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Electrokinetics of a particle attached to a fluid interface:
Electrophoretic mobility and interfacial deformation
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The electrophoretic mobility of a microparticle with a small ζ potential attached to a
fluid interface is studied analytically in the limit of two fluids with vanishing viscosity and
permittivity ratios under the assumption of a weak applied electric field. The analysis is
based on perturbation expansions in the capillary number, the electric capillary number,
and in the deviation of the contact angle on the particle surface from 90◦. For the case of
a very thin electric double layer (EDL), the Smoluchowski limit for the electrophoretic
mobility is recovered. For arbitrary values of the EDL thickness, a spherical particle is
considered. In that case the electrophoretic mobility is a function of the EDL thickness
and the contact angle at the particle surface. Hydrophobic particles have a higher mobility
than hydrophilic ones. The deformation of the fluid interface is shown to be separable
into a dynamic and static part. The motion of the particle (dynamic part) does not
contribute to the interfacial deformation in the case of a small capillary number, even for
arbitrary EDL thickness. The static interfacial deformation due to electric stresses, known
as electrodipping, is examined for spherical particles and shown to be independent of the
first-order perturbation in the contact angle. The limits of validity of our theory and possible
applications are discussed.
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I. INTRODUCTION

Electrophoresis is probably one of the most important electrokinetic phenomena, with appli-
cations in analytical chemistry [see, e.g., Refs. 1–3], among others, where it is mostly used for
the separation of molecules or particles. Moreover, it is one of the most prominent principles
lab-on-a-chip devices are based on [see, e.g., Refs. 4–6].

Whenever a charged particle, surrounded by an electrolyte, is subjected to an external electric
field, it starts to move into the direction of the oppositely charged electrode. If the constant applied
electric field is not too strong, the velocity of the particle U takes the form [7,8]

U = ηE∞, (1)

in which η is the electrophoretic mobility and E∞ the magnitude of the applied electric field.
The electrophoretic mobility depends on the thickness of the electric double layer (EDL) (called
Debye length κ−1) around the particle, which develops as a consequence of the charge of the
particle. Pioneering work addressing the electrophoretic mobility of spherical particles was carried
out by von Smoluchowski [9], Hückel [10], and Henry [11]. Von Smoluchowski [9] studied the
electrophoretic mobility of spherical particles in the limit of thin EDLs (thin Debye length, κ → ∞)
and found the well-known Smoluchowski limit η = εζ

μ
, where ε, μ, ζ are the permittivity and the
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viscosity of the electrolyte and the ζ potential of the particle, respectively. The small Debye length
assumption holds for many particles, since the EDL thickness is often much smaller than the size of
the particle [12]. As an extension of Smoluchowski’s work, Morrison [13] and Teubner [14] proved
that the Smoluchowski limit holds for particles of arbitrary shape. For the case that the size of the
particle is very small compared to the Debye layer thickness, Hückel [10] found a reduction of
the electrophoretic mobility, i.e., η = 2

3
εζ

μ
. Under certain assumptions (e.g., rotationally symmetric

EDLs), Henry [11] generalized the theory for spherical (and cylindrical) particles and confirmed the
Smoluchowski and Hückel theories as limiting cases. An extension of Henry’s work was done by
Overbeek [7] and Booth [15]. Both authors studied the deformation of the EDL, called relaxation
effect, occurring for highly charged particles. A high charge corresponds to a significant flow
leading to a deformation of the EDL. They found that for moderate values of the Debye length, i.e.,
0.2 < κa < 50 (a is the radius of the spherical particle), the relaxation effect leads to corrections
of the electrophoretic mobility. Wiersema et al. [16] provided extensions of the previous studies in
the form of numerical simulations and discussed the limits of validity of foregoing work. Later on,
boundary effects [17–20] and the interaction of two particles in the thin [21] and thick Debye layer
limit [22] have been studied.

In many practical applications, particles are not suspended in the bulk of a fluid, but are attached
to a fluid interface. Examples are drops covered with particles (so-called liquid marbles) [23] and
pickering emulsions [24]. The study of electrophoretic phenomena at fluid interfaces is still at its
infancy, due to the complex interplay between hydrodynamics, electrostatics, and the deformation
of the interface separating the two fluids. In that context, a number of fundamental questions related
to the structure of fluid interfaces are still open. For example, the charge of a fluid interface is still
a matter of controversial discussion. There are experimental indications that the water-air interface
carries a negative charge [see, e.g., Refs. 25–27]. Other experimental papers report a positive charge
[see, e.g., Refs. 28–30]. Theoretical/numerical results also vary in magnitude and sign, predict
either a positive [see, e.g., Refs. 31,32] or a negative [see, e.g., Refs. 33,34] charge at the water-air
interface. These inconsistencies may be partially due to the difficulty of a direct measurement [see
Ref. 35] and due to differences in the modeling approaches [see Ref. 36].

In theoretical studies of electrophoresis close to fluid interfaces, usually an uncharged interface
is assumed. Tsai et al. [37] studied the electrophoretic motion of a spherical particle normal to
an uncharged, undeformable and flat air-water interface for different Debye layer thicknesses. The
motion parallel to a flat liquid-fluid interface was studied by Gao and Li [38] in the thin Debye layer
limit. Apart from the dynamic particle-interface interaction, researchers found a static interface
deformation caused by the charge of the particle attached to the interface between an aqueous phase
and an unpolar fluid. This effect was termed “electrodipping.” Due to the difference in the dielectric
constants of both fluids and an inhomogeneous surface charge of the particle, a force arises that
pulls the particle into the fluid with the higher permittivity [39]. In their experiments, Nikolaides
et al. [39] and Aveyard et al. [40] found a long-range interaction between interfacial particles which
gave rise to controversial discussions [41–47]. Danov et al. [43,45] performed experiments for glass
particles at water-oil and water-air interfaces and found an interaction of interfacial particles with
a shorter range than Nikolaides et al. [39]. Moreover, they found that the electrodipping force in
a water-oil system is much higher than in a water-air system. In all theoretical works, the authors
claim that the force inside the nonpolar fluid acting on the particle is much higher than the force
inside the electrolyte [39,42–47]. However, all corresponding theoretical studies are limited to thin
Debye layers. Independently from each other, several authors reported an interfacial deformation
decaying like h ∝ r−4, in which h and r denote the height of the fluid interface and the distance
from the particle, respectively [41–47].

In the following, we analyze the electrophoretic transport of a particle attached to a fluid
interface. The limiting case of large contrasts between the viscosities and the dielectric permittivities
of the two fluids is considered. In Sec. II we describe the problem and the model assumptions.
Subsequently, we specify the governing equations together with the corresponding boundary
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FIG. 1. Schematic of a particle attached to a fluid interface. Without loss of generality, we assume the
negatively charged particle to move with a velocity U in the positive z direction due to an constant applied
electric field E∞. The contact angle of the fluid interface at the particle surface is denoted by �, and a stands
for a characteristic length scale. �P , �I , and �∞, denote the particle, the fluid interface and the far field domain,
i.e., a sphere with a radius of r → ∞, respectively. The normal vectors corresponding to the three boundaries
of the fluid domain are denoted by nI , nP , and n∞. The origin of the coordinate system lies in the plane of the
undeformed fluid interface.

conditions. In Sec. III, we derive general relationships valid for particles of a broad class of
geometrical shapes. In Sec. IV, the case of a spherical particle is discussed. Apart from the
electrophoretic mobility, we also study the interfacial deformation. Further, in Sec. V, we discuss
the limits of validity of our theory and a possible application in terms of electrophoretic separation.
Finally, in Sec. VI we summarize the main results of our work and give an outlook to further studies.

II. PROBLEM FORMULATION AND MODEL ASSUMPTIONS

We consider the motion of a particle, whose size is characterized by a length scale a, attached
to a fluid interface in an unbounded domain in the presence of an uniform applied electric field;
see Fig. 1. In this study we focus on the translational electrophoretic motion of neutrally buoyant
particles at small Reynolds numbers Re � 1. Both fluid phases are considered to be incompressible
Newtonian fluids with constant viscosities μi and dielectric permittivities εi , with i = 1, 2 denoting
the two different phases. The particle attached to the fluid interface is assumed to be in a stationary-
state configuration.

The foregoing assumptions still leave us with a very general problem and do not simplify
the governing equation sufficiently to enable an analytical treatment. Therefore, the following
assumptions are added, to be further explained in subsequent sections:

(1) The applied electric field E∞ is uniform and weak;
(2) The ζ potential at the particle surface is small and uniform over each surface portion in

contact with a specific fluid;
(3) The fluid interface is chargeless qsf = 0;
(4) The viscosity and permittivity ratios asymptotically vanish, i.e., μ2

μ1
→ 0 and ε2

ε1
→ 0.

