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A theoretical model is developed to study the cross-stream migration of a deformable
surfactant-laden droplet suspended in a nonisothermal Poiseuille flow. In addition to the
thermocapillary migration of the droplet, presence of shape deformation due to the imposed
flow redistributes the surfactants along the interface that has a significant effect on its
dynamics, which has yet remained unexplored. Owing to the nonlinearity present in the
system of governing equations, an asymptotic approach is adopted to capture the intricate
and nontrivial coupling between the various influencing parameters. Assuming negligible
fluid inertia and thermal convection, the droplet migration velocity is obtained through
small-deformation analysis in the limits of convective and diffusive surfactant transport.
For the former limiting case, the droplet migrates towards the flow centerline when the
temperature of the suspending medium increases in the direction of the imposed flow;
however, the direction of its cross-stream migration reverses for a system with a high
viscosity ratio of droplet to carrier phase. Under the same limiting scenario and for systems
with low viscosity ratio, when the temperature linearly decreases in the direction of the
imposed flow, the cross-stream migration velocity reduces with the increase in the applied
temperature gradient till a critical point is reached at which there occurs no cross-stream
migration. Beyond the critical point, there is a gradual increase in the magnitude of the
cross-stream velocity with further rise in the imposed temperature gradient. The droplet,
below the critical temperature gradient, migrates towards the flow centerline; however,
above it the droplet moves away from the centerline. For the other limiting case where
surfactant transport is dominated by surface convection, the magnitude of the cross-stream
velocity is found to be significantly larger and at the same time independent of the
droplet-carrier phase viscosity ratio.
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I. INTRODUCTION

Manipulation of droplet motion in microchannels has attracted significant attention in the past
few decades, due to its wide spread applications in different devices of practical importance
[1–3]. A significant number of such applications are directed towards medical diagnostics and
material-processing industries, including specific examples in drug delivery, cell encapsulation,
reagent mixing, and analytic detection [1,4–7]. Some other relevant biological applications include
the transverse migration and positioning of red blood cells and erythrocytes in the flow of blood
through arteries [8,9]. A proper methodology for modulating the position of the dispersed phase
(cells, droplets, or particles) has a wide scope in the domain of flow fractionation [10,11] and
cytometry [12]. This control over the steady-state position of the droplet can be fine-tuned with
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the aid of an externally imposed temperature gradient, which can also be used for separation and
sorting of droplets [13–15].

Several theoretical as well as experimental studies have been executed to analyze the dynamics
of droplets that are transported with the helps of syringe pumps [16–18]. Haber and Hetsroni
[19] theoretically demonstrated the migration characteristics of a surfactant-free Newtonian droplet
suspended in an isothermal arbitrary Stokes flow. Later, the effect of different nonlinear effects such
as shape deformation, inertia, and viscoelasticity were investigated [18,20,21]. It was shown that a
deformable droplet, when placed eccentrically with respect to the centerline of a pressure driven,
exhibits a migration in the cross-stream direction [20,22–26]. Chan and Leal [20] showed the effect
of λ (which is the ratio of viscosity of the droplet phase to the carrier phase) on the cross-stream
migration of the droplet. The cross-stream migration of the droplet is affected due to the presence
of different external effects such as viscoelasticity [20,27,28] and fluid inertia [18,29,30], which
introduces nonlinearity into the system. It has been shown experimentally that fluid inertia-induced
lift force may drive a droplet away from the centerline of a microchannel [17]. Some recently
published works have shown that cross-stream migration of a droplet occurs due to the presence
of surfactants [31,32], even though there is no deformation, inertia, or viscoelasticity involved.

Surfactants are surface active agents which may be present as contaminants or may be externally
added to stabilize an emulsion. Presence of an imposed flow results in a nonuniform distribution
of surfactants along the droplet surface which significantly affects its dynamics by altering the
surface tension [32,33]. The droplet deformation also results in surfactant redistribution that affects
the surface tension gradient along the interface. There is experimental evidence which proves
that there exists a relationship between the shape deformation and surfactant distribution along
the droplet surface [34–36]. Stan et al. [17] showed numerically as well as experimentally that
shape deformation of a surfactant-free droplet induces a lift force that significantly affects the
cross-stream migration of the droplet. However, a significant number of studies have also analyzed
the migration characteristics of a nondeformable surfactant-laden droplet [32]. Vlahovska et al.
[37] used a small-deformation perturbation approach to show the effect of the Marangoni stress,
generated due to nonuniform surfactant distribution, on the dynamics of a droplet suspended in a
linear flow, for the limiting case where surfactant transport is dominated by surface convection.

A significant amount of research is directed towards proper modulation of the droplet or a particle
in a flow field due to presence of different external effects such as magnetic [2], acoustic [2],
electric [38–40], or temperature [41]. The first theoretical study to obtain the axial droplet migration
velocity in a linearly varying temperature flow field was performed by Young et al. [42]. Later a
number of researchers have studied thermocapillary motion of droplets in the presence of several
nonlinear effects such as fluid inertia [43], droplet deformation [44], thermal convection [45–47],
and bounding walls [48–52]. Sekhar et al. [53], in a recent work, studied the thermocapillary
migration of droplet in the presence of an imposed Stokes flow where they showed that the effects
due to imposed flow and thermocapillary action on fluid flow can be linearly combined in the
absence of any shape deformation.

A number of studies have also shown the combined effect of thermocapillary and surfactant-
induced Marangoni stress on droplet migration [54,55]. Recently Das et al. [56] showed the effect
of temperature variation as well as surfactant distribution on the dynamics of a nondeformable
droplet suspended in a Poiseuille flow. The present problem further extends this study by taking into
account the effect of imposed flow-induced shape deformation on the cross-stream migration of the
droplet. This problem is nonlinear and nontrivial and cannot be addressed as a mere superposition
of the concerned influencing parameters, due to the unknown droplet shape. In order to tackle such
a situation, we use an asymptotic approach for two limiting cases, namely, surface convection-
driven-surfactant transport and surface diffusion-driven-surfactant transport. The prime objective of
this study is to capture the mechanism and manner in which the imposed temperature gradient and
shape deformation-induced surfactant redistribution alter the croos-stream migration characteristics
of the droplet, which have hitherto not been addressed.
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FIG. 1. Schematic of a surfactant-laden droplet of radius a suspended in a Poiseuille flow field. A linearly
increasing temperature field (T̄∞) in the direction of the imposed flow (z̄ direction) is shown. The droplet is
placed at an off-center position, ē being the eccentricity. R̄ is the distance from centerline of flow to the point
of zero velocity. Both spherical (r̄ , θ, ϕ) as well as Cartesian coordinate system (x̄, ȳ, z̄) are shown. The x̄ axis
is directed away from the centerline of the droplet.

