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In a microrheological setup a single probe particle immersed in a complex fluid is
exposed to a strong external force driving the system out of equilibrium. Here, we elaborate
analytically the time-dependent response of a probe particle in a dilute suspension of
Brownian particles to a large step force, exact in first order of the density of the bath
particles. The time-dependent drift velocity approaches its stationary-state value exponen-
tially fast for arbitrarily small driving in striking contrast to the power-law prediction of
linear response encoded in the long-time tails of the velocity autocorrelation function.
We show that the stationary-state behavior depends nonanalytically on the driving force
and connect this behavior to the persistent correlations in the equilibrium state. We argue
that this relation holds generically. Furthermore, we elaborate that the fluctuations in the
direction of the force display transient superdiffusive behavior.
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I. INTRODUCTION

While the static and dynamic properties of interacting many-particle systems in equilibrium
encode the linear response via the fluctuation-dissipation theorem, corresponding principles gen-
erally applicable for systems driven far from equilibrium remain a grand challenge in statistical
physics. Soft matter systems are ideally suited to study such nonequilibrium phenomena, since their
defining characteristic is that they are strongly susceptible to forces. Conceptually, the simplest
experimentally realizable system then consists of an interacting colloidal suspension that is driven
out of equilibrium by a strong external force acting on a single probe particle. This setup constitutes
the basic paradigm for active microrheology with the principle goal to infer material properties
beyond the linear regime [1–11].

The nonlinear mobility in the stationary state μ(Pe) for a suspension of interacting Brownian
particles has been derived to first order of the density of bath particles n in the seminal work by
Squires and Brady [1] in terms of an asymptotic expansion

μ(Pe)/μ = 1 − 2πnσ 3

3

Da

Dr

[
1 − 2

15
Pe2 + 1

8
|Pe|3 − 128

1575
Pe4 + O(|Pe|5)

]
, Pe → 0, (1)

where μ is the mobility of the probe particle at infinite dilution with diffusion coefficient Da , and
the Péclet number Pe is a suitable dimensionless measure for the driving force (see below). The
motion of the bath particles with diffusion coefficient Db enters in terms of the diffusion coefficient
of the relative motion, Dr = Da + Db.
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The leading term of the corresponding asymptotic expansion of the fluctuations around the
average drift has also been achieved [4], revealing a long-time diffusion coefficient that can
become arbitrarily large for strong driving. Active microrheology has found fruitful applications in
dense colloidal systems in the vicinity of the glass transition; in particular, computer simulations
have revealed (transient) superdiffusion and enhanced diffusivities [12,13]. Certain phenomena
in the nonlinear regime have also been rationalized within a mode-coupling approach [14–20],
continuous-time random walks [21–24], Langevin equations [25,26], and kinetic theory [27].

Exact results beyond the stationary state have been accomplished for driven transport in lattice
models, e.g., for a biased intruder in a dense crowded environment of mobile hard-core obstacles
[28–33] and the complementary limit of a tracer in a dilute quenched array of obstacles [34–36].
Due to repeated encounters with the same obstacle, one finds that the nonlinear force-dependent
mobility in the stationary state becomes a nonanalytic function of the driving force.

For the case of colloids in continuum, one infers that the mobility also becomes a nonanalytic
function in the Péclet number, signaled by |Pe|3 in the asymptotic expansion [Eq. (1)], since the
mobility has to be an even function of Pe.

The frequency-dependent linear mobility μ̂(ω) can be obtained via the fluctuation-dissipation
theorem from the velocity-autocorrelation function in equilibrium, which has been calculated earlier
to the same order in the packing fraction [37–41]

−iωμ̂(ω)/μ = 1 − 2πnσ 3

3

Da

Dr

1 + √−iωτ

1 + √−iωτ − iωτ/2
, (2)

with diffusive time scale τ = σ 2/Dr . Here, the nonanalytic contribution in the frequency ω reflects
the well-known long-time tail in the velocity-autocorrelation function Z(t ) � −At−5/2, A > 0, also
familiar from the Lorentz model [42–47].

These results immediately raise the following questions: How do the nonanalytic contributions
in the nonlinear mobility emerge from a perturbative scheme and are they related to the persistent
correlations in equilibrium? How fast is the nonequilibrium steady state approached from an initial
equilibrium state in comparison to the predictions of linear response? What is the intermediate time-
dependent behavior of the fluctuations connecting the short-time motion to the drastically enhanced
long-time diffusion? These questions are answered by solving the two-particle Smoluchowski
equation for the time-dependent dynamics in the presence of a strong force. Thereby, we unify
the previous approaches for the driven stationary state [1,4] and the time-dependent equilibrium
dynamics [37–40] and reveal the interplay between persistent correlations and nonequilibrium
driving. The solution enables us to fully address the time-dependent approach to the stationary
state, in principle for all moments of the displacement along the force. The two lowest moments,
the mobility and the fluctuations, are elaborated and compared to computer simulations.