In linear electrophoresis, the electrophoretic mobility is defined as the constant of proportionality
between the velocity of the particle U and the applied electric field E∞ [see Eq. (1)]. The splitting of
the electrostatic potential into a sum of an equilibrium potential, corresponding to the Debye layer
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around the particle, and a perturbation potential due to the applied electric field is a consequence of
assumption 1 if the relaxation of the EDL is neglected. Together with assumption 2, this leads to a
Boltzmann distribution of the ion number density around the particle [see Ref. 48]. Consequently,
the Debye layer around the particle has a uniform thickness in each of the two fluids, apart from
small deviations close to the three-phase contact line [49]. Whether or not a Debye layer also forms
at the fluid interfaces depends, among others, on the presence of ionic surfactants. We assume a
surfactant-free interface. Moreover, we do not enter the controversial discussion about the charge of
the fluid interface and assume, for simplicity, that one of the following two statements is valid:

(1) The ζ potential of the fluid interface is small compared to the one of the particle.
(2) The Debye length is much smaller than a.
Referring to the second statement, even in the case of a charged interface, a thin Debye layer

compared to the characteristic size of the particle ensures that the fluid interface can be regarded
as overall electroneutral on the particle scale. Note that in this work we do not generally assume
a thin Debye layer, but also consider thick Debye layers. The assumption of an asymptotically
vanishing viscosity and permittivity ratio is fulfilled reasonably well if the two fluids are water and
air: μ2

μ1
≈ 0.02 [see, e.g., Ref. 50] and ε2

ε1
≈ 0.01 [see, e.g., Ref. 51] at typical laboratory conditions.

The assumptions 1 and 2 were also employed in the classical paper of Henry [11] as well as in more
recent articles addressing the electrophoretic mobility corresponding to different particle geometries
[52,53]. Although recent articles dealing with the electrophoresis of particles in a bulk electrolyte
rely on less restrictions and assumptions concerning, e.g., the strength of the applied electric field
[see, e.g., Ref. 54], it is reasonable to start solving a significantly more complicated problem along
the lines of the classical theory of electrophoresis to keep the calculations manageable.

A. Governing equations and boundary conditions

The set of governing equations, consisting of the quasistatic Stokes equations with an additional
volume force, the continuity equation, the Poisson equation, and the Nernst-Planck equations,
coupling the ion concentrations with the electric field and the flow field of the medium, have been
derived by Overbeek [7]. We formally consider a small perturbation from equilibrium due to the
applied electric field, which is a common assumption [e.g., Refs. 8,16]. When the ion concentration
fields are assumed to be unaffected by the external field, i.e., the relaxation effect of the EDL is
neglected, the set of the governing equations can be written as

−∇pd
i + μi∇2vi + εi∇2ψi∇φi = 0, (2)

−∇ps
i + εi∇2ψi∇ψi = 0, (3)

∇ · vi = 0, (4)

∇2ψi = κ2
i ψi, (5)

∇2φi = 0, (6)

in which pd
i is the dynamic pressure, ps

i is the static pressure corresponding to the equilibrium
state, vi is the velocity and κi is the inverse Debye length. The subscripts denote the phases
i = 1, 2. Equations (2) and (4) are the Stokes and continuity equations, while Eqs. (5) and (6)
are the linearized Poisson-Boltzmann and Laplace equation, respectively. Equation (3) is the
momentum equation corresponding to the equilibrium system without an applied electric field.
The term εi∇2ψi∇ψi is proportional to the square of the ζ potential of the particle, which clearly
does not contribute to the electrophoretic mobility [see Refs. 11,14,52,53]. For interfacial particles,
as we will show later, Eq. (3) is responsible for the deformation of the fluid interface.
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Before we continue to formulate appropriate boundary conditions, we rewrite Eqs. (2)–(6) in
dimensionless form, by defining

∇ = ∇̄
a

, vi = U v̄i , pd
i = μ1U

a
p̄d

i , ps
i = ε1ζ

2
1

a2
p̄s

i , ψi = ζ1ψ̄i , φi = E∞aφ̄i, η = ε1ζ1

μ1
η̄,

(7)
and arrive at

−∇̄p̄d
1 + ∇̄2v̄1 + 1

η̄
∇̄2ψ̄1∇̄φ̄1 = 0, (8)

−∇̄p̄d
2 + μ2

μ1
∇̄2v̄2 + ε2

ε1

1

η̄
∇̄2ψ̄2∇̄φ̄2 = 0, (9)

−∇̄p̄s
1 + ∇̄2ψ̄1∇̄ψ̄1 = 0, (10)

−∇̄p̄s
2 + ε2

ε1
∇̄2ψ̄2∇̄ψ̄2 = 0, (11)

∇̄ · v̄i = 0, (12)

∇̄2ψ̄i − (κia)2ψ̄i = 0, (13)

∇̄2φ̄i = 0. (14)

In general, the fluid domain is modeled to be bounded by three surfaces, i.e., the particle surface
�P , the fluid interface �I and the bounding sphere �∞ corresponding to r → ∞, as shown in
Fig. 1. First, we focus on �P and �∞ and formulate the following conditions [see Refs. 11,14,53]
in dimensionless form:

p̄s
i

∣∣
�∞

→ 0, p̄d
i

∣∣
�∞

→ 0, v̄i |�∞ → 0, ψ̄i |�∞ → 0, φ̄i |�∞ = r̄ cos(θ ), (15)

v̄i |�P
= ez, ψ̄1|�P

= 1, ψ̄2|�P
= ζ2

ζ1
,

∂φ̄i

∂n

∣∣∣∣
�P

= 0. (16)

Without loss of generality, we assume the particle to be negatively charged with a corresponding
motion in ez-direction. The zero gradient condition for the perturbation potential φ̄ at the surface of
the particle results from an additional condition, i.e., the permittivity of the particle εP is small in
comparison to the permittivity of its surrounding media, which at first glance appears to be a very
limiting assumption. However, as shown by O’Brien and White [8], the electrophoretic mobility is
independent of the boundary condition at the particle surface, and therefore the assumption εP � εi

does not necessarily need to be satisfied. When applying assumption 4 to Eqs. (9) and (11) and
considering the boundary conditions [see Eq. (15)] one finds a vanishing dynamic and static pressure
in phase 2. Therefore, on the basis of our assumptions, it is not necessary to consider phase 2 in
our theoretical analysis. Hence, we omit the index labeling of the phases from now on, with the
convention that all quantities refer to phase 1. However, it is worth mentioning that εP � ε1 is
usually valid if phase 1 is an aqueous solution.

The boundary conditions at the fluid interface can be obtained by integrating the governing
equations across the interface [see Refs. 55–59]. The empirical no-slip condition [see Ref. 58],
together with the integration of Eq. (4), leads to a continuous velocity field across the fluid interface
and can be written in jump-bracket notation [[[�]] := limε→0(�2(r + εn) − �1(r − εn))] as [see
Refs. 55,56,59]

[[v̄]] = 0. (17)

The boundary conditions for the electrostatic problem can be obtained by integrating the Poisson
equation. Following Jackson [56] and inserting the decomposition of the electrostatic potential, we
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find (see assumption 3)

n · [[ε∇(ψ + φ)]] = 0. (18)

ψ + φ is the sum of an equilibrium potential and a slight disturbance due to the applied electric field
[11]. Therefore, it is reasonable to assume that Eq. (18) must hold separately for both potentials.
Taking assumptions 3 and 4 into account, we find

∂ψ̄1

∂n
= 0, (19)

∂φ̄1

∂n
= 0. (20)

B. Deformation of the fluid interface

On the basis of Eqs. (2) and (3), there are two possible ways for a neutrally buoyant and charged
particle to deform the fluid interface it is attached to. On one hand, one might think of a deformation
due to the motion of the particle, e.g., a translation of the particle with the particle axis at a tilted
angle [see 60]. On the other hand, a static deformation caused by the electric field, which is known
as electrodipping [see Refs. 39,42–44], might occur. Because of the linearity of the governing
equations, the static and dynamic effects can be separated into two independent equations. By
defining

T̄ = ∇̄v̄ + (∇̄v̄)T , (21)

M̄s = ∇̄ψ̄ ⊗ ∇̄ψ̄ − 1
2 ∇̄ψ̄ · ∇̄ψ̄ I, (22)

M̄d = ∇̄ψ̄ ⊗ ∇̄φ̄ + ∇̄φ̄ ⊗ ∇̄ψ̄ − ∇̄ψ̄ · ∇̄φ̄ I, (23)

and integration of the sum of Eqs. (2) and (3) across the interface, taking the interfacial tension force
into account, we find [see Refs. 57–59]

Ca

(
−np̄d + T̄ · n + 1

η̄
M̄d · n

)
+ Ce(−np̄s + M̄s · n) = n(∇̄ · n), with (24)

Ca = μ1U

γ
and Ce = ε1ζ

2
1

aγ
. (25)

n is the normal vector at the interface, pointing from fluid 1 into fluid 2. Ca represents the relative
strength of the viscous forces compared to the capillary forces and is denoted capillary number. Ce
is the relative strength of the electrostatic forces compared to the capillary forces and is denoted
electric capillary number. For a static particle attachment (no external applied electric field), the
capillary number Ca becomes zero, in contrast to Ce. In the case of an electrophoretic motion
of the particle, both terms contribute and lead to a combined interfacial deformation. Therefore
electrodipping is covered by Eq. (24).