II. PROBLEM FORMULATION

A. System description

The present system consists of a neutrally buoyant Newtonian droplet of radius a suspended in
another Newtonian fluid with an imposed Poiseuille flow. A schematic of the system is given in
Fig. 1. The thermal conductivity and bulk viscosity of the droplet phase are denoted by ki and ηi

respectively. The respective properties for the suspending phase are ke and ηe. It is assumed that
a constant temperature gradient, Ḡ, is applied to the suspending phase. Bulk insoluble surfactants
are assumed to be present on the interface of the droplet. The surfactants gets transported only
along the surface of the droplet by means of convection as well as diffusion. The only property
which is not constant is the surface tension (σ̄ ). The surface tension is directly dependent on the
interfacial temperature T̄s and the local surfactant concentration (�̄). The equilibrium surface tension
for a surfactant-free droplet is denoted by σ̄c at a reference temperature of T̄o. In the absence of
any imposed flow or temperature gradient, the surfactant is uniformly distributed along the droplet
surface. The equilibrium surfactant concentration under such a situation is represented by �̄eq. The
corresponding equilibrium surface tension is denoted by σ̄eq that eventually changes to σ̄ due to
the disturbance generated by the imposed flow and a constant temperature gradient. The variation
of temperature at the droplet interface generates a Marangoni stress which in conjunction with
imposed flow-induced shape deformation results in further transport of the surfactants along the
droplet surface. Thus the combined presence of an imposed Poiseuille flow and a linearly varying
temperature field generates Marangoni stresses, which alters the migration velocity of the droplet
(Ū). The primary objective of the present study is to analyze the effect of the thermal Marangoni
stresses on the cross-stream migration characteristics of the droplet. As can be seen from Fig. 1, we
use a spherical coordinate system (r̄ ,θ ,ϕ) which is attached to the centroid of the droplet.

B. Important assumptions

Some of the important assumptions required to simplify the governing equations and boundary
conditions for flow and temperature field are as follows:
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(i) The transport of thermal energy by means of advection is neglected. That is, the thermal Péclet
number for the present study is taken to be small, PeT = V̄ca/αe � 1, where αe is the thermal
diffusivity of the continuous phase and V̄c is the centerline velocity of the imposed flow.

(ii) The effect of fluid inertia is assumed to be negligible, that is, the Reynolds number based
on droplet radius is taken to be small Re = ρV̄ca/μe � 1, where ρ is the density of either of the
phases.

(iii) Only small deformation of the droplet is taken into account. Thus the capillary number,
Ca∗ = μeV̄c/σ̄eq, which is the ratio of the viscous force to the surface tension force acting on the
droplet, is assumed to be small (Ca∗ � 1).

(iv) The surfactants only get transported along the droplet surface and are insoluble in either of
the phases [55].

(v) The surfactants are present as an ideal film at the interface and do not affect the heat transfer
process [55].

(vi) The interfacial tension is linearly dependent on the surfactant concentration and the
interfacial temperature distribution along the surface of the droplet through the equation of state
[54–56].

(vii) Any effect of bounding walls is neglected, that is, the droplet is assumed to be suspended in
an unbounded medium.

Typical values of the above nondimensional numbers, obtained from the experimental work of
Chen et al. [57], show the above assumptions to be valid.

C. Governing equations and boundary conditions

The dimensionless form of the governing equations and relevant boundary conditions are now
stated. The nondimensional scheme used for deriving these equations is

r = r̄/a, u = ū/V̄c, � = �̄/�̄eq, σ = σ̄ /σ̄c,

p = p̄/(μeV̄c/a), τ = τ̄/(μeV̄c/a), T = (T̄ − T̄o)/|Ḡ|a,

}
(1)

where all the quantities with an overbar represent dimensional quantities, and those without
any overbar are dimensionless quantities. While deriving the governing equations and boundary
conditions we encounter various nondimensional entities such as (i) the viscosity ratio, λ = μi/μe,
which is the ratio of the viscosity of the droplet phase to that of the suspending phase; (ii) the
thermal conductivity ratio, δ = ki/ke, which is the ratio of the thermal conductivity of the droplet
phase to that of the carrier phase; (iii) the elasticity number, β = �̄eqRgTo/σ̄c = −d(σ̄ /σ̄c )/d�̄,
which indicates the sensitivity of surface tension to the local surfactant concentration on the surface
of the droplet; (iv) the thermal Marangoni number, MaT = γT |Ḡ|a/μeV̄c, which is the ratio of
the thermocapillary-induced Marangoni stress to the viscous stress; (v) the surface Péclet number,
Pes = V̄ca/Ds , which signifies the relative importance of surfactant transport due to advection to
that due to surface diffusion, where Ds is the surface diffusivity of the surfactants; and (vi) the
modified capillary number, Ca = Ca∗/(1 − β ), which is the ratio of the viscous force to the surface
tension force acting on the droplet. From the definition of β, the equilibrium surface tension for
a surfactant-laden droplet in the absence of any imposed flow or temperature gradient can be
expressed as σ̄eq = σ̄c(1 − β ). Thus it is inevitable that the value of β lies within 1 and 0.

Based on the assumption of negligible convection of thermal energy, the dimensionless governing
equations for the temperature field can be written as

∇2Ti = 0,

∇2Te = 0,

}
(2)
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subjected to the following boundary conditions at the interface and at the far field:

as r → ∞, Te = ζ r cos θ,

Ti is bounded at r = 0,

at r = rs, Ti = Te,

at r = rs, δ(∇Ti ) · n̂ = (∇Te ) · n̂.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

The two boundary conditions at the interface indicate the continuity of temperature and heat
transfer. Here Ti and Te are the temperature field inside and outside the droplet. The quantity ζ

indicates whether the droplet migrates in the direction of the imposed flow field or against it. If
ζ = 1, the temperature increases in the direction of the imposed flow, whereas ζ = −1 signifies
that the temperature decreases in the direction opposite to the direction of the imposed flow. The
governing differential equations for the flow field can be expressed in a nondimensional form as
follows [54,56]:

−∇pi + λ∇2ui = 0, ∇ · ui = 0,

−∇pe + ∇2ue = 0, ∇ · ue = 0,

}
(4)

where (ui, ue) and (pi, pe) are the velocity and pressure fields inside and outside the droplet. The
relevant boundary conditions at the far field and at the interface of the droplet are the following:

at r → ∞, (ue,pe )=(V∞ − U,p∞),

ui is bounded at r = 0,

at r = rs, ui · n̂ = ue · n̂ = 0,

at r = rs, ui = ue,

at r = rs, (τ e · n̂ − τ i · n̂) = ζMaT ∇sT + β

(1−β )Ca ∇s� + σ
Ca (∇ · n̂)n̂,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

where rs = 1 + Cag(Ca)(θ, ϕ) + Ca2g(Ca2 )(θ, ϕ). g(Ca) and g(Ca2 ) are O(Ca) and O(Ca2) correction
to the shape of the droplet. Also V∞ is the imposed circular Poiseuille flow field, n is the unit normal
drawn on the droplet surface, and ∇s = (I − nn)∇, is the surface gradient operator. The stress
balance condition in Eq. (5) is obtained with the help of the following nondimensional equation of
state:

σ = 1 − ζMaT CaTs − β�. (6)

The dimensionless surfactant transport equation can be written as [58]

Pes∇s · (us�) = ∇2
s �. (7)

The surfactants on the droplet surface must also fulfill the mass conservation constraint, which
is given by ∫ 2π

ϕ=0

∫ π

θ=0
�(θ, ϕ) sin θ dθ dϕ = 4π. (8)

The temperature field, as observed from Eq. (2), is uncoupled from the flow field under the
assumption of low thermal Péclet number. So temperature in either of the phases can be solved
independently without solving for the flow field. However, this is not the situation when we try to
obtain the solution for surfactant concentration as well as flow field. The flow field is coupled with
both the temperature field as well as the surfactant distribution on the droplet surface, due to the
presence of Marangoni stress. The surfactant concentration, on the other hand, is coupled to the
flow field through the surfactant transport equation [Eq. (7)]. Thus a direct analytical solution is not
possible. We thus use an asymptotic method which is performed for two limiting cases: (i) Low
surface Péclet number, Pes � 1, which signifies that the dominant mode of surfactant transport
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is surface diffusion and (ii) high surface Péclet number, Pes → ∞, which indicates that surface
advection is the main mode of surfactant transport along the droplet surface. Depending on the type
surfactants used, the surface diffusivity may vary between Ds = 10−11 and 10−8 m2/s [59]. Based
on a droplet of a radius 50 μm, the range of variation of Pes is given by Pes = 0.1−100, which
justifies the choice of the two limiting cases.

III. ASYMPTOTIC SOLUTION

A. Solution for Pes � 1

As only a small deformation of the droplet is assumed, the order of magnitude of the surface
Péclet number is taken to be the same as that of the capillary number, that is, Pes ∼ Ca. This can be
mathematically expressed as

Pes = κCa, (9)

where κ = aσ̄eq(1 − β )/μeDs is called the property parameter because it depends mainly on the
material properties and has a finite magnitude. We thus in our asymptotic analysis choose Ca as
the perturbation parameter. As we will be using the regular perturbation method to solve for the
temperature and flow field, we can expand any generic variable (ψ) in a power series in terms of Ca
in the following manner:

ψ = ψ (0) + ψ (Ca)Ca + O(Ca2), (10)

where ψ (0) is the leading order term corresponding to no deformation of the droplet and ψ (Ca) is
O(Ca) correction to the quantity, ψ , due to deformation of the droplet. Other terms indicate even
higher order corrections due to droplet deformation. The surfactant concentration on the other hand
is represented in the following manner:

� = 1 + �(0)Ca + �(Ca)Ca2 + O(Ca3), (11)

where �(0) and �(Ca) are O(Ca) and O(Ca2) correction to the surfactant concentration due to droplet
deformation. The leading order contribution to the surfactant concentration (� = 1) signifies the
scenario when the surfactants are uniformly distributed without any droplet deformation (Ca = 0).

First, with the help of Eq. (10), we derive the leading order and O(Ca) boundary conditions
for the temperature field. As the leading order governing equations and boundary conditions for
temperature are not coupled with the flow field equations, the temperature field can be solved
independently, whose expression is the same as was obtained by Das et al. [56]. Second, we
obtain the leading order flow field boundary conditions, which along with the surfactant transport
equation of the same order are solved for the velocity and the pressure field as well as the surfactant
concentration. The leading order droplet migration velocity, which is obtained by the application of
force-free condition, is

U (0)
z =

[
(3R2−2)κβ+3(3λR2−2λ+2R2 )(1−β )

3R2 {κβ+(3λ+2)(1−β )} − e2

R2

+2ζMaT
(1−β )

(δ+2){κβ+(3λ+2)(1−β )}

]
, U (0)

x = U (0)
y = 0, (12)

where U (0)
z is the axial velocity of the droplet, whereas U (0)

x , U (0)
y are the cross-stream migration

velocity components. It can be inferred from the expression that there is no cross-stream migration
of the droplet in the absence of droplet deformation. The leading order surfactant concentration,
which satisfies the surfactant transport equation, is given by

�(0) = �
(0)
1,0P1,0 + �

(0)
3,0P3,0 + �

(0)
2,1 cos ϕP2,1,

where �
(0)
1,0 = 1 − β

{(3λ + 2 − κ )β − 3λ − 2}
(

3κMaT

δ + 2
+ 2

R2

)
,
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�
(0)
3,0 = − 7κ

6R2

{
1 − β

(7λ + 7 − κ )β − 7λ − 7

}
, �

(0)
2,1 = 5eκ

3R2

{
1−β

(5λ+5−κ )β−5λ−5

}
. (13)

Third, with the leading order solution at hand, the O(Ca) correction to droplet shape, g(Ca), is
obtained with the help of the normal stress boundary condition as

g(Ca) = L
(Ca)
3,0 P3,0 + L2,1 cos ϕP2,1,

where

L
(Ca)
2,1 = − 5e

12R2

{
4κβ + (16 + 19λ)(1 − β )

κβ + 5 (1 + λ)(1 − β )

}
, L

(Ca)
3,0 = 7

60R2

{
5κβ + 3 (11λ + 10)(1 − β )

κβ + 7 (1 + λ)(1 − β )

}
.