This work is organized as follows. In Sec. II the underlying model is introduced followed by the
complete solution strategy. The main result of this section is the self-energy encoding the dynamics
between the probe and the bath particles. Readers who are primarily concerned about the results may
skip this section and jump directly to Sec. III, where we determine the time-dependent behavior
in terms of the mobility and the fluctuations along the applied force. The obtained results from
the analytic solution are compared to computer simulations and the phenomena involved in the
transition from the initial equilibrium state to the new stationary state are discussed. In Sec. IV,
the key results of this work are summarized followed by general conclusions. In the appendix, we
present the details of the simulations used to test the theory.

II. MODEL AND SOLUTION STRATEGY

We solve for the time-dependent dynamics of a probe particle pulled by a force in the presence of
other bath particles. In first order of the density of bath particles, the dynamics is completely encoded
by the interactions of the probe particle with a single bath particle [1,48]. Discarding inertial effects
it is sufficient to consider the two-particle Smoluchowski equation for probe and bath particle. The
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problem can be expressed via the independent motion of the center of diffusion and the relative
distance between both particles. The dynamics of the relative distance is described in the frequency
domain in terms of a self-energy which encodes all corrections to the dynamics of the probe particle
due to interactions.

A. Two-particle Smoluchowski equation

We consider a single probe particle a interacting with a bath particle b with bare diffusion
coefficients Da and Db, respectively. The particles interact by mutual hard-core exclusion with
exclusion distance σ . At time t = 0 an external constant force �F is switched on, pulling the probe
particle and driving the system from its initial equilibrium state into a nonequilibrium stationary
state. We describe the state of the system by the conditional probability density �(�ra, �rb, t |�r ′

a, �r ′
b )

for probe particle a and bath particle b to be at positions �ra , �rb at time t provided they start at
initial positions �r ′

a , �r ′
b at time t = 0. Since the system is initially in equilibrium, the corresponding

initial condition reads �(�ra, �rb, t = 0|�r ′
a, �r ′

b ) = ϑ (|�r ′
a − �r ′

b| − σ )δ(�ra − �r ′
a )δ(�rb − �r ′

b )/V , where the
Heaviside function ϑ (·) accounts for the mutual exclusion. The limit of large box sizes V → ∞ is
anticipated throughout. At time t = 0, the force �F is switched on and the probability density evolves
according to the Smoluchowski equation,

∂t� = (
Da∇2

a + Db∇2
b

)
� − μ �F · �∇a�, (3)

with bare mobility μ = Da/kBT of the probe particle and the thermal scale kBT . The hard-core
interaction between probe and bath particle is encoded in the no-flux boundary condition

(�ra − �rb ) · [μ �F� − (Da
�∇a − Db

�∇b )�] = 0, for |�ra − �rb| = σ. (4)

We introduce new coordinates for the center of diffusion, �R = (Db�ra + Da�rb )/(Da + Db ), and
the relative distance �r = �ra − �rb. After transformation, the Smoluchowski equation in these adapted
coordinates reads

∂t� = DaDb

Dr

∇2
R� − μDb

Dr

�F · �∇R� + Dr∇2
r � − μ �F · �∇r�, (5)

with the diffusion coefficient for the relative motion, Dr = Da + Db. Similarly, the no-flux
boundary condition transforms to

�r · [μ �F� − Dr
�∇r�] = 0, for |�r| = σ. (6)

The Smoluchowski equation and the no-flux boundary condition in the new coordinates [Eqs. (5)
and (6)] reveal that the motion of the center of diffusion �R and the dynamics of the relative
motion, �r , are independent. Thus, the conditional probability factorizes into a simple Gaussian with
diffusion coefficient DaDb/Dr and drift μ �FDb/Dr for the center of diffusion �R, and the conditional
probability ψ (�r, t |�r ′) to find relative distances �r and �r ′ at times t and 0, respectively. It fulfills the
reduced Smoluchowski equation

∂tψ = Dr∇2
r ψ − μ �F · �∇rψ, (7)

and the initial condition is provided by the equilibrium state ψ (�r, t = 0|�r ′) = ϑ (|�r ′| − σ )δ(�r −
�r ′). Similarly, the no-flux boundary condition for the conditional probability ψ reads

�r · [μ �Fψ − Dr
�∇rψ] = 0, for |�r| = σ. (8)

It is natural to measure the force in terms of the dimensionless Péclet number Pe = μFσ/Dr

that already appeared in Eq. (1) [1,4], which can be written also as Pe = (Fσ/kBT )Da/Dr by
using the Stokes-Einstein relation. This definition encompasses the case of equal-sized colloids,
Pe = Fσ/2kBT , as well as the Lorentz model, Pe = Fσ/kBT , where the bath particles are fixed in
space (Db = 0).