In the following, we expand all physical quantities of Eq. (24) in a perturbation series in Ca
and Ce up to the linear order. The interfacial deformation is therefore a sum of an equilibrium
contribution (zeroth order), depending on the shape of the contact line at the particle, and two
first-order contributions due to the electrostatic and hydrodynamic forces acting on it, proportional
to Ce and Ca, respectively. We define the term “equilibrium interface” as the interface corresponding
to an uncharged but geometrically equivalent and stationary interfacial particle. It is worth
mentioning that the contributions to the interfacial deformation proportional to Ce and Ca are solely
determined by physical quantities corresponding to the equilibrium interface. In theoretical papers
dealing with particle-interface interaction, the deformation is typically computed on the basis of
solutions corresponding to an undeformed interface [see, e.g., Refs. 42,45], and is therefore a
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FIG. 2. Schematic of the two equivalent systems considered when computing the electrophoretic mobility
of a sphere attached to a flat fluid interface. The electrophoretic mobility of a sphere attached to a flat fluid
interface is equal to a the mobility of two spherical caps fused at the three-phase contact line. The perturbation
parameter β represents the shift of the center of the sphere along the x direction relative to the fluid interface.
a denotes the radius of the sphere.

first-order solution in the corresponding dimensionless number. We follow the same train of thought
hereinafter.

III. ELECTROPHORESIS OF AN ARBITRARILY SHAPED PARTICLE

We consider an arbitrarily shaped particle characterized by a length scale a, attached to a fluid
interface and translating with a velocity U due to an uniform applied electric field E∞; see Fig. 1.
Again, without loss of generality, we assume a negatively charged particle with a translational
motion in ez-direction. To begin with, we consider particles with a three-phase contact line coplanar
with the y, z plane. In this case, the equilibrium interface corresponds to a flat interface.

A. Electrophoretic mobility for a flat interface in the thin Debye layer limit, κa → ∞
In this paragraph we concentrate on the electrophoretic mobility of a particle attached to a flat

interface. Usually, the electrophoretic mobility is obtained through a force balance at the particle
[see Ref. 8], accounting for electrostatic and hydrodynamic forces. In contrast to this, we follow a
different route by utilizing symmetry arguments as follows.

As already mentioned, fluid 2 does not contribute to the interfacial deformation or the elec-
trophoretic mobility of the immersed particle; see Eqs. (9) and (11) and assumption 4. Furthermore,
based on the boundary conditions, the flat fluid interface represents a symmetry boundary, leading
to an equivalent problem formulation in which the part of the particle immersed in fluid 1 is mirror
reflected at the flat interface (see Fig. 2). This results in two fused particle components in an
unbounded electrolyte. In previous work [13,14] it was shown that the Smoluchowski [see Ref. 9]
limit for the electrophoretic mobility holds no matter what the geometrical shape of the particle is.
Therefore, such a particle has a electrophoretic mobility of

η̄ = 1, for κa → ∞. (26)

Equation (26) is a generalization of the Smoluchowski limit for particles attached to flat interfaces.
Specifically, in the case of spherical particles Eq. (26) holds independent of the contact angle at the
particle surface, determining its degree of immersion in fluid 1.
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B. Effect of the dynamic interfacial deformation, O(Ca) and arbitrary κa

In this paragraph we focus on the interfacial deformation caused by the particle’s motion up to
linear order in Ca, but for arbitrary Debye length. When the corresponding momentum balance is
integrated over the volume of fluid 1 and the divergence theorem is applied, a sum of three surface
integrals, i.e., �∞, �I , and �P , is obtained, representing the overall force balance. The forces acting
on the boundary sufficiently far away from the particle vanish, which directly follows from the
boundary conditions for p̄d , v̄, ψ̄ , and φ̄; see Eq. (15). As already mentioned, the electrophoretic
mobility η̄ is evaluated by a force balance at the particle. The net dimensionless forces acting on the
particle must vanish, leading to a vanishing force at the fluid interface:∫

�I

(
σ̄ · nI + 1

η̄
M̄d · nI

)
dS = 0. (27)

If we assume a mirror-symmetric particle shape (see Fig. 1) with respect to the plane perpendicular
to the direction of motion, i.e., the x, y plane (this holds for a large class of geometric shapes,
i.e., spheres, spheroids, …), it is reasonable to assume that the integrand in Eq. (27) is odd with
respect to z. For example, Dörr and Hardt [60] found an interfacial deformation described by an odd
function, caused by fixed tilt angle of a spherical particle attached to a fluid interface and driven by
an external force. The tilted position of the particle is caused by a hydrodynamic torque acting on it.
Thus, it is useful to take the overall torque balance into account. The torque in the far field vanishes,
therefore the torque acting on the particle (TP ) is equal to the torque acting on the fluid interface
(since nP = −nP ). For the evaluation of the interfacial deformation proportional to Ca we need to
consider the torque acting on a flat interface, which can be written as

TP =
∫ 2π

0

∫ ∞

r̄P (θ )
r̄2er ×

(
σ̄ · nI + 1

η̄
M̄d · nI

)∣∣∣∣
ϕ= π

2 , 3π
2

dr̄ dθ, with nI = ±eφ. (28)

In Appendix A, we show that for even parametrizations of the particle shape [i.e., r̄P (−θ ) = r̄P (θ )]
and odd integral kernels, Eq. (28) is identically zero. For this reason, there is no net torque acting
on the particle, and consequently no tilting occurs. In other words, the sum of the hydrodynamic
and electrostatic torque acting on the particle is identically zero. Therefore, to first order in Ca,
the electrophoretic motion of the particle itself does not affect the interfacial deformation, leading
to a pure electrostatic interfacial deformation proportional to Ce. However, the static interfacial
deformation (proportional to Ce) cannot be quantified without any further specification of the
particle shape. Hence, in the following we will concentrate on spherical particles attached to fluid
interfaces, which is the case of highest practical relevance.

IV. ELECTROPHORETIC MOBILITY OF A SPHERICAL PARTICLE FOR ARBITRARY DEBYE
LENGTH AND CORRESPONDING INTERFACIAL DEFORMATION

We consider a spherical particle attached to a fluid interface with a prescribed contact angle.
A sphere clearly fulfills all symmetry constraints described in Secs. III A and III B. Hence, the
electrophoretic mobility in the thin Debye layer limit is given by Eq. (26) and consequently
independent of the contact angle or the size of the particle (as long as the underlying assumptions are
satisfied). Moreover, the motion of the particle does not result in a deformation of the fluid interface
up to first order in Ca. Therefore, the remaining task is the determination of the electrophoretic
mobility for an arbitrary Debye length along with the electrostatic interfacial deformation. To lowest
order, the interface is flat, so the configuration is equivalent to a system of fused spheres in an
unbounded domain; see Fig. 2.

A. Electrophoretic mobility for a flat interface

We restrict our analysis to contact angles around 90◦. Based on that, by defining β := cos(�), it
follows that β � 1. This motivates us to let β take the role of a perturbation parameter [see Ref. 60].
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In dimensionless form, β is directly linked to the vertical shift of the particle center relative to the
flat interface; see Fig. 2. The parametrization of the fused spherical caps is given by

r̄ = β sin(θ )|cos(ϕ)| +
√

1 − β2[1 − sin2(θ ) cos2(ϕ)], (29)

or, expanded in terms of β:

r̄ ≈ 1 + βf (θ, ϕ) + O(β2), with f (θ, ϕ) = sin(θ )|cos(ϕ)|. (30)