(14)

It can be inferred from the above expression that the O(Ca) shape deformation of the droplet is
independent of the interfacial temperature gradient or the thermal Marangoni stress (MaT ). However
the surfactant distribution is altered as a result of the thermally induced Marangoni stress, which can
be seen from Eq. (13). This variation in interfacial surfactant concentration, which is coupled with
the flow field through the surfactant transport equation [Eq. (7)], alters the fluid flow and hence
the migration velocity of the droplet. We now proceed towards determining the O(Ca) temperature
field (T (Ca)

i , T (Ca)
e ), flow field (u(Ca)

i,e , p
(Ca)
i,e ), and the surfactant concentration (�(Ca)) by repeating

the above steps over the boundary conditions evaluated at the deformed interface.
The expression for the O(Ca) temperature field, thus obtained, is

T
(Ca)
i =

4∑
n=0

n∑
m=0

[
a(Ca)

n,m rn cos (mϕ) + â(Ca)
n,m rn sin (mϕ)

]
Pn,m(cos θ ),

T (Ca)
e =

4∑
n=0

n∑
m=0

[
b

(Ca)
−n−1,mr−n−1 cos (mϕ) + b̂

(Ca)
−n−1,mr−n−1 sin (mϕ)

]
Pn,m(cos θ ),

⎫⎪⎪⎬
⎪⎪⎭ (15)

where the constant coefficients are given in Sec. III A of the Supplemental Material [60].
The expressions for the axial and the cross-stream component of velocities are

U (Ca)
z = 0, U (Ca)

y = 0, U (Ca)
x = e

c3(β, κ, λ, δ)
[c1(β, κ, λ, δ) + ζMaT c2(β, κ, λ, δ)], (16)

where the constants c1, c2, and c3 in the above expression is given in Sec. III B of the Supplemental
Material [60]. As can be seen from the above expression for cross-stream migration velocity, the
thermal Marangoni stress explicitly has an effect on the cross-stream migration velocity of the
droplet even though a constant temperature gradient is applied in the axial direction. This is quite
nonintuitive.

Finally, the expression for O(Ca) surfactant concentration is given by

�(Ca) =
[
�

(Ca)
0,0 + �

(Ca)
1,1 cos ϕP1,1 + �

(Ca)
2,0 P2,0 + �

(Ca)
2,2 cos (2ϕ)P2,2

+�
(Ca)
3,1 cos ϕP3,1 + �

(Ca)
4,0 P4,0 + �

(Ca)
4,2 cos (2ϕ)P4,2

]
, (17)

where �
(Ca)
0,0 is obtained from the relation for mass conservation of surfactants as given in Eq. (8).

The detailed expressions of the constant coefficients in the above equation are extremely lengthy
and hence not presented here.

B. Solution for Pes � 1

Unlike the limiting case of low Péclet number, we have Pes
−1 ∼ Ca for the case of high surface

Péclet number. The main difference from the previous case lies in the surfactant transport equation,
which for the present limiting case becomes [55]

∇s · (us�) = 0. (18)
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All the quantities in this case are expanded in a power series with respect to Ca, as was done in the
previous case. A similar approach is followed for this limiting case too. Hence only the important
results are highlighted without getting into the details of the methodology. The temperature field for
the leading order of perturbation is the same as was obtained for the case of Pes � 1. The leading
order as well as O(Ca) droplet migration velocity for Pes � 1 is given by

U (0)
z =

(
1 − 2

3R2

)
− e2

R2
, U (0)

x = U (0)
y = 0,

and U (Ca)
z = U (Ca)

y = 0, U (Ca)
x =−e

[
4 − 3β

6R4β
+ ζMaT

{
1 − β

R2(δ + 2)β

}]
. (19)

As can be seen from the above expression of O(Ca) cross-stream migration velocity, the thermal
Marangoni stress has a direct effect on the cross-stream migration of the droplet, although the
temperature gradient is applied in the axial direction. The leading order and O(Ca) surfactant
concentration as obtained from the surfactant transport equation are

�(0) = �
(0)
1,0P1,0 + �

(0)
3,0P3,0 + �

(0)
2,1 cos ϕP2,1

where �
(0)
1,0 = −

(
1 − 1

β

)(
3MaT

δ + 2
+ 2

R2

)
, �

(0)
3,0 = − 7

6R2

(
1 − 1

β

)
, �

(0)
2,1 = − 5e

3R2

(
1 − 1

β

)
,

and �(Ca) =
[
�

(Ca)
0,0 + �

(Ca)
1,1 cos ϕP1,1 + �

(Ca)
2,0 P2,0 + �

(Ca)
2,2 cos (2ϕ)P2,2

+�
(Ca)
3,1 cos ϕP3,1 + �

(Ca)
4,0 P4,0 + �

(Ca)
4,2 cos (2ϕ)P4,2

]
, (20)

where all the constant coefficients in the above equation are provided in Sec. III D of the
Supplemental Material [60]. The expression for �

(Ca)
0,0 can easily be obtained with the help of the

mass conservation constraint as given in Eq. (8). The O(Ca) correction to the droplet shape, g(Ca),
as obtained from the normal stress boundary condition, is

g(Ca) = L
(Ca)
2,1 cos ϕP2,1 + L

(Ca)
3,0 P3,0, where L2,1 = −5

3

e

R2
, L3,0 = 7

12R2
. (21)

On solving the boundary conditions for temperature field at the deformed droplet surface (rs =
1 + g(Ca)Ca), we obtain the O(Ca) temperature distribution inside and outside the droplet as

T
(Ca)
i =

4∑
n=0

n∑
m=0

[
p(Ca)

n,m rn cos (mϕ) + p̂(Ca)
n,m rn sin (mϕ)

]
Pn,m(cos θ ),

T (Ca)
e =

4∑
n=0

n∑
m=0

[
q

(Ca)
−n−1,mr−n−1 cos (mϕ) + q̂

(Ca)
−n−1,mr−n−1 sin (mϕ)

]
Pn,m(cos θ ),

⎫⎪⎪⎬
⎪⎪⎭ (22)

where the constant coefficients are provided in Sec. III C of the Supplemental Material [60].

IV. DISCUSSION OF RESULTS

The prime result of our analysis is the droplet cross-stream migration velocity for the two limiting
cases: (i) low surface Péclet number limit (Pes � 1) and (ii) high surface Péclet number limit. We
first begin our discussion with the low surface Péclet number limit (Pes → ∞).