103301-3



LEITMANN, MANDAL, FUCHS, PUERTAS, AND FRANOSCH

Our main quantity of interest is the intermediate scattering function 〈e−i �q·��ra (t )〉 for the dis-
placement ��ra (t ) = �ra (t ) − �ra (0) of the probe particle, from which in principle all moments of
the displacement can be extracted by derivatives with respect to the wave vector �q. In the new
coordinates, ��ra (t ) = � �R(t ) + Da��r (t )/Dr , the intermediate scattering function can be expressed
as

〈e−i �q·��ra (t )〉 = 〈e−i �q·� �R(t )〉〈e−i(Da/Dr )�q·��r (t )〉, (9)

where we used the independence of �R and �r [Eq. (5)]. Since the dynamics of the center of diffusion
is Gaussian with diffusion coefficient DaDb/Dr and drift μ �FDb/Dr , one finds immediately

〈e−i �q·� �R(t )〉 = e−i �q·(μ �FDb/Dr )t e−q2(DaDb/Dr )t . (10)

The remaining task is the calculation of the intermediate scattering function 〈e−i(Da/Dr )�q·��r (t )〉 for
the relative motion ��r (t ) between probe and bath particle.

B. Dynamics of the relative motion

This part contains the detailed calculation of the relative motion and contains the heart of our
analytic approach. The solution strategy is adapted from Felderhof and Jones’ approach for the
equilibrium dynamics [40].

The intermediate scattering function, viz., the characteristic function of the relative displacement
��r (t ) = �r (t ) − �r (0),

〈e−i �q·��r (t )〉 =
∫

d3r

∫
d3r ′

V
e−i �q·(�r−�r ′ )ψ (�r, t |�r ′), (11)

allows extracting the moments by series expansion in the wave vector �q. To make analytic progress,
we only consider the axially symmetric case, where the wave vector and force are aligned: �q ‖ �F .
This enables us to determine the motion in the direction of the force; the time-dependent motion
perpendicular to the force is left for future analysis. We perform a temporal Fourier-Laplace
transform and a spatial Fourier transform,

ψ̂q (�r, ω) :=
∫ ∞

0
dt eiωt

∫
d3r ′
√

V
ei �q·�r ′

ψ (�r, t |�r ′). (12)

The transformed quantity ψ̂q (�r, ω) is connected to the propagator G(q, ω) via a spatial Fourier
transform G(q, ω) := ∫

d3r e−i �q·�r ψ̂q (�r, ω)/
√

V . From Eq. (7) and the initial condition one derives
the equation of motion [40]

(−iω − Dr∇2 + μ �F · �∇ )ψ̂q = 1√
V

ei �q·�rϑ (|�r| − σ ). (13)

In particular, ψ̂q (�r, ω) = 0 for |�r| < σ reflects the hard-core exclusion. Without interaction, we
denote the respective conditional probability by ψ̂0

q which evolves according to

(−iω − Dr∇2 + μ �F · �∇ )ψ̂0
q = 1√

V
ei �q·�r . (14)

The free motion allows for a plane-wave solution of the form

ψ̂0
q (�r, ω) = ei �q·�r/

√
V

−iω + Drq2 + iμFq
, (15)

which is valid for all �r ∈ V , and the respective free propagator can be read off as

G0(q, ω) = 1

−iω + Drq2 + iμFq
. (16)
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In particular, the plane-wave solution can be written as ψ̂0
q (�r, ω) = G0(q, ω)ei �q·�r/

√
V . To make

further progress, we observe that the difference of Eqs. (13) and (14),

(−iω − Dr∇2 + μ �F · �∇ )
[
ψ̂q (�r, ω) − ψ̂0

q (�r, ω)
] = 0, for |�r| > σ, (17)

vanishes for terminal distance |�r| larger than the exclusion distance σ . We are interested in the
forward-scattering amplitude

G(q, ω) − G0(q, ω) = 1√
V

∫
d3r e−i �q·�r[ψ̂q (�r, ω) − ψ̂0

q (�r, ω)
]
, (18)

which we separate into contributions outside and inside of the region of overlap of probe and bath
particle:

G(q, ω) − G0(q, ω) = 1√
V

∫
|�r|>σ

d3r e−i �q·�r[ψ̂q (�r, ω) − ψ̂0
q (�r, ω)

]

+ 1√
V

∫
|�r|<σ

d3r e−i �q·�r[ψ̂q (�r, ω) − ψ̂0
q (�r, ω)