We omit all terms of higher than linear order in β. The previous equation is a parametrization of
a slightly deformed sphere. This type of geometry has been studied in Stokes flow without source
terms [see Ref. 61], and in context with electrophoretic [see Ref. 53], thermophoretic [see Ref. 62] as
well as diffusiophoretic motion [see Ref. 63]. Brenner [61], Kim and Yoon [53], Senchenko and Keh
[62], and Khair [63] mapped the boundary conditions at the surface of a slightly deformed sphere
to more complex boundary conditions (depending on θ and ϕ) for an undeformed sphere. Every
function defined on a sphere can be expanded into an infinite sum of spherical harmonics [see, e.g.,
Refs. 56,64,65]. After expanding the mapped boundary conditions into an infinite sum of spherical
harmonics, the remaining task is to find (an infinite number of) functions that satisfy the governing
equations together with the expanded boundary conditions at the surface of the sphere and the far-
field boundary condition. Kim and Yoon [53] used an equivalent method, i.e., a multipole expansion
of the boundary conditions up to the quadrupole moment that corresponds to a sum representation
up to the second partial sum, which is sufficient, since higher partial sums do not contribute to the
electrophoretic mobility. By contrast to the approach employed by Kim and Yoon [53], we follow
Byerly [64]’s sum representation that avoids a large number of matrix manipulations and gives a
better insight into the structure of the solution. An advantage of the domain perturbation method
is its stepwise structure. The zeroth-order solution (in β) specifies the boundary conditions for the
first-order perturbation analysis, as we show in Appendix B. We expand all physical quantities in
the new perturbation parameter β, e.g.,

p̄d = p̄d
(0) + β p̄d

(1) + O(β2), (31)

and we again omit all terms beyond linear order.
In Appendix B we derive the solutions of the governing equations to zeroth and first order in

β. The zeroth-order approximation corresponds to the famous solution first obtained by Henry [see
Ref. 11]:

η̄(0) = 1
144 [96 + (κa)2(3 + κa)(2 + (κa − 4)κa) + eκa (κa)4((κa)2 − 12)Ei(−κa)]. (32)

Ei(x) is the exponential integral function, defined by

Ei(x) = −
∫ ∞

−x

exp(−t )

t
dt. (33)

As expected, the Smoluchowski [9] (κa → ∞) and the Hückel [10] (κa → 0) limits can formally be
obtained from Eq. (32). In the context considered here, the expression holds for a spherical particle
attached to a flat interface with a contact angle of � = 90◦.
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Θ = 60◦

Θ = 70◦

Θ = 80◦

Θ = 90◦

Θ = 100◦

Θ = 110◦

Θ = 120◦

κa

η̄ (
0
)
+

β
η̄ (

1
)

FIG. 3. Electrophoretic mobility of a spherical particle attached to a flat fluid interface as a function of the
Debye parameter for different contact angles β = cos(�).

Following Appendix B 2, we obtain the first-order (in β) correction to the electrophoretic
mobility

η̄(1) = 1

1536(3 + κa(3 + κa))
[−192 + κa{−384 + κa(24 + κa{−304

+ κa(−726 + κa{−352 + κa(27 + κa{46 + 5κa})})})}
+ exp(κa)(κa)4(−840 + κa{−1032 + κa(−356 + κa{68 + κa(51 + 5κa)})})Ei(−κa)].

(34)

Figure 3 shows the electrophoretic mobility of a spherical particle attached to a flat fluid interface
as a function of the contact angle and the Debye parameter. As expected, the Smoluchowski
limit remains unaffected by the value of the contact angle; see Eq. (26). More specifically, the
electrophoretic mobility is nearly independent of the contact angle if the Debye parameter κa is
above 30. The electrophoretic mobility in the Hückel limit (κa → 0) is readily obtained as

lim
κa→0

(η̄(0) + β η̄(1) ) = 2

3
− β

24
. (35)

In this limit the electrophoretic mobility increases with increasing contact angle. Therefore, with
increasing contact angle the hydrodynamic resistance force reduces faster than the electrostatic force
that drives the particle.

B. The interfacial deformation—electrodipping

On the basis of Eq. (24) there are, in general, two possible ways to deform the fluid interface
due to the presence of the particle. However, we already showed in Sec. III B that the motion of the
particle does not contribute to the interfacial deformation to first order in Ca. The only remaining
contribution is called electrodipping [see Ref. 43]. Essentially, the sum of the Maxwell stress and
the static pressure inside the EDL is balanced by the capillary pressure. In contrast to all published
works concerning the electrodipping effect, we do not limit our analysis to the case of a small
Debye length. However, in the present work the static interfacial deformation is independent of the
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nonpolar fluid (as a consequence of assumption 4), as opposed to the theoretical works by Foret and
Würger [42], Danov et al. [43], Danov and Kralchevsky [44], and Danov et al. [45].

The solution procedure is straightforward, since we provided the solution of the equilibrium
potential ψ̄ for a flat interface up to first order in the perturbation parameter β [see Eqs. (B4) and
(B11) in Appendix B]. Consequently, the only task to calculate the stresses acting on the fluid
interface is to solve Eq. (10) for the remaining unknown quantity p̄s:

−∇̄p̄s + ∇̄2ψ̄∇̄ψ̄ = −∇̄p̄s + (κa)2ψ̄∇̄ψ̄ = ∇̄
(

−p̄s + (κa)2

2
ψ̄2

)
= 0. (36)

Taking the boundary conditions [Eq. (15)] into account leads to

p̄s = (κa)2

2
ψ̄2. (37)

The reader should keep in mind that the left-hand side of Eq. (24) needs to be evaluated at the
undeformed flat fluid interface, which suggests changing the coordinate system for the quantification
of the interfacial deformation to cylindrical coordinates (ρ̄, ϑ, x̄), following Dörr and Hardt [60].
The cylindrical coordinates are defined by

ρ̄ =
√

ȳ2 + z̄2, (38)

ϑ = θ + π

2
. (39)

In the static situation the EDL is axisymmetric around the particle, consequently, the interface
deformation is as well. We introduce a function h̄ denoting the height of the interface as follows:

x̄ = h̄(ρ̄ ). (40)

We expand h̄(ρ̄) in powers of Ce, leading to h̄(ρ̄) = Ce h̄(ρ̄) + O(Ce2) and omit all terms higher
than first order. The corresponding normal vector reads

n = ex − Ce
∂ h̄(ρ̄)

∂ρ̄
eρ + O(Ce2), (41)

and therefore we obtain

∇̄ · n = −
[

1

ρ̄

∂

∂ρ̄

(
ρ̄

∂ h̄

∂ρ̄

)]
. (42)

The equation for the interfacial deformation then reads

−p̄s + M̄s
ϕϕ = −

[
1

ρ̄

∂

∂ρ̄

(
ρ̄

∂ h̄

∂ρ̄

)]
. (43)

The ϕϕ component of M̄s can be evaluated up to first order in β:

M̄s
ϕϕ = −1

2

(
∂ψ̄(0)

∂r̄

)2

− β
∂ψ̄(0)

∂r̄

∂ψ̄(1)

∂r̄
+ O(β2). (44)

Accordingly, Eq. (37) leads to

p̄s = (κa)2

2
(ψ̄(0) )

2 + β (κa)2 ψ̄(0) ψ̄(1) + O(β2). (45)
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1. � = 90◦—Zeroth-order solution

After inserting Eqs. (44) and (45) into Eq. (43), we find for the zeroth-order perturbation in β

(� = 90◦):

1

2

[
(κa)2(ψ̄(0) )

2 +
(

∂ψ̄(0)

∂ρ̄

)2
]∣∣∣∣∣

ϕ= π
2 , 3π

2

= 1

ρ̄

∂

∂ρ̄

(
ρ̄

∂ h̄(0)

∂ρ̄

)
. (46)

In Appendix D, we show (similarly to Danov and Kralchevsky [44]) that the solution of Eq. (46)
can be written as

h̄(0)(ρ̄) =
∫ ∞

ρ̄

ln

(
ρ̃

ρ̄

)
ρ̃

2

[
(κa)2(ψ̄(0) )

2 +
(

∂ψ̄(0)

∂ρ̃

)2
]∣∣∣∣∣

ϕ= π
2 , 3π

2

dρ̃. (47)

For the transformation in the Appendix, we assumed the fluid interface to be flat far away from the
particle. Equation (47) can be solved analytically, leading to

h̄(0)(ρ̄) = exp[−2κa(ρ̄ − 1)][1 + 2κa ρ̄ + 4 exp(2κa ρ̄ )(κa)2 ρ̄2Ei(−2κa ρ̄ )]

8ρ̄2
. (48)

2. O(β )—First-order solution

The equation for the interfacial deformation to first order in the perturbation parameter β reads

h̄(1)(ρ̄) =
∫ ∞

ρ̄

ln

(
ρ̃

ρ̄

)
ρ̃

[
(κa)2 ψ̄(0) ψ̄(1) + ∂ψ̄(0)

∂ρ̃

∂ψ̄(1)

∂ρ̃

]∣∣∣∣
ϕ= π

2 , 3π
2

dρ̃. (49)

After transforming the integrand (see Appendix E) we obtain

h̄(1)(ρ̄) =
∫ ∞

ρ̄

[
ln

(
ρ̃

ρ̄

)
− 1

]
∂ψ̄(0)

∂ρ̃
ψ̄(1)

∣∣∣∣
ϕ= π

2 , 3π
2

dρ̃. (50)

