laplace pressure is smaller for larger posts. The out-of-plane
radius of curvature (AN in Fig. 8) is always greater than the radius of the post and hence posts with
greater radius correspond to lower Laplace pressures [Eq. (A1)]. In other words, it is easier to grow
the corner menisci around the posts with larger radius.

APPENDIX B: MEASURING FRACTAL DIMENSION

The morphology of the invading fluid phase can be complex (Fig. 4) and fractal dimension can
be an intuitive way to capture this complexity. Fractal dimension can be thought of as an index of
the scale dependence of a pattern [39]. In this work, we utilize the box-counting method [39,40] to
estimate the fractal dimension of the invading fluid patterns.

The box-counting method iteratively tiles the image containing the flow pattern with boxes of
size ε. Each iteration uses increasingly greater value of ε and measures the number N of boxes that
contain (or directly cover) the flow pattern. The magnitude of the slope of N against ε on a log-log
plot defines the box-counting fractal dimension [40].

To estimate the fractal dimension of the invading fluid we took the following steps. (i) We
obtained the invasion pattern image from the simulation, with fully surrounded posts treated as
part of the invading phase [Fig. 11(a)]; this step typically produced images of 1200 × 1200 pixels
in size. (ii) We converted the image to black and white [Fig. 11(b)]. (iii) We grid the image with
boxes of size ε between 1 and the number of pixels in each direction of the image (npix) [Figs. 11(c)
and 11(d)]. (iv) We recorded the number N of boxes required to fill the pattern for each ε. (v) We
calculated the fractal dimension as an absolute value of the slope of N against ε on a log-log plot
[Fig. 11(e)].

When calculating the slope of N against ε on the log-log plot, we imposed user-defined
expectations on the bounds of the fractal behavior. We exclude the boxes close to the image size, so
we set ε <

npix

8 .
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FIG. 12. Ratio of the invading pattern finger width to mean pore size, estimated in analogy to the work of
Cieplak and Robbins [23,24].

APPENDIX C: MEASURING FINGER WIDTH

In order to estimate the invading fluid finger width w, Cieplak and Robbins [23,24] put forward
the following method. First, they sliced the invasion pattern along the nodes of their regular lattice.
Then they measured the size of the invaded region clusters along each 1D slice. The mean size of
the clusters was taken as an estimate of w, which was then divided by the lattice length a.

We cannot follow the method of Cieplak and Robbins [23,24] precisely since our post geometry
was built on an irregular lattice. We use a close equivalent estimate of w instead. We start with black
and white images used to measure box-counting fractal dimension and slice it into separate rows.
We collect the statistic of the invading clusters in resulting slices using MATLAB’s bwconncomp
function, where the mean size of the clusters estimates w in pixels. We repeat the same procedure
on an image where pore spaces and posts have white and black colors, respectively. This allows
estimating a as an average pore size in pixels. Thus, we recover the w/a used by Cieplak and
Robbins. The above procedure was repeated for vertical slices as well.

Figure 12 shows that the finger width spans several pores in the invasion-percolation regime and
starts diverging at contact angles below 60◦. This growth of finger width is abruptly interrupted
below 40◦, where fluid invasion is dominated by corner flow and w is only a fraction of the mean
pore size a.
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