]
. (19)

In the second term we observe that the conditional probability ψ̂�q vanishes for terminal positions
inside the obstacle. Hence, there we can immediately compute the integral

1√
V

∫
|�r|<σ

d3r e−i �q·�r ψ̂0
q (�r, ω) = 4πσ 3/3V

−iω + Drq2 + iμFq
. (20)

To calculate the first term in Eq. (19), it is advantageous to convert the volume integral into a
surface integral relying on the equations of motion. We use the auxiliary variable χ (�r ) = ψ̂q (�r, ω) −
ψ̂0

q (�r, ω) and investigate the identity∫
|�r|>σ

d3r e−i �q·�r (−iω − Dr∇2 + μ �F · �∇ )χ (�r ) = 0, (21)

which follows from Eq. (17). Then, for the drift, we obtain∫
|�r|>σ

d3r e−i �q·�r (−μ �F · �∇ )χ (�r )

=
∫

|�r|>σ

d3r (−μ �F · �∇ )[e−i �q·�rχ (�r )] +
∫

|�r|>σ

d3r χ (�r )μ �F · �∇e−i �q·�r

=
∫

dS�r �̂r · μ �Fe−i �q·�rχ (�r ) +
∫

|�r|>σ

d3r χ (�r )μ �F · �∇e−i �q·�r , (22)

where we introduced the unit vector �̂r = �r/|�r| and the surface element dS�r of the sphere of radius
σ . Similarly, for the diffusive contribution, we derive∫

|�r|>σ

d3r e−i �q·�rDr∇2χ (�r )

=
∫

|�r|>σ

d3r Dr
�∇ · [e−i �q·�r �∇χ (�r )]−

∫
|�r|>σ

d3r [Dr
�∇χ (�r )] · �∇e−i �q·�r

= −
∫

dS�r Dr �̂r · e−i �q·�r �∇χ (�r ) −
∫

|�r|>σ

d3r Dr
�∇ · [χ (�r ) �∇e−i �q·�r ] +

∫
|�r|>σ

d3r χ (�r )Dr∇2e−i �q·�r

= −
∫

dS�r Dr �̂r · e−i �q·�r �∇χ (�r ) +
∫

dS�r Dr �̂r · [χ (�r ) �∇e−i �q·�r ] +
∫

|�r|>σ

d3r χ (�r )Dr∇2e−i �q·�r .

(23)
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Together, this yields

(−iω + Drq
2 + iμ �F · �q )

∫
|�r|>σ

d3�r χ (�r )e−i �q·�r

=
∫

dS�r �̂r · [μ �Fχ (�r ) − Dr
�∇χ (�r )]e−i �q·�r +

∫
dS�r Dr �̂r · [χ (�r ) �∇e−i �q·�r ]. (24)

The first term on the right-hand side simplifies by the no-flux boundary condition [Eq. (8)] and the
plane-wave solution ψ̂0

q [Eq. (15)]:∫
dS�r �̂r · [μ �Fχ − Dr

�∇χ ]e−i �q·�r = −
∫

dS�r e−i �q·�r �̂r · [μ �F − Dr
�∇]ψ̂0

�q (�r, ω)

= −
∫

dS�r e−i �q·�r �̂r · [μ �F − iDr �q]ψ̂0
�q (�r, ω)

= −1/
√

V

−iω + Drq2 + iμ �F · �q

∫
dS�r �̂r · [μ �F − iDr �q] = 0, (25)

where in the last line the flux integral of a constant vector vanishes. Collecting results, we obtain
an expression for the forward-scattering amplitude in terms of a surface integral of the difference of
the conditional probabilities:

G(q, ω) − G0(q, ω) = G0(q, ω)

{
−4πσ 3

3V
− 1√

V

∫
dS�r iDr �q · �̂re−i �q·�r[ψ̂q (�r, ω) − ψ̂0

q (�r, ω)
]}

.

(26)

In order to determine the conditional probabilities, we return to Eq. (17). For the solution
of the homogeneous part of Eq. (17), we use the imaginary “gauge transformation” X̂(�r, ω) =
[ψ̂q (�r, ω) − ψ̂0

q (�r, ω)]e−μ �F ·�r/2Dr such that the drift term is absorbed in the Laplacian by completing

the square, �∇ → �∇ − μ �F/2Dr [1,49]. This step will have crucial implications for the results at
finite forces. Then, the new quantity X̂ fulfills the three-dimensional source-free Helmholtz equation

(κ2 − ∇2)X̂(�r, ω) = 0, for |�r| > σ, (27)

with complex wave number κ2σ 2 = −iωτ + (Pe/2)2 and diffusive time scale τ = σ 2/Dr . We write
the general axially symmetric solution in the form

ψ̂q (�r, ω) − ψ̂0
q (�r, ω) = eμ �F ·�r/2Dr /

√
V

−iω + Drq2 + iμFq

∞∑
�=0

a�

k�(κr )

k�(κσ )
P�(cos ϑ ), (28)

for |�r| > σ , with modified spherical Bessel functions of the second kind k�(·) and Legendre
polynomials P�(·).