It is known that solutions of elliptic partial differential equations take their extremal values at
the boundary of the domain (maximum principle) [see, e.g., Ref. 66]. The boundaries of ψ̄(1) to
be considered here are ρ̄ = 1 and ρ̄ → ∞. The far-field behavior of the equilibrium electrostatic
potential is controlled by the condition of vanishing potential at infinity [see Eq. (B9)]. Moreover,
the boundary condition at ρ̄ = 1 reads

(ψ̄(1)|r̄=1)|ϕ= π
2 , 3π

2
= (1 + κa)

{ ∞∑
l=0

SHl[f (θ, ϕ)]

}∣∣∣∣∣
ϕ= π

2 , 3π
2

(51)

= (1 + κa)f (θ, ϕ)|ϕ= π
2 , 3π

2
. (52)

Since f (θ, π
2 ) = f (θ, 3π

2 ) = 0, ψ̄(1) is identically zero at the boundaries and therefore zero
everywhere at the undeformed interface. As a consequence, the O(β ) correction to the interfacial
deformation vanishes:

h̄(1) = 0. (53)

Figure 4 shows the resulting interfacial deformation up to O(β ) for different values of the
Debye length [see Eq. (48) with h̄(ρ̄) = Ce h̄(ρ̄) + O(Ca2, Ce2, β2)]. In agreement with physical
intuition, the deformation of the fluid interface strongly depends on the thickness of the EDL.
In the Smoluchowski limit (κa → ∞), the interfacial deformation occurs on a very short length
scale, as already suggested by Foret and Würger [42] and Danov et al. [43]. For real fluids
with a permittivity ratio which is no longer small and for small values of the Debye length, this
contribution only affects the interfacial deformation in close proximity of the particle, whereas
the long-range deformation is dominated by the force distribution inside the nonpolar fluid. The
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κa → 0

κa = 1

κa = 10

κa → ∞

ρ̄

κa

h̄ C
e

h̄
(ρ̄

=
1
)

C
e

FIG. 4. Plot of the first-order interfacial deformation h̄(ρ̄ )
Ce = h̄ (in Ce) over the dimensionless distance ρ̄

for different values of the dimensionless Debye length [see Eq. (48)]. Inset: Dipping depth [see Eq. (54)] of the
particle as a function of the Debye length.

interfacial deformation due to the charges at the particle-nonpolar fluid boundary is shown to scale
like h̄ ∝ ρ̄−4 [see Refs. 41,42,44,47], which is clearly a longer-range deformation as found in our
study for κa → ∞. But, in case of a thick EDL, we obtain from Eq. (48) h̄ = Ce

8ρ̄2 (see Appendix F),
which is a longer-range deformation than in the opposite case of a thin EDL. As the results by Foret
and Würger [42] are valid at large distances, a superposition of both expressions would be suitable
to take both the short-range and long-range interfacial deformations into account.

Since the gradient of the equilibrium potential ψ̄ is linked to the force acting on the particle, it is
evident that the dipping depth decreases with an increasing Debye length. The dipping depth of the
particle can be found according to

h̄(ρ̄ = 1) = Ce

8
[1 + 2κa + 4 exp(2κa)(κa)2Ei(−2κa)] + O(Ca2, Ce2, β2). (54)

The curve corresponding to Eq. (54) is shown in the inset of Fig. 4. The two limiting values can be
found via

lim
κa→0

h̄(ρ̄ = 1) = Ce

8
+ O(Ca2, Ce2, β2), lim

κa→∞ h̄(ρ̄ = 1) = Ce

4
+ O(Ca2, Ce2, β2). (55)

V. DISCUSSION

A. Impact of the static interfacial deformation on the electrophoretic mobility

In this section we aim at making some predictions about the influence of the interfacial
deformation on the electrophoretic mobility of particles. We limit ourselves to small values of the
Debye length.

In the foregoing section we obtained an analytical solution for the fluid interface deformation
caused by the presence of a charged particle. In the case of a small Debye length, the deformation
of the interface is limited to a region very close to the surface of the particle (see Fig. 4). In that case
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(κa → ∞), we can approximate the interface shape via

h̄(ρ̄) =
{

Ce
4 , for ρ̄ = 1

0, for ρ̄ > 1
, (56)

which is supposed to be valid up to first order of β, Ca, and Ce. From a physical point of view,
Eq. (56) describes a small variation of the contact angle at the particle surface, while the fluid
interface remains flat. The fact that the presence of an EDL modifies the apparent contact angle is of
course known from the literature [49,67]. Consequently, up to first order in Ce, the electrophoretic
mobility can be calculated by assuming a flat fluid interface and a modified contact angle �app.
Geometric considerations lead to

�app = � − Ce

4
+ O(β2, Ce2). (57)

This equation is valid up to first order in β, since the same is true for Eqs. (48) and (56). In the thin
Debye layer limit, the contact angle at the surface of a charged particle decreases with increasing
electric capillary number Ce. For example, for Ce = 0.1 and � = 90◦, the effective contact angle
reaches �app ≈ 88.57◦. Based on such a scenario where only the contact angle gets modified,
the Smoluchowski limit [see Eq. (26)] remains valid. Even at higher orders in Ce the physics of the
problem suggests that the interface deformation only occurs in the upmost vicinity of the particle
surface if the thin Debye layer limit applies. Therefore, in this limiting case the Smoluchowski
expression for the electrophoretic mobility should remain valid as long as the assumption 4 is
approximately valid.

B. Validity range of the theory for the electrophoretic mobility

In this subsection, we aim at testing the validity our theory for the electrophoretic mobility.
Among others, we would like to quantify the errors introduced by limiting the description to a
first-order perturbation around a contact angle of 90◦.

We considered a weak applied electric field which allowed us to derive the present set of
governing equations based on a perturbation approach around the equilibrium state. This results in a
linear relationship between the particle velocity and the electric field; see Eq. (1). When the applied
electric field is sufficiently strong, a second cloud of counterions (outside the EDL) is induced
because of concentration polarization [54], leading to a third-order correction to the electrophoretic
velocity, i.e.,

U = η(1)E∞ + η(3)E3
∞ + O

(
E5

∞
)
. (58)

Apart from that, Barany [54] has presented experimental results to identify the range of validity of
the weak-field approximation. Among others, graphite and γ−Al2O3 particles in high electric fields
were studied and the weak-field approximation was found to be valid up to 50 V/cm and 200 V/cm,
respectively, for thin Debye layers.

Our second assumption, i.e., a small ζ potential, has been widely discussed in the literature
already shortly after the first theoretical works on electrophoresis appeared, especially after the
publication of Henry [11]. Large ζ potentials cause a reduction of the velocity of a particle for
moderate Debye parameters 0.2 < κa < 50 [7]. In the numerical work of Wiersema et al. [16], the
authors found the highest discrepancy between the linear theory of Henry [11] and their results to
occur at κa ≈ 5. At this value of the Debye parameter, they showed that the linear theory is valid
up to ζ̄ := eζ

kBT
≈ 1.5 or ζ ≈ 37 mV at room temperature. For different values of κa the range

of validity increases. ζ ≈ 37 mV is a value that still includes the range of ζ potentials of many
materials [see, e.g., Ref. 68].

We expect that these results on the validity of the weak-field approximation and the assumption
concerning the ζ potential can be largely transferred to the case of interfacial particles. This is due to
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κa Θ (deg)

η̄ η̄

κa = 1

κa = 10

Θ = 110◦
Θ = 100◦
Θ = 90◦
Θ = 80◦
Θ = 70◦

(a) (b)

FIG. 5. Comparison between the numerical results and the predictions of the theory. (a) Electrophoretic
mobility as a function of the Debye parameter obtained with Eqs. (32) and (34) for different contact
angles compared to numerical solutions. The lines indicate the analytical, the symbols the numerical results.
(b) Electrophoretic mobility as a function of the contact angle for two different values of the Debye parameter.
The lines indicate the analytical, the symbols the numerical results.

the fact that the scenario of electrophoretic transport of a spherical particle in the bulk is contained
in our analysis as the special case of a flat fluid interface and a contact angle of 90◦.