A. Low surface Péclet limit

In this limiting condition the surfactant transport is primarily dominated by surface diffusion
rather than interfacial advection of surfactants. The present study focuses on the variation of the
steady-state cross-stream migration velocity of the droplet (Ux). The expression for the cross-stream
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FIG. 2. Variation of cross-stream migration velocity of the droplet (Ux) with λ for different values of MaT .
(a) Here the temperature increases in the direction of imposed Poiseuille flow (ζ = 1), whereas in (b) the
temperature decreases in the direction of the imposed flow (ζ = −1). The other parameters are δ = 1, β = 0.5,
κ = 3, R = 5, e = 1, and Ca = 0.1.

migration velocity of the droplet in this limit is

Ux = Ca
e

c3(β, κ, λ, δ)
[c1(β, κ, λ, δ) + ζMaT c2(β, κ, λ, δ)]ex. (23)

It is seen from Eq. (16) that there is no effect of shape deformation on the axial migration velocity
of the droplet. Hence no further investigation on the same is done. Towards providing a detailed
analysis on the cross-stream migration of the droplet, we first show the variation of Ux with the
viscosity ratio, λ, for different values of thermal Marangoni number (MaT ) in Fig. 2. We consider
two different cases of applied thermal gradient, namely, a linearly increasing temperature field in
the direction of the imposed flow (ζ = 1) and a linearly decreasing temperature field in the same
direction (ζ = −1).

1. Increase in temperature in the direction of the imposed Poiseuille flow (ζ = 1)

It can be seen from Fig. 2(a) that for the case of a droplet suspended in an isothermal flow
(MaT = 0), the cross-stream migration velocity decreases with increase in the viscosity ratio, λ.
For a sufficiently high viscous droplet, there is negligible cross-stream migration of the droplet. On
the other hand, if an axial temperature gradient is externally imposed, the cross-stream migration
velocity increases. For low values of λ, there is a significant effect of the applied temperature
gradient on the cross-stream migration velocity of the droplet, but it gradually fades away as λ

is increased. This is because the jump in the tangential stress across the interface is significantly
higher for the case of a low viscous droplet. For a nonisothermal system, the variation of the droplet
cross-stream migration velocity with λ follows the same trend as seen for MaT = 0. It should also
be noted that there is an inflexion point present. That is, the droplet continues to migrate towards the
centerline of flow as long as λ < 2.5, depending on the other nondimensional parameters which have
been given in the caption of Fig. 2. This region has been named “regime 1” of the flow. Above λ =
2.5, the direction of cross-stream droplet migration changes, that is, it starts migrating away from the
flow centerline although the cross-stream velocity still increases with increase in the axially applied
temperature gradient (or MaT ). This region of flow where the direction of transverse migration of the
droplet reverses is named “regime 2” of the flow. It should be noted that even though the temperature
gradient is applied in the axial direction, the cross-stream migration of the droplet is affected. This
is highly nonintuitive. On comparison with the study done by Das et al. [56], where the droplet was
considered to be nondeformable, it can be seen that in the present study a deformable droplet may
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FIG. 3. Contour plot of the surfactant distribution (�̃) on the droplet surface for two cases: (a) the droplet
is suspended in an isothermal flow field (MaT = 0) and (b) the droplet is suspended in a nonisothermal flow
field with the temperature increasing in the direction of the imposed flow (MaT = 1). The other parameter
values are δ = 1, β = 0.5, λ = 0.1, κ = 3, R = 5, e = 1, and Ca = 0.1.

change its direction of cross-stream migration depending on the viscosity ratio of the system (λ),
even for the special case of ζ = 1.

In order to provide a physical insight to nature of variation in cross-stream migration velocity,
we first show the surfactant distribution along the droplet surface in the form of a contour
plot in Figs. 3(a) and 3(b). Figure 3(a) shows the surfactant distribution for an isothermal flow
field, whereas Fig. 3(b) highlights the effect of a positive temperature gradient on the surfactant
concentration and hence on the droplet dynamics. It can be seen from both Figs. 3(a) and 3(b) that
the surfactant distribution is plotted on the surface of an undeformed spherical droplet. This is done
by projecting the surfactant distribution on a deformed droplet to a undeformed spherical surface
of the droplet in the following form: �̃ = �(r2

s /n · r) [31]. The sole reason for this transformation
is to avoid the complexity of expressing the surface divergence vector on a deformed droplet. As
our focus is primarily on the cross-stream migration of the droplet, we look into the surfactant
distribution on either sides of the axial plane of the droplet. It can be seen from both Figs. 3(a) and
3(b) that there is a clear asymmetry in surfactant distribution across the axial plane. This is due to
the eccentrically placed droplet in a Poiseuille flow as a result of which there exists unequal surface
velocities along its northern and southern hemispheres. For instance, consider the system shown
in Fig. 1. As the droplet is placed below the centerline of flow, the upper hemisphere has a higher
surface velocity as compared to the lower hemisphere, which is responsible for this asymmetry in
surfactant distribution.

For the present limiting case of ζ = 1, there is fluid flow from the east pole to the west pole
along the droplet surface. A higher surface velocity in the northern hemisphere results in a larger
surfactant concentration on the northwest part of the droplet as compared to the northeast portion
[see Fig. 3(a)]. The lower hemisphere, which has a lower surface velocity, has a higher concentration
of surfactants on the southeast portion of the droplet. This asymmetry in surfactant distribution
across the axial plane generates a gradient in the surface tension along any transverse plane of the
droplet, which in turn results in the creation of a Marangoni stress, responsible for the retardation
of the cross-stream migration of the droplet [32,33]. The asymmetric distribution of surfactants and
its transport along the droplet surface also significantly affects the normal stress balance and hence
the associated droplet deformation [33,37]. Deformation of the droplet redistributes the surfactants
along the droplet surface, which alters the Marangoni stress and hence affects the droplet dynamics.
When a temperature gradient is applied in the direction of imposed flow [see Fig. 3(b)], a thermal
Marangoni stress is developed that opposes the Marangoni stress generated due to the nonuniform
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FIG. 4. Variation of surface tension along two different planes which are parallel to and are located on
either sides of the axial plane, for two cases: (a) the droplet is suspended in an isothermal flow field and
(b) the droplet is suspended in a nonisothermal flow field with the temperature increasing in the direction of
the imposed flow (MaT = 1). The parameter values are δ = 1, β = 0.5, λ = 0.1, κ = 3, R = 5, e = 1, and
Ca = 0.1.

distribution of surfactants and forces the droplet to migrate towards the hotter region of the flow
field. This increases the net convective transport of surfactants due to enhanced interfacial fluid flow
as compared the case of an isothermal flow field, which in turn results in an enhanced asymmetry in
surfactant distribution. As can be seen from comparison of Figs. 3(b) and 3(a), there is a significant
increase in the gradient in surfactant concentration (|�max − �min|) when a constant temperature
gradient is applied in the direction of bulk flow, which results in a net increase in the surface tension
gradient (|σmax − σmin|) over the droplet surface [refer to Figs. 4(a) and 4(b)]. Both these figures
show the variation of surface tension along two axial planes at two different transverse positions
(θ = π /4, 3π /4) for an isothermal and a nonisothermal system, respectively. From Fig. 4(a) it is
evitable that the surface tension is higher along the northern hemisphere, whereas its magnitude is
comparatively lower along the lower hemisphere. This generates a surfactant Marangoni stress that
acts in a direction away from the flow centerline and hence opposes the imposed flow-driven cross-
stream migration of the droplet towards the center. However, in Fig. 4(b), presence of a constant
temperature gradient in the direction of the imposed flow results in a higher surface tension along
the lower hemisphere, which indicates that the net Marangoni stress acts in a direction towards the
centerline of flow, thus aiding droplet migration.