The expansion coefficients a� for the different angular channels � have to be determined via the
no-flux boundary condition [Eq. (8)]:[

μF cos ϑ − Dr

∂

∂r

](
ψ̂q − ψ̂0

q

)∣∣
r=σ

= −
[
μF cos ϑ − Dr

∂

∂r

]
ψ̂0

q

∣∣
r=σ

. (29)

With the explicit solutions [Eqs. (15) and (28)], we find that the expansion coefficients a� have to
fulfill [

Pe η − σ
∂

∂r

]
ePe ηr/2σ

∞∑
�=0

a�

k�(κr )

k�(κσ )
P�(η)|r=σ = −

[
Pe η − σ

∂

∂r

]
eiqηr |r=σ , (30)
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where we abbreviated η = cos(ϑ ) and used the Péclet number Pe = μFσ/Dr . Performing the
derivatives, the relation can be expressed as

e−Pe η/2(Pe − iqσ )ηeiqση =
∞∑

�=0

a�

[
κσk′

�(κσ )

k�(κσ )
− Pe

2
η

]
P�(η)

=
∞∑

�=0

[
κσk′

�(κσ )

k�(κσ )
a�P�(η) − Pe

2
a�

(
� + 1

2� + 1
P�+1(η) + �

2� + 1
P�−1(η)

)]

=
∞∑

�=0

[
κσk′

�(κσ )

k�(κσ )
a� − Pe

2

�

2� − 1
a�−1 − Pe

2

� + 1

2� + 3
a�+1

]
P�(η), (31)

where we used the recursion formula (� + 1)P�+1(η) = (2� + 1)ηP�(η) − �P�−1(η). Using the
orthogonality relation of the Legendre polynomials,

∫ 1
−1 dη P�(η)P�′ (η) = 2δ��′/(2� + 1), this

becomes a tridiagonal matrix equation:

κσk′
�(κσ )

k�(κσ )
a� − Pe

2

�

2� − 1
a�−1 − Pe

2

� + 1

2� + 3
a�+1 = b�. (32)

The inhomogeneity b� is defined as

b� = 2� + 1

2
(Pe − iqσ )

∫ 1

−1
dη ηP�(η)e−Pe η/2eiqση. (33)

The remaining integral can be solved using the Rayleigh identity e−iz cos ϑ = ∑∞
�=0(−i)�(2� +

1)j�(z)P�(cos ϑ ), with spherical Bessel function j�(·) and relying again on the orthogonality relation
of the Legendre polynomials:

b� = −(2� + 1)(qσ + iPe)i�j′�(qσ + iPe/2), (34)

where the prime indicates a derivative. For the special case of vanishing wave number q = 0 and
the stationary state ω = 0, we recover the tridiagonal matrix derived in Ref. [1].

For the forward-scattering amplitude [Eq. (26)], we calculate the integral over the spherical
surface with radius r = σ :

1√
V

∫
dS�r iDr �q · �̂re−i �q·�r[ψ̂q (�r, ω) − ψ̂0

q (�r, ω)
]

= 2πiDrσ
2q/V

−iω + Drq2 + iμFq

∞∑
�=0

a�

∫ 1

−1
dη ηe−iqσηeμFση/2Dr P�(η). (35)

The integral on the right-hand side can be evaluated again by inserting the Rayleigh identity. As a
result, we find∫ 1

−1
dη ηe−iqσηeηPe/2P�(η) = ∂

∂ (Pe/2)

∫ 1

−1
dη e−iqσηeηPe/2P�(η) = 2i(−i)� j′�(qσ + iPe/2). (36)

Collecting results, one finds

G(q, ω) − G0(q, ω)=−4πσ 3

3V
G0(q, ω) + 4πDrσ

2q

V
G0(q, ω)2

∞∑
�=0

a�(−i)�j′�(qσ + iPe/2). (37)

The first term on the right-hand side merely reflects that the free propagator G0(q, ω) = (−iω +
Drq

2 + iμFq )−1 allows for particles starting also inside of the obstacle, thereby renormalizing
the residue of the perturbed propagator. We may safely drop this term. Conventionally, the result
is expressed in terms of a self-energy �(q, ω) via the Dyson equation G = G0 + G0�G. To first
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order in the density, the self-energy is merely proportional to the number density n = N/V of the
bath particles, and we obtain the self-energy as our main result of the analytic calculations:

�(q, ω) = 4πnDrσ
2q

∞∑
�=0

a�(−i)�j′�(qσ + iPe/2). (38)

The self-energy encodes the density-induced corrections of all moments of the relative motion along
the force. The leading factor q reflects the particle-conservation law.