We calculated the electrophoretic mobility of spherical interfacial particles up to first order in the
deviation of the contact angle from 90◦. The range of contact angles that is fairly well approximated
by our theory is a priori unknown. To check the validity of the first-order approximation, we used
the commercial finite-element solver COMSOL Multiphysics [69] to solve the set of governing
equations, described in more detail in Appendix G. The comparison between the theoretical model
and the numerical simulations is shown in Fig. 5. In Fig. 5(a), the electrophoretic mobility is plotted
against the Debye parameter for different contact angles around 90◦. The model clearly predicts
the electrophoretic mobility of hydrophilic particles better than that of hydrophobic ones. Over
the whole range of contact angles considered, the maximum discrepancy between the numerical
results and our model is found to be within 4%. To capture the dependency of the mobility on
the contact angle over a broader range, simulations for two specific values of the Debye parameter
were performed. The plot in Fig. 5(b) supports the insights from Fig. 5(a). In general, the theory is
found to be more accurate for thin EDLs. Interestingly, the theory is still accurate even for very
small contact angles. The deviation between the theoretical and the simulation results is found
to be smaller than 4% even for � = 5◦, while the deviations between theory and simulations
become larger for hydrophobic particles. However, when defining the range of validity of the theory
by demanding deviations of less than 5% from the simulation results, our theory is valid up to
� = 130◦. This includes all conventional hydrophobic surfaces, but excludes superhydrophobic
materials. We are therefore left with the conclusion that in terms of the contact angle the theory
provides a good approximation to the electrophoretic mobility of almost all interfacial particles.

Before we illustrate a possible application of our model, we comment on some additional effects
that might limit its applicability in the Hückel limit (κa → 0). In this case, the particle can be very
small, making the effects of Brownian motion more prominent. While the same is true for particles
in the bulk, the presence of the fluid interface introduces additional effects, i.e., the Brownian
motion of the particle gives rise to capillary waves [see, e.g., Ref. 70]. Moreover, the relative surface
roughness (compared to the size of the particle) of a small particle can be very significant, leading to
a noncircular three-phase contact line at the particle surface. In this case, the zeroth-order solution
does not yield a fluid-interface profile as considered in our model. The impact of these effects on
the electrophoretic mobility of very small particles and the corresponding interfacial deformation it
is yet to be explored.
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C. Application: Separation of Janus particles

The purpose of this subsection is to illustrate a potential application related to the electrophoretic
transport of interfacial particles. The application is based on spherical particles composed of two
different hemispheres, so-called Janus particles. Janus particles have been intensely studied in recent
years due to their various applications, e.g., in e-paper display technologies [71]. In this subsection,
we discuss the differences in electrophoretic transport of Janus particles suspended in a bulk liquid
and Janus particles attached to a fluid interface. Due to the different wetting properties of the two
materials the particle consists of, an interfacial Janus particle will usually align itself at the interface
in such a way that only one hemisphere is immersed in the electrolyte solution [e.g., Refs. 72,73].
In this case, the electrophoretic mobility of the particle is equal to that of a homogeneous particle
having the same ζ potential and contact angle as the immersed part of the Janus particle. However,
Janus particles suspended in the bulk of a liquid behave differently. The theoretical framework for
the electrophoretic motion of Janus particles in the bulk is included in the work by Kim and Yoon
[53]. In the following, we briefly discuss the electrophoretic mobility and the particle alignment in
the bulk, to point out the differences to a Janus particle attached to a fluid interface.

We consider a ζ -potential distribution around the particle according to

ζ (θ ) =
{
ζ0, for 0 < θ � π

2

α ζ0, for π
2 < θ � π

, with − 1 � α � 1. (59)

Following Kim and Yoon [53], the ζ -potential distribution has to be expanded in terms of the first
three (l = 0, 1, 2) spherical harmonics, according to Appendix C, since higher-order terms do not
contribute to the electrophoretic mobility. Further, the terms with l = 0 and l = 2 solely contribute
to the translational mobility, whereas l = 1 influences the rotation of the particle, i.e., the alignment
with the electric field. After some calculation, the translational electrophoretic mobility is found to
be

η̄Janus = 1 + α

2
η̄0, (60)

with η̄0 from Eq. (32). In other words, the electrophoretic mobility is identical to that of a homoge-
neous particle with the average value of the ζ potential, clearly in agreement with physical intuition.
For α = −1, the mobility vanishes. In this case, the particle will not exhibit any steady-state trans-
lation but align itself in the electric field through rotation. By contrast, if the particle gets attached to
a fluid interface (under the assumptions formulated in Sec. II), its electrophoretic mobility is given
by Eqs. (32) and (34), where the ζ potential of the hemisphere immersed in the electrolyte solution
needs to be taken into account. This means that in contrast to the case of a fully immersed particle,
an interfacial particle translates along the interface if ζ0 
= 0. More generally, electrophoresis of par-
ticles attached to a fluid interface enables separation processes that are not possible in the bulk of a
liquid. In the bulk, a Janus particle translates with a velocity corresponding to its average ζ potential,
which makes the separation of different particles with the same average ζ potential impossible. Elec-
trophoretic transport along a fluid interface, however, enables the separation of different Janus par-
ticles if only the ζ potentials of the hemispheres immersed in the electrolyte solution are different.

VI. CONCLUSION

In summary, we have studied the electrophoretic motion of a single neutrally buoyant particle
attached to a fluid interface for vanishing viscosity and permittivity ratios. Along with that, the
deformation of the fluid interface due to the Debye layer around the particle was analyzed.
The analysis is based on combined perturbation expansions in the capillary number, the electric
capillary number, and the deviation of the contact angle at the particle surface from 90◦. Assuming
a small interfacial deformation, we found a generalization of the Smoluchowski mobility for
particles of arbitrary shape. As a consequence, the Smoluchowski limit holds for spherical particles
independently of the contact angle at the particle surface. The overall interfacial deformation
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is a superposition of a dynamic (due to hydrodynamic stress) and a static (due to electrostatic
stress) deformation. Assuming a mirror-symmetric shape of the particle with respect to the plane
perpendicular to the direction of motion, we found that the motion of the particle (controlled by
the capillary number Ca) does not contribute to the interfacial deformation, no matter what the
Debye layer thickness is. To compute the electrophoretic mobility for arbitrary values of the Debye
layer thickness, we considered a spherical particle with a contact angle in the vicinity of 90◦. In the
limiting case of thick Debye layers, hydrophobic particles have a higher electrophoretic mobility
than hydrophilic ones. Further, the static interfacial deformation was computed. From the shape of
the interface the dipping depth of the particle can be computed, taking values of a Ce

4 and a Ce
8 for thin

and thick Debye layers, respectively, in which a denotes the radius of the spherical particle and Ce
the electric capillary number. Our results indicate that even when gravity is neglected, a long-range
capillary interaction between two particles (as observed from the experimental results in Nikolaides
et al. [39] and Aveyard et al. [40]) is indeed possible if the Debye length is large compared
to the particle radius. Moreover, we discussed the influence of the electrodipping effect on the
electrophoretic mobility. In the case of a small Debye length it suggests itself that the Smoluchowski
limit remains valid even for a deformed fluid interface, since the interface deformation is equivalent
to a change in contact angle at the particle surface. We also examined the validity limits of our
model. We especially considered the influence of strong applied fields, large ζ potentials and
contact angle deviations from 90◦. The influence of the contact angle was studied by comparing
the analytical results to the results of numerical simulations for Debye parameters κa taking values
between 1 and 10. For contact angles on the particle smaller than 130◦, the maximum deviations
between the analytical and the numerical results are limited to 5%, which leaves us with the
conclusion that our theory is sufficiently accurate for almost all practically relevant contact angles.

The results may find applications in different contexts. First, they could help understanding the
response of soft matter systems with interfacial particles such as Pickering emulsions or liquid
marbles to electric fields. An overview of the response of particle-laden drops under electric fields
was given by Dommersnes and Fossum [74]. For example, our analysis could be relevant for the
electric-field induced coalescence of particle-covered water drops, as reported in Ref. [75]. Novel
electrophoretic separation schemes constitute another potential application that was discussed in
some detail in Sec. V C. Finally, the deformation of the fluid interface gives rise to a capillary
interaction of interfacial particles, which will be the subject of future work.
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APPENDIX A: THE DYNAMIC INTERFACIAL DEFORMATION, EQ. (28)

We define the abbreviation I(r̄ , θ ) := σ̄ · nI + 1
η̄
M̄d · nI and expand Eq. (28) into

TP =
∫ π

0

∫ ∞

r̄P (θ )
r̄2er × I(r̄ , θ )|ϕ= π

2 , 3π
2

dr̄ dθ +
∫ 2π

π

∫ ∞

r̄P (θ )
r̄2er × I(r̄ , θ )|ϕ= π

2 , 3π
2

dr̄ dθ. (A1)

The second integral can be transformed into∫ 2π

π

∫ ∞

r̄P (θ )
r̄2er × I(r̄ , θ )|ϕ= π

2 , 3π
2

dr̄ dθ = −
∫ π

2π

∫ ∞

r̄P (θ )
r̄2er × I(r̄ , θ )|ϕ= π

2 , 3π
2

dr̄ dθ (A2)

= −
∫ −π

0

∫ ∞

r̄P (θ )
r̄2er × I(r̄ , θ )|ϕ= π

2 , 3π
2

dr̄dθ (A3)

=
∫ −π

0

∫ ∞

r̄P (θ )
r̄2er × I(r̄ ,−θ )|ϕ= π

2 , 3π
2

dr̄dθ. (A4)
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For the step from Eqs. (A3) to (A4) we used −I(r̄ , θ ) = I(r̄ ,−θ ). By substituting χ = −θ , we
find

∫ 2π

π

∫ ∞

r̄P (θ )
r̄2er × I(r̄ , θ )|ϕ= π

2 , 3π
2

dr̄ dθ = −
∫ π

0

∫ ∞

r̄P (−χ )
r̄2er × I(r̄ , χ )|ϕ= π

2 , 3π
2

dr̄dχ. (A5)

Since a mirror-symmetric particle with respect to the plane perpendicular to its motion is assumed,
r̄P (θ ) is an even function [r̄P (θ ) = r̄P (−θ )], and Eq. (28) is identically zero.