Hence the cross-stream migration velocity increases. Further increase in the temperature gradient
increases the net Marangoni stress, which in turn enhances the cross-stream velocity. This, in fact,
can be observed from Fig. 2(a) in regime 1. For regime 2, a high enough value of λ, alters the
surfactant distribution along the droplet surface resulting a net change in the overall Marangoni
stress, which now drives the droplet away from the flow centerline [Fig. 2(b)]. In this regime too,
increase in the temperature gradient is manifested by a rise in the magnitude of the cross-stream
migration velocity of the droplet.

2. Decrease in temperature in the direction of the imposed Poiseuille flow (ζ = −1)

We next discuss on the special case of a linearly decreasing temperature field in the direction of
imposed bulk flow (ζ = −1). Figure 2(b) shows the variation of cross-stream migration velocity
with viscosity ratio, λ. In this scenario too, the droplet initially, for low values of λ, migrates
towards the centerline of flow, provided that the applied temperature gradient is sufficiently low (low
MaT ). Unlike the previous case of ζ = 1, the cross-stream migration velocity of the droplet in this
case reduces as the temperature gradient is increased. This decrease in the cross-stream migration
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FIG. 5. Contour plot of the surfactant distribution (�̃) on the droplet surface for the case when the
temperature linearly decreases along the direction of the imposed flow (ζ = −1). The plot is been shown
for two cases: (a) MaT < MaT

∗ and (b) MaT > MaT
∗. The parameter values are δ = 1, β = 0.5, λ = 0.1, κ =

3, R = 5, e = 1, and Ca = 0.1.

velocity of the droplet continues till a point is reached where there is no more lateral migration.
This is the critical point, and the corresponding thermal Marangoni number is known as the critical
thermal Marangoni number, MaT

∗. Increase of MaT beyond this critical value results in a reversal
in the direction of the cross-stream migration of the droplet, which now migrates away from flow
centerline. The expression for MaT

∗ corresponding to zero cross-stream migration can be obtained
from Eq. (23):

Ma∗
T = c1

c2
. (24)

Thus any increase in the imposed temperature gradient, in this region, results in an increase in
the magnitude of the cross-stream velocity of the droplet. This behavior can be seen for the case
of low-viscous droplets (λ < 2). On the contrary for λ > 2, that is, for high-viscous droplets, the
behavior of the cross-stream migration of the droplet was noted to be just the opposite. Initially for
the droplets with λ ≈ 2, the cross-stream migration velocity reduces with increase in both λ as well
as MaT , and the droplet migrates away from the centerline of flow. On further increase in λ, the
droplet starts behaving as a particle, and there remains no effect of Marangoni stress on the droplet
dynamics. At such high values of λ, the variation of cross-stream migration velocity, due to change
in MaT , becomes negligible and results in droplet migration towards the flow centerline with a larger
cross-stream migration velocity, irrespective of the value of MaT .

For a better understanding, we show the distribution of surfactants on the droplet surface [�̃(θ ,ϕ)]
for MaT < MaT

∗ and MaT > MaT
∗ in a contour plot in Figs. 5(a) and 5(b), respectively. For the

present scenario (ζ = −1), the thermally induced Marangoni stress drives the surfactants from the
west pole to the east pole of the droplet, whereas the bulk Poiseuille flow forces the surfactants
to migrate from the east to the west pole. Thus the interfacial fluid flow, induced by the imposed
flow and the applied temperature gradient oppose each other. Further surfactant redistribution also
takes place due to droplet deformation. Hence, depending on whether the Marangoni stress due to
imposed flow or the applied temperature gradient dominates, the interfacial fluid flow may be from
the west pole to the east pole or in the opposite direction. This net surface velocity along with the
surfactant redistribution due to droplet deformation decides the direction as well as magnitude of
the cross-stream migration velocity. For the case when the thermal Marangoni stress is less than
its critical counterpart, the Marangoni convection due to the imposed Poiseuille flow dominates.
Thus fluid flow takes place from the east to the west pole. Taking into account the nonuniformity in
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FIG. 6. Variation of surface tension along two planes (θ = π/4, 3π/4) parallel to and located on either
sides of the axial plane for the case when the temperature decreases in the direction of the imposed flow. In
panel (a) MaT < MaT

∗, and in panel (b) MaT < MaT
∗. The parameter values are δ = 1, β = 0.5, λ = 0.1, κ =

3, R = 5, e = 1, and Ca = 0.1.

the surface velocity along both the hemispheres of the droplet due to its eccentric positioning, the
highest surfactant concentration is expected in the northwest region of the droplet surface, and the
minimum surfactant concentration in the northeast region. This is exactly what is seen in Fig. 5(a). It
can be seen that Fig. 5(a) is quite similar to that shown in Fig. 3(b). Hence the droplet, for the case of
MaT < MaT

∗, migrates towards the center line of flow. For the other case where MaT > MaT
∗, the

thermal Marangoni stress dominates and the direction of the surface velocity reverses. This results
in a maximum surfactant concentration in the southeast region of the droplet, as shown in Fig. 5(b).
On comparison with Fig. 5(a), the surfactant distribution is found to be just the opposite for this
scenario. Hence the direction of the cross-stream migration alters, and it starts migrating away from
the flow centerline, as was shown in Fig. 2(b).

Figures 6(a) and 6(b) show the variation of σ (θ ,ϕ) along two planes on either side of the axial
plane at transverse positions, θ = π /4, 3π /4. First, on comparison with Fig. 4(a), it can be seen that
the net surface tension gradient, |σmax − σmin|, is higher for the case MaT < MaT

∗. Also it is the
upper droplet surface which has the higher surface tension as compared to the lower surface.