Without external driving, Pe = 0, the tridiagonal matrix for the coefficients a� [Eq. (32)] becomes
diagonal, yielding

a� = −(2� + 1)qσ i�j′�(qσ )
k�(κσ )

κσk′
�(κσ )

. (39)

Thus, we recover the known result for the self-energy for equilibrium [37–40]:

�(q, ω) = −4πnDrσ
3q2

∞∑
�=0

(2� + 1)[j′�(qσ )]2 k�(κσ )

κσk′
�(κσ )

. (40)

In the case of driving, only terms of order � = O(Pe) significantly contribute for small
wave numbers and the matrix [Eq. (32)] may be safely truncated for numerical evaluation. The
matrix inversion does not generate nonanalytic behavior and one infers that the coefficients a� ≡
a�(qσ, κσ, Pe) should be analytic functions in the arguments. In particular, the matrix is suited for
a perturbative approach for small Péclet numbers; in particular, the linear response results can be
derived.

The matrix in Eq. (32) determines the coefficients a� and thereby the complete solution of the
self-energy [Eq. (38)]. Up to matrix inversion and a temporal Fourier back-transform, which have to
be implemented numerically, we have elaborated a complete time-dependent analytic solution for
the relative motion of the probe particle in the presence of bath particles for the dilute case.

III. CUMULANTS OF THE DISPLACEMENT

The intermediate scattering function generates the moments of the displacement along the field
by taking derivatives with respect to the wave number. In this section we elaborate explicitly how the
mean displacement, respectively the time-dependent nonlinear mobility, and the fluctuations along
the field can be calculated from the self-energy of the relative motion.

The starting point is the intermediate scattering functions for the displacement [Eqs. (9) and
(10)], where we put the wave vector along the field, �q‖ �F , which is chosen as the z direction. The
corresponding cumulant generating function is obtained by taking the logarithm:

ln〈e−iq�za (t )〉 = ln〈e−iq�Z(t )〉 + ln〈e−i(Daq/Dr )�z(t )〉
= −iq(μFDb/Dr )t − q2(DaDb/Dr )t + ln〈e−i(Daq/Dr )�z(t )〉.

(41)

This formula establishes the connection between the relative motion z(t ) and the displacement of
the probe particle, za (t ).

A. Average motion

First, we discuss the time-dependent nonlinear mobility defined by

μ(t, Pe) := 1

F

d

dt
〈�za (t )〉, (42)

characterizing the mean motion of the probe particle, upon switching on the force in the z

direction. From the cumulant generating function of the displacement �za (t ) [Eq. (41)], the mean
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displacement 〈�za (t )〉 is obtained as

〈�za (t )〉 = i
∂

∂q
ln〈e−iq�za (t )〉|q=0 = μFtDb/Dr + iDa

Dr

∂

∂ (Daq/Dr )
ln〈e−i(Daq/Dr )�z(t )〉|q=0

= μFtDb/Dr + Da

Dr

〈�z(t )〉. (43)

The contribution from the relative motion can be obtained from the intermediate scattering function
[Eq. (11)] as the first derivative ∂/∂q|q=0. The dynamics of the relative distance �z(t ) between
probe and bath particle is contained in the propagator

G(q, ω) = G0(q, ω) + G0(q, ω)2�(q, ω) + O(n)2, (44)

with free propagator G0(q, ω) = (−iω + Drq
2 + iqμF )−1 and self-energy �(q, ω) [Eq. (38)].

Taking the q derivative leads to the appearance of the frequency-dependent expression
L{〈�z(t )〉}(ω) := ∫ ∞

0 dt eiωt 〈�z(t )〉. It is obtained by considering the propagator G(q, ω)
[Eq. (44)]:

L{〈�z(t )〉}(ω) = i
∂

∂q
G(q, ω)|q=0 =

[
i
∂G0

∂q
+ iG2

0
∂�

∂q

]
q=0

= μF

(−iω)2
+ 2πnσ 3 μF

(−iω)2

∞∑
�=0

a�

i′�(Pe/2)

Pe/2
,

(45)

where, in the second line, we used the relation Dr/σ = μF/Pe and expressed the spherical Bessel
functions j�(·) in terms of (−i)i′�(Pe/2) = (−i)�j′�(iPe/2) with modified spherical Bessel function
i�(·). The coefficients a� = a�(qσ, κσ, Pe) are to be evaluated for vanishing wave number q = 0. In
the above equation, the first term corresponds to the free motion and the second encodes the density-
induced response. Then, the mean displacement of the probe particle along the field, 〈�za (t )〉, is
determined via Eq. (43), leading to

L{〈�za (t )〉}(ω) = Db

Dr

μF

(−iω)2
+ Da

Dr

L{〈�z(t )〉}(ω)

= μF

(−iω)2
+ 2πnσ 3 μF

(−iω)2

Da

Dr

∞∑
�=0

a�

i′�(Pe/2)

Pe/2
.