APPENDIX B: SOLUTION OF THE GOVERNING EQUATIONS

1. � = 90◦—Zeroth-order solution

The zeroth-order solution corresponds to an undeformed sphere in an unbounded fluid. Under
the assumptions made, this is equivalent to the case studied by Henry [11]. Instead of going through
this quite cumbersome mathematics, and to simplify the calculations for the first order in β, we
utilize Teubner’s method [14]. By a generalization of the reciprocal theorem for Stokes flow [see
Ref. 76], and by comparing a charged and an uncharged state of the particle, he found that the
Stokes equations with a source term corresponding to the electrostatic force are no longer needed
to be solved analytically. Instead, the nondimensional force balance at the particle surface can be
rewritten into [see Ref. 14]

η̄ = −
∫
V

[∇̄2ψ̄∇̄φ̄ · (v̄c − ez)] dV∫
�P

σ̄ c|r̄=1 · nP · ez dS
, (B1)

in which v̄c and σ̄ c correspond to the Stokes equations without source term. The solutions
of the homogeneous Stokes equations, as well as the solutions of the Laplace and Poisson-
Boltzmann equations, satisfying the boundary condition Eqs. (15) and (16), are readily known [see
Refs. 14,77]:

v̄c
(0) = − 1

2 cos(θ )(r̄−3 − 3r̄−1)er − 1
4 sin(θ )(r̄−3 + 3r̄−1)eθ , (B2)

p̄c
(0) = 3

2 cos(θ )r̄−2, (B3)

ψ̄(0) = exp[−κa(r̄ − 1)]r̄−1, (B4)

φ̄(0) = − cos(θ )
(
r̄ + 1

2 r̄−2). (B5)

Inserting Eqs. (B2)–(B5) into Eq. (B1) leads to the famous result by Henry [11] as given in
Eq. (32).

2. O(β )—First-order solution

As already mentioned in Sec. IV A, the zeroth-order solutions [Eqs. (B2)–(B5)] from the
foregoing paragraph are the basis for the first-order perturbation solutions in β. This is due to the
fact that the boundary conditions on the deformed sphere are mapped to an undeformed one. The
first-order solution of the Stokes equation without source term is available from Brenner [61] and
has already been utilized by Dörr and Hardt [60] for the representation of the particle shape given
in Eq. (30). We omit the derivation of the corresponding solution and refer the reader to Brenner
[61] and Dörr and Hardt [60]. Instead, we focus on the solutions of the Laplace and linearized
Poisson-Boltzmann equations. First, we map the boundary conditions on the undeformed sphere by
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applying a Taylor expansion around r̄ = 1 and find

ψ̄(1)|r̄=1 = −f (θ, ϕ)
∂ψ̄(0)

∂r̄

∣∣∣∣
r̄=1

= (1 + κa)f (θ, ϕ), (B6)

∂φ̄(1)

∂r̄

∣∣∣∣
r̄=1

= −f (θ, ϕ)
∂2φ̄(0)

∂r̄2

∣∣∣∣
r̄=1

+ ∇φ̄(0)|r̄=1 · ∇f (θ, ϕ)

= 9

2
cos(θ )f (θ, ϕ). (B7)

Following Brenner [61], the right-hand sides of Eqs. (B6) and (B7) need to be expanded in terms of
spherical harmonics [see Refs. 56,64,65]. In the following, we denote SHl (ς (θ, ϕ)) the lth partial
sum of the expansion of ς (θ, ϕ) = ∑∞

l=0 SHl (ς (θ, ϕ)) (see Appendix C). Consequently, we assume
solutions of both equations of the following forms:

ψ̄(1) =
∞∑
l=0

ψ̄
(l)
(1) , φ̄(1) =

∞∑
l=0

φ̄
(l)
(1) . (B8)

Every partial sum of Eq. (B8) has to satisfy the corresponding governing equation together with the
boundary conditions

ψ̄
(l)
(1)

∣∣
r̄=1 = (1 + κa)SHl (f (θ, ϕ)), ψ̄

(l)
(1)

∣∣
r̄→∞ = 0, (B9)

∂φ̄
(l)
(1)

∂r̄

∣∣∣∣
r̄=1

= 9

2
SHl (cos(θ )f (θ, ϕ)), φ̄

(l)
(1)

∣∣
r̄→∞ = 0. (B10)

The first five partial sums of Eqs. (B9) and (B10) are given in Appendix C.
The solutions of the Laplace and Poisson-Boltzmann equations are available for the given set of

boundary conditions [see Ref. 53]. Translated to our notation they read

ψ̄
(l)
(1) = (1 + κa)r̄−(l+1) exp(−κa(r̄ − 1))

Kl (κa r̄ )

Kl (κa)
SHl (f (θ, ϕ)), (B11)

with

Kl (x) =
l∑

s=0

2sl!(2l − s)!

s!(2l)!(l − s)!
xs, (B12)

φ̄
(l)
(1) = −9

2

1

(l + 1)
r̄−(l+1)SHl (cos(θ )f (θ, ϕ)). (B13)

Again, using Eq. (B1) we obtain the first-order electrophoretic mobility coefficient as given in

Eq. (34).

APPENDIX C: EXPANSION OF A FUNCTION IN TERMS OF SPHERICAL HARMONICS

In this Appendix, we give a brief instruction into the expansion of an arbitrary function f (θ, ϕ)
into a series of spherical harmonics. We therefore reproduce the results of Byerly [64], MacRobert
[65], and Jackson [56]. Spherical harmonics are defined as

Ylm(θ, ϕ) =
√

2l + 1

4π

(l − m)!

(l + m)!
P m

l [cos(θ )] exp(imϕ), (C1)
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with P m
l (x) being the associated Legendre function and i the imaginary unit. Due to the orthogo-

nality and completeness properties of spherical harmonics, any sufficiently smooth function f (θ, ϕ)
can be expanded in terms of these functions. As short-hand notation we define χ = cos(θ ) and
expand f (χ, ϕ) via

A0,l = 2l + 1

4π

∫ 2π

0

∫ 1

−1
f (χ, ϕ)Pl (χ )dχ dϕ, (C2)

Am,l = 2l + 1

2π

(l − m)!

(l + m)!

∫ 2π

0

∫ 1

−1
f (χ, ϕ) cos(mϕ)P m

l (χ )dχ dϕ, (C3)

Bm,l = 2l + 1

2π

(l − m)!

(l + m)!

∫ 2π

0

∫ 1

−1
f (χ, ϕ) sin(mϕ)P m

l (χ )dχ dϕ, (C4)

SHl (f (χ, ϕ)) = A0,lPl (χ ) +
l∑

m=1

(
Am,l cos(mϕ) + Bm,l sin(mϕ)

)
P m

l (χ ). (C5)

Therefore, Eq. (B9), with f1(χ, ϕ) =
√

1 − χ2| cos(ϕ)|, leads to

SH0(f1(χ, ϕ)) = 1

2
, (C6)

SH2(f1(χ, ϕ)) = − 5

32
[−1 + 3χ2 + 3(χ2 − 1) cos(2ϕ)], (C7)

SH4(f1(χ, ϕ)) = −3[9 − 90χ2 + 105χ4 + 20(1 − 8χ2 + 7χ4) cos(2ϕ)]

1024

− 105[(χ2 − 1)2 cos(4ϕ)]

1024
, (C8)

...

Note that all SHj (f1(χ, ϕ)), with j = 2l − 1, vanish, since f1(χ, ϕ) is even with respect to χ .
Following the same procedure, Eq. (B10), with f2(χ, ϕ) = χ

√
1 − χ2| cos(ϕ)|, leads to

SH1(f2(χ, ϕ)) = 3χ

8
, (C9)

SH3(f2(χ, ϕ)) = − 7

64
χ [−3 + 5χ2 + 5(χ2 − 1) cos(2ϕ)], (C10)

SH5(f2(χ, ϕ)) = −55χ [15 − 70χ2 + 63χ4 + 28(1 − 4χ2 + 3χ4) cos(2ϕ)]

8192

−1155χ (χ2 − 1)2 cos(4ϕ)

8192
, (C11)

...