Thus the net Marangoni stress developed acts away from the flow centerline. Since for this
scenario the imposed Poiseuille flow dominates the interfacial fluid flow, the enhanced Marangoni
stress due to increase in the surface tension gradient in comparison to the case of an isothermal
flow (MaT = 0) opposes the cross-stream migration of the droplet towards the flow centerline
even more. As a consequence, the cross-stream migration velocity reduces with increase in MaT

as long as MaT < MaT
∗ although the droplet migrates towards the axial plane. This can be seen

in Fig. 2(b). For the special case when MaT > MaT
∗, the thermally induced Marangoni stress

dominates the interfacial fluid flow, and hence the net Marangoni stress, this time, succeeds in
driving the droplet away from the flow center line. With rise in MaT , the surface tension gradient
increases, which indicates a net increase in the Marangoni stress. Thus further increase in MaT

enhances the cross-stream migration velocity of the droplet, which now migrates away from axial
plane.

B. High surface Péclet limit

Under this limit, the surfactant transport is along the interface and is dominated by the surface
convection. The cross-stream migration velocity of the droplet for the limiting case of high Pes is
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given by

Ux = −eCa

[
1

6R4

(
4 − 3β

β

)
+ ζMaT

R2(δ + 2)

{
1 − β

β

}]
ex. (25)

It can be inferred from the above expression that shape deformation play an important role in
the cross-stream migration of the droplet. There is no presence of cross-stream migration velocity
for the leading order solution. Since β lies between 0 and 1, the above expression clearly indicates
that the droplet always migrates towards the flow centerline when the temperature increases in the
direction of the imposed flow (ζ = 1), which is unlike the case for the low Péclet number limit.
However, for an applied temperature gradient in the opposite direction (ζ = −1), the droplet may
either migrate towards or away from the flow centerline. In the absence of λ in the above expression
of cross-stream migration velocity, we show the variation of the same with β for different values of
MaT in Fig. 7.

1. Increase in temperature in the direction of imposed flow (ζ = 1)

Figure 7 shows the variation of Ux as a function of β for two separate cases: ζ = 1 [Fig. 7(a)]
and ζ = −1 [Fig. 7(b)]. Each of the plots is shown for different values of MaT . Under this scenario
(ζ = 1) it can be observed from Fig. 7(a) that increase in β reduces the cross-stream migration
velocity of the droplet irrespective of the applied temperature gradient. This is due to the fact that rise
in β actually increases the surfactant-induced Marangoni stress along the droplet interface that acts
against the direction of the imposed flow and hence reduces the net cross-stream migration velocity
of the droplet [33]. In the presence of an imposed axial temperature gradient, the cross-stream
migration velocity follows the same trend as in the low Péclet limit. However, the magnitude of
the cross-stream migration velocity is much larger as compared to the former limiting case due to
surface convection-dominated surfactant transport. It can also be seen from Fig. 7(a) that the impact
of MaT on the cross-stream migration velocity of the droplet reduces with increase in β. A higher
value of β results in an increased asymmetry in the surface tension across the axial plane and hence
a larger surfactant-induced Marangoni stress, which nullifies the positive effect of the thermally
induced Marangoni stress.

Towards obtaining a physical insight, we next show a contour plot on the distribution of the
surfactants along the surface of the droplet in Fig. 8. It is to be noted from comparison between
Fig. 8(a) and Fig. 3(a) that asymmetry in the surfactant distribution across the axial plane is higher
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FIG. 8. Contour plot of the surfactant distribution (�̃) on the droplet surface for two cases: (a) isothermal
flow field (MaT = 0) and (b) nonisothermal flow field with the temperature increasing in the direction of the
imposed flow (MaT = 1). The contour plot is shown for the limitng case of Pes → ∞. The parameter values
are δ = 1, β = 0.5, λ = 0.1, R = 5, e = 1, and Ca = 0.1.

for the limiting case of high Péclet number even for an isothermal flow field due to enhanced
convection-driven surfactant transport. Similar is the case for a nonisothermal flow field [Fig. 8(b)],
where also the asymmetry in surfactant distribution along the droplet surface (|�max − �min|) is
larger for the present limiting case. As the temperature increases in the direction of the bulk flow,
there is an interfacial fluid flow from the east pole to the west pole of the droplet, which together with
the surface velocity due to the imposed flow results in the highest surfactant concentration along the
northwest region of the droplet and lowest in the northeast region. Since the distribution pattern
of the surfactants is similar to the limiting case of low Péclet number, the droplet in this scenario
migrates towards the flow centerline. Increase in (|�max − �min|) and hence in (|σmax − σmin|) for
a droplet suspended in a nonisothermal flow field results in an enhanced net Marangoni stress that
drives the droplet towards the centerline of flow with a higher cross-stream migration velocity.
This explains the fact that an axially applied temperature gradient can significantly increase the
cross-stream migration velocity of a droplet.

2. Decrease in temperature in the direction of imposed fluid flow (ζ = −1)

We refer to Fig. 7(b), where the variation of the cross-stream migration velocity is shown for
this scenario. Increase in β always results in a reduction of the cross-stream migration velocity,
irrespective of the magnitude of the applied temperature gradient (or MaT ). Similarly to the previous
limiting case for Pes � 1, we again define a critical Marangoni number, MaT

∗, which denotes the
critical point above which the droplet migrates away from the flow centerline and below which it
moves towards the centerline of flow. At this critical point there is no cross-stream migration of the
droplet. Keeping this in mind the expression of MaT

∗ can be derived and expressed as

Ma∗
T = (δ + 2)

6R2

(
3 + 1

1 − β

)
. (26)

As long as MaT < MaT
∗, any increase in the temperature gradient and hence MaT results in

a reduction in the magnitude of the cross-stream migration velocity. However, in the regime of
MaT < MaT , the cross-stream migration velocity gradually increases with increase in MaT and
at the same time migrates away from the flow centerline. The effect of MaT on the cross-stream
migration of the droplet reduces with increase in β for this case too.