(46)

By a one-sided Fourier transform of the time-dependent nonlinear mobility [Eq. (42)], we obtain
the nonlinear frequency-dependent mobility μ̂(ω, Pe) := −iωL{〈�za (t )〉}(ω)/F with

−iωμ̂(ω, Pe)/μ = 1 + 2πnσ 3 Da

Dr

∞∑
�=0

a�

i′�(Pe/2)

Pe/2
. (47)

For the time-dependent case, we perform a numerical Fourier inversion of Eq. (47) and compare
to event-driven Brownian-dynamics simulations at low density (Fig. 1). Initially, the probe particle
experiences only the drag of the pure solvent, μ(t → 0, Pe) = μ. Then the dynamics slows down
due to the interaction with the bath particles and approaches its stationary mobility μ(Pe) := μ(t →
∞, Pe). Its dependence on the Péclet number is discussed in Sec. III C below.

In linear response, Pe = 0, we recover the equilibrium solution [Eq. (49)] as anticipated by the
fluctuation-dissipation theorem. In particular, for the equilibrium case, the approach to the stationary
state is completely monotone and the time dependence can be worked out explicitly by Laplace
inversion of Eq. (49) [38], leading to

μ(t )/μ=1−2πnσ 3

3

Da

Dr

{1− cos(2t/τ )[1−2C(
√

4t/πτ )]− sin(2t/τ )[1 − 2S(
√

4t/πτ )]}, (48)
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FIG. 1. Time-dependent approach of the mobility μ(t, Pe) to its stationary state for different Péclet
numbers, Pe, and the linear response, Pe = 0. Solid lines represent the analytic solution and symbols
correspond to Brownian-dynamics simulations for equal-sized colloids (Db = Da). Dashed lines indicate
negative values. The black dash-dotted lines show the long-time behavior ∼−t−3/2 exp(−Pe2Dat/2σ 2) for
the approach to the stationary state.

with Fresnel integrals S(x) = ∫ x

0 du sin(πu2/2) and C(x) = ∫ x

0 du cos(πu2/2) [50,51] and τ =
σ 2/Dr is the diffusive time scale. Inserting the asymptotic expansions for the Fresnel integrals for
large arguments, we recover the algebraic approach of ∼ t−3/2 to the stationary mobility which is
due to repeated collisions of the probe particle with the same bath particle:

μ(t )/μ = 1 − 2πnσ 3

3

Da

Dr

{
1 − 1

4
√

π
(t/τ )−3/2 + O(t−7/2)

}
, t → ∞. (49)

The persistent memory in the system also emerges as a long-time tail of the form ∼ t−5/2 in the
velocity-autocorrelation function, kBT dμ(t )/dt .

For finite driving, expansion of Eq. (47) yields

−iωμ̂(ω, Pe)/μ = 1 − 2πnσ 3 Da

Dr

[
1 − Pe2

120
+ Pe2

8
κσ − 1

2
(κσ )2

+ 1

2
(κσ )3 + O(Pe4, κ2Pe2, κ4)

]
, (50)

which is analytic in the complex wave number κ and the Péclet number. Moreover, only even
terms in Pe appear. The nonanalytic dependence on the frequency and the Péclet number arises via
the square root κσ =

√
−iωτ + (Pe/2)2. For vanishing forces κσ = √−iωτ and the term O(κ )3

generates the long-time tail in Eq. (49). For small but finite forces, the singularity is shifted in the
complex plane and this term yields the long-time behavior in the time domain:

μ(t, Pe) − μ(Pe)

2πnσ 3Da/3Dr

= 1

4
√

π
(t/τ )−3/2 exp(−Pe2t/4τ ), Pe → 0, t → ∞. (51)

Therefore, the initial decay becomes more rapid and the long-time tail is followed only for small
forces up to some driving-dependent crossover time τF := τ/Pe2, where the tail is decorated by a
decaying exponential. Yet, there is a second nonanalytic contribution at finite driving O(Pe2κ ) (see
also Ref. [36] for the corresponding lattice case), which yields in the temporal domain

μ(t, Pe) − μ(Pe)