Here, SHj (f2(χ, ϕ)) = 0, if j = 2l, since f2(χ, ϕ) is odd with respect to χ .

APPENDIX D: SOLUTION OF DIFFERENTIAL EQUATIONS SIMILAR TO EQ. (46)

We consider an ordinary differential equation of the type

1

r

∂

∂r

(
r
∂f (r )

∂r

)
= g(r ), (D1)
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with g(r ) and f (r ) fulfilling limr→∞ g(r ) = 0, limr→∞ f (r ) = 0 and limr→∞ ∂f (r )
∂r

= 0. Equation
(D1) can be transformed into

[
r
∂f (r )

∂r

]∞

ρ

=
∫ ∞

ρ

rg(r )dr,

∂f (ρ)

∂ρ
= − 1

ρ

∫ ∞

ρ

rg(r )dr,

f (ρ̃) =
∫ ∞

ρ̃

1

ρ

∫ ∞

ρ

rg(r )drdρ.

We define ξ (ρ) = 1
ρ

and χ (ρ) = ∫ ∞
ρ

rg(r )dr and apply the Leibniz integral theorem to find

∂χ (ρ)

∂ρ
= −ρ g(ρ),

and by partial integration

∫ ∞

ρ̃

1

ρ

∫ ∞

ρ

rg(r )drdρ =
[

ln(ρ)
∫ ∞

ρ

rg(r )dr

]∞

ρ̃

+
∫ ∞

ρ̃

ln(ρ)ρg(ρ)dρ

= − ln(ρ̃)
∫ ∞

ρ̃

rg(r )dr +
∫ ∞

ρ̃

ln(ρ)ρg(ρ)dρ

⇒ f (ρ̃) =
∫ ∞

ρ̃

ln

(
ρ

ρ̃

)
ρg(ρ)dρ. (D2)

APPENDIX E: ALTERNATIVE FORM OF THE INTEGRAND IN EQ. (49)

The second part of the integrand in Eq. (49) can be rewritten (via the product rule) as

(κa)2ψ̄(0)ψ̄(1) + ∂ψ̄(0)

∂ρ

∂ψ̄(1)

∂ρ
=

[
(κa)2ψ̄(0) − ∂2ψ̄(0)

∂ρ2

]
ψ̄(1) + ∂

∂ρ

[
∂ψ̄(0)

∂ρ
ψ̄(1)

]
,

and further by replacing (κa)2ψ̄(0) using Eq. (13):

[
(κa)2ψ̄(0) − ∂2ψ̄(0)

∂ρ2

]
ψ̄(1) + ∂

∂ρ

[
∂ψ̄(0)

∂ρ
ψ̄(1)

]
= 2

ρ

∂ψ̄(0)

∂ρ
ψ̄(1) + ∂

∂ρ

[
∂ψ̄(0)

∂ρ
ψ̄(1)

]
.

Inserting this into Eq. (47) leads to

h̄(1)(ρ̃) =
∫ ∞

ρ̃

ln

(
ρ

ρ̃

)
ρ

[
2

ρ

∂ψ̄(0)

∂ρ
ψ̄(1) + ∂

∂ρ

(
∂ψ̄(0)

∂ρ
ψ̄(1)

)]∣∣∣∣
ϕ= π

2 , 3π
2

dρ. (E1)

The integral of the second term in brackets is given by

I =
∫ ∞

ρ̃

ln

(
ρ

ρ̃

)
ρ

[
∂

∂ρ

(
∂ψ̄(0)

∂ρ
ψ̄(1)

)]∣∣∣∣
ϕ= π

2 , 3π
2

dρ.
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FIG. 6. Computational domain used in the COMSOL Multiphysics simulations.

By partial integration we obtain

I =
[

ln

(
ρ

ρ̃

)
ρ

∂ψ̄(0)

∂ρ
ψ̄(1)

∣∣∣∣
ϕ= π

2 , 3π
2

]∞

ρ̃

−
∫ ∞

ρ̃

[
1 + ln

(
ρ

ρ̃

)]
∂ψ̄(0)

∂ρ
ψ̄(1)

∣∣∣∣
ϕ= π

2 , 3π
2

dρ.

Inserting the boundary conditions for the equilibrium potential makes the first term vanish. Inserting
the result into Eq. (E1) finally leads to

h̄(1)(ρ̃) =
∫ ∞

ρ̃

[
ln

(
ρ

ρ̃

)
− 1

]
∂ψ̄(0)

∂ρ
ψ̄(1)

∣∣∣∣
ϕ= π

2 , 3π
2

dρ. (E2)

APPENDIX F: INTERFACIAL DEFORMATION IN THE LIMIT OF THICK EDLs, κa → 0

We may examine the asymptotic interfacial deformation for thick EDL according to Eq. (48) by
utilizing a Taylor expansion around κa = 0. Apart from the well-known Taylor expansions of the
exponential functions appearing in Eq. (48), we find for the exponential integral function

Ei(−2 κa ρ̄ ) = γE + ln(2 κa ρ̄) +
∞∑

n=1

(−2 ρ̄ )n

nn!
(κa)n. (F1)

γE ≈ 0.577 is the Euler-Mascheroni constant. In Eq. (48) the exponential integral function is
multiplied by (κa)2 and therefore only contributes to the second order of κa. Up to first order
we find the expansion

h̄(1)(ρ̄) = 1

8ρ̄2
+ κa

4ρ̄2
+ O(κa)2, (F2)

which consequently leads to

lim
κa→0

h̄(1)(ρ̄) = 1

8ρ̄2
. (F3)

APPENDIX G: DETAILS OF THE NUMERICAL SIMULATIONS USING
COMSOL MULTIPHYSICS

Our theoretical model is derived based on a perturbation in the contact angle on the surface of
the spherical interfacial particle. To evaluate the range of validity in this context, we employed
numerical simulations using the commercial finite-element tool COMSOL Multiphysics [69]. Since
our numerical scheme is inspired by the procedure described in Masliyah and Bhattacharjee [77],
we avoid going into too much detail and just briefly discuss the method employed. Consistent with
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TABLE I. Boundary conditions corresponding to Fig. 6.

Boundary Variable Description Expression

Particle surface v̄ No slip v̄ = 0
ψ̄ Dirichlet ψ̄ = 1
φ̄ Zero gradient n · ∇̄φ̄ = 0

A-D-E-F v̄ & p̄d Zero stress n · (−p̄d I + ∇̄v̄ + (∇̄v̄)T ) = 0
ψ̄ Dirichlet ψ̄ = 0
φ̄ Dirichlet φ̄ = L̄

G-H-C-B v̄ & p̄d Zero stress n · (−p̄d I + ∇̄v̄ + (∇̄v̄)T ) = 0
ψ̄ Dirichlet ψ̄ = 0
φ̄ Dirichlet φ̄ = −L̄

B-C-D-A & C-H-E-D v̄ Symmetry n · v̄ = 0 ∧ n · ∇̄v̄ = 0
ψ̄ Symmetry n · ∇̄ψ̄ = 0
φ̄ Symmetry n · ∇̄φ̄ = 0

F-E-H-G & G-B-A-F v̄ & p̄d Zero stress n · (−p̄d I + ∇̄v̄ + (∇̄v̄)T ) = 0
ψ̄ Dirichlet ψ̄ = 0
φ̄ Zero gradient n · ∇̄φ̄ = 0

our theory, we assume a spherical particle attached to a flat, undeformable interface, as shown in
Fig. 6. We modeled the particle being attached to a cube having the side length of (2L,L,L).
According to Masliyah and Bhattacharjee [77], L has to be chosen such that L ∈ [12a, 20a] to
ensure that the results are virtually independent of the domain size. Nevertheless, the finiteness
of the numerical domain limits the application for thick EDLs, whereas the spatial resolution of
the mesh is a limiting factor for thin EDLs. We therefore limit the range of Debye parameters to
κa ∈ [1, 10]. We generate a fine and structured mesh in the EDL region, whereas an unstructured
and much coarser mesh is employed everywhere else, since the highest gradients are expected in the
proximity of the particle. In a simulation, we solve the set of Eqs. (2) and (4)–(6), together with the
boundary conditions summarized in Table I. We used the predefined CFD and mathematics modules
in COMSOL Multiphysics, for the hydrodynamic and the electrostatic equations, respectively. The
Lagrangian shape functions used to discretize the variables are of second order, except of the first-
order discretization of the pressure. The resulting system of algebraic equations is solved using the
direct and fully coupled PARDISO solver. Henry’s solution (� = 90◦) was used for validation, and
errors smaller than 1% were obtained if we choose L = 15a. Consequently, we kept L = 15a for
all simulations. We calculate the electrophoretic mobility using Eq. (1) based on the mean value of
the velocity at the plane A-D-E-F.
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