A better understanding can be obtained from Figs. 9(a) and 9(b) which show the surfactant
concentration along the droplet surface for the two special cases of MaT < MaT

∗ and MaT > MaT
∗
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FIG. 9. Contour plot of the surfactant distribution (�̃) on the droplet surface for two scenarios: (a) MaT =
0.01 and (b) MaT = 0.5. The figures are shown for the case of linearly decreasing temperature in the direction
of imposed flow and for the limiting case of high surface Péclet number (Pes → ∞). The parameter values are
δ = 1, β = 0.5, λ = 0.1, R = 5, e = 1, and Ca = 0.1.

respectively. When MaT < MaT
∗ [Fig. 9(a)], the imposed flow dominates over the thermocapillary

effect, and hence there is a net flow from the east pole to the west. Since the droplet is eccentrically
located, the highest surfactant concentration is on the northwestern region of the droplet while the
minimum concentration is present in the northeastern domain. Similar surfactant distribution, as
shown in Fig. 8(a), suggests that the droplet should migrate towards the flow centerline. On the other
hand, when the thermocapillary effect dominates due to a high-temperature gradient MaT > MaT

∗,
the fluid flow along the droplet surface reverses and the highest surfactant concentration is on the
southeastern region [see Fig. 5(b)]. This suggests that the droplet migrates away from the centerline
of flow.

C. Comparison of our results with previously published work

Here we compare the magnitude of cross-stream migration velocity obtained under both the
limiting conditions, with the results of some of the previously published studies. These studies
include the analysis performed by Chan et al. [20], where they obtained the cross-stream migration
velocity of a deformable droplet in an unbounded Poiseuille flow. They considered neither the effect
of any external temperature gradient nor the presence of any surfactants. Later, Das et al. [56]
considered the effect of both surfactants and an imposed temperature gradient on the cross-stream
migration of a spherical (or nondeformable) droplet. Recently, Das et al. [33] studied the effect of
deformation and surfactant distribution on the motion of a droplet in an isothermal Poiseuille flow.
Here we take into consideration the combined effect of both an external temperature gradient and
shape deformation on the lateral migration of a surfactant-laden droplet in a Poiseuille flow. The
presence of both surfactants and shape deformation introduces nonlinearity into the mathematical
model, which makes it impossible to obtain the cross-stream migration velocity by a linear
superposition of the results from the above problems. The different values of the cross-stream
migration velocity as obtained from the present study as well from the work done by Chan et al.
[20] and Das et al. [33,56] are tabulated below.

As can be seen from Table I that under the presence of the a constant axial temperature gradient
as well as consideration of droplet deformation results in a significant rise in the magnitude of the
cross-stream migration velocity of the droplet. The values of the different parameters used for this
evaluation are Ca = 0.05, Pes = 0.1, δ = 1, R = 5, e = 1, κ = 1, and β = 0.5. For the high Péclet
number limit we have used Pes = 10.
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TABLE I. Comparison of the magnitude of cross-stream migration velocity with previous works.

Cross-stream velocity (Ux)

Different studies Pes � 1 Pes � 1

Cross-stream migration of a surfactant-free deformable 1.205 × 10−4

droplet in an isothermal Poiseuille flow [20]
Cross-stream migration of a surfactant-laden nondeformable 4.828 × 10−4 10.057 × 10−4

droplet in a nonisothermal Poiseuille flow [56]
Cross-stream migration of a surfactant-laden deformable 0.68 × 10−4 0.667 × 10−4

droplet in an isothermal Poiseuille flow [33]
Present study 6.317 × 10−4 10.19 × 10−4

V. REMARKS

In the present study, an asymptotic analysis is performed for the two limiting cases of low
and high Pes . Mathematically speaking, the governing equations and the corresponding boundary
conditions are impossible to linearize for the case of medium Pes . This is because the velocity field
and the surfactant concentration always remains coupled to each other in the surfactant transport
equation, which adds to the nonlinearity present due to the unknown shape of the droplet. However,
a qualitative prediction can be made regarding the migration velocity of the droplet for a medium
value of Pes based on different literatures [55,61–63]. The magnitude of the droplet velocity will
always lie in between the velocities corresponding to the two limiting case of low (Pes � 1) and
high Péclet number (Pes → ∞). However, the trend in variation of droplet velocity with different
parameters (say, λ) will remain similar. Since the magnitude of the droplet migration velocity will
increase for Pes = O(1) as compared to the limiting case of Pes � 1, it is expected that the critical
thermal Marangoni stress, required to nullify the droplet migration, will also increase, provided all
the other parameters remain constant.

VI. CONCLUSIONS

The present study deals with the cross-stream migration of a surfactant-laden droplet suspended
in a Poiseuille flow with a linearly increasing temperature gradient. The droplet is taken to be
deformable; however, only small deviations from the spherical shape are assumed. The system under
consideration is taken to neutrally buoyant, and any presence of inertia in fluid flow is neglected.
We use a asymptotic approach to solve the nonlinear system of governing equations and relevant
boundary conditions under two different limiting cases, namely, surface-diffusion-dominated and
surface-convection-dominated transport of surfactants. Since the system of governing equations
and boundary conditions are all highly nonlinear and coupled due to the consideration of droplet
deformation and associated surfactant redistribution, a linear superposition of the results of a
thermocapillary-driven and an imposed flow actuated migration of a surfactant-laden droplet may
give erroneous predictions. We obtain the droplet migration velocity as well as the surfactant
concentration along the droplet surface till O(Ca). The thermocapillary effect on droplet cross-
stream migration is analyzed for two specific cases: one in which the temperature increases linearly
in the direction of the imposed flow (ζ = 1) and the other where the direction of the applied
temperature gradient is reversed (ζ = −1). After a thorough analysis of the droplet migration
characteristics, some of the important findings established are the following:

Firstly, for the limiting case of low surface Péclet number, the droplet, in general, always migrates
towards the centerline of flow. It is seen that increase in the axial temperature gradient results in
increase in the cross-stream migration velocity of the droplet, provided the temperature increases in
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the direction of the imposed flow. For high-viscosity ratios, the direction the droplet cross-stream
migration reverses depending on the value of MaT .

Secondly, when the temperature decreases in the direction of the imposed Poiseuille flow, the
droplet may migrate towards or away from the flow centerline depending on the magnitude of the
applied temperature gradient as well as the droplet viscosity. For a low-viscous droplet, the droplet
migrates towards the flow centerline, and the magnitude of the cross-stream migration velocity
reduces with increase in MaT till MaT < MaT

∗. However, at the critical point MaT = MaT
∗, there

is no cross-stream migration. Beyond this critical value (MaT
∗) any further increase in MaT results

in an increase in the magnitude of the cross-stream migration velocity. The droplet now migrates
away from the flow centerline. A highly viscous droplet, on the other hand, always migrates towards
the centerline of flow.

Thirdly, for the limiting case of high surface Péclet number limit, the magnitude of the cross-
stream migration velocity is always higher as compared to the limiting case of low surface Péclet
number. The nature of variation of the steady-state cross-stream velocity with MaT is the same as
that for the low Péclet number limit, but it is independent of the droplet viscosity.
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