2πnσ 3Da/3Dr

= − 1

8
√

π
Pe2(t/τ )−1/2 exp(−Pe2t/4τ ), t → ∞, Pe → 0. (52)
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Comparing expressions in Eqs. (51) and (52) reveals that for times t � τF = τ/Pe2 the latter
decays more slowly and is the relevant one. Therefore, the divergent time scale τF in the problem
separates two different regimes. For t � τF the linear response prediction remains qualitatively
correct, while for t � τF the nonequilibrium driving dominates. The second regime also explains
the counterintuitive sign change in Fig. 1 such that in the terminal regime the velocity of the probe
particle speeds up again for small and intermediate Péclet numbers. For large Péclet number the
approach to the stationary state becomes monotonic again.

The simulations quantitatively confirm the theory for a low density of bath particles (see the
Appendix for simulation details). Note that the simulations were performed at a finite density of
nσ 3 = 0.01 (Fig. 1). Nevertheless, the agreement for the approach to the stationary behavior of
the mobility extends to relative order 10−3. In particular, for equilibrium, we observe the persistent
power-law correlations due to repeated interactions over roughly one decade in time.

B. Fluctuations along the force

The next interesting quantity for the motion of the probe particle is the time-dependent fluctuation
around the drift motion,

Varz(t ) := 〈�za (t )2〉 − 〈�za (t )〉2, (53)

which is the second cumulant of the fluctuating probe displacement �za (t ). From the cumulant
generating function [Eq. (41)], it is obtained via

Varz(t ) = − ∂2

∂q2
ln〈e−iq�za (t )〉 = 2(DaDb/Dr )t − D2

a

D2
r

∂2

∂ (Daq/Dr )2
ln〈e−i(Daq/Dr )�z(t )〉

= 2(DaDb/Dr )t + D2
a

D2
r

[〈�z(t )2〉 − 〈�z(t )〉2],

(54)

where, in the second line, we already inserted the explicit expression for the second cumulant of the
relative displacement �z(t ). First, we calculate the second moment along the field in the frequency
domain:

L{〈�z(t )2〉}(ω) = − ∂2

∂q2
G(q, ω)|q=0 =

[
−∂2G0

∂q2
− 4G0

∂G0

∂q

∂�

∂q
− G2

0
∂2�

∂q2

]
q=0

= 2Dr

(−iω)2
+ 2(μF )2

(−iω)3
+ 2πnσ 3 4(μF )2

(−iω)3
�μ̂(ω, Pe) + 2πnσ 3 4Dr

(−iω)2
�R̂(ω, Pe),

(55)

where we introduce auxiliary functions

�μ̂(ω, Pe) :=
∞∑

�=0

a�

i′�(Pe/2)

Pe/2
, (56)

�R̂(ω, Pe) :=
∞∑

�=0

[ i

σ

∂a�

∂q
i′�(Pe/2) + a�i′′� (Pe/2)

]
. (57)

In particular, with the auxiliary function for the mobility, �μ̂(ω, Pe), the frequency-dependent
nonlinear mobility [Eq. (47)] can be written as

−iωμ̂(ω, Pe)/μ = 1 + 2πnσ 3 Da

Dr

�μ̂(ω, Pe). (58)

103301-11



LEITMANN, MANDAL, FUCHS, PUERTAS, AND FRANOSCH

1

1.2

1.4

1.6

1.8

2

2.2

10−5 10−4 10−3 10−2 10−1 100 101

D
z
(t

)/
D

a

Time Dat/σ2

nσ3 = 0.01
Pe

0
2
8

16
32

500

0.98

1

1.02

1.04

1.06

1.08

10− 3 10− 2 10− 1 10 0 10 1

FIG. 2. Time-dependent diffusion coefficient Dz(t ) for different strength of the driving, Pe = μFσ/Dr .
Lines correspond to the analytic solution and symbols represent Brownian-dynamics simulation for equal-sized
colloids (Db = Da). Inset: Zoom of the same quantity for the smaller Péclet numbers.

In the time domain, the mean-square displacement then follows as

〈�z(t )2〉=2Drt+(μF )2t2+8πnσ 3Dr

∫ t

0
dt ′ L−1

{
�R̂(ω, Pe)

(−iω)
+ (μF )2

Dr

�μ̂(ω, Pe)

(−iω)2

}
(t ′), (59)

where we introduced the inverse Laplace transform L−1{·}(t ). To calculate the square of the
mean displacement 〈�z(t )〉, we first express the frequency-dependent mean displacement given
in Eq. (45) in the time domain leading to

〈�z(t )〉 = μFt + 2πnσ 3μF

∫ t

0
dt ′ L−1

{
�μ̂(ω, Pe)

(−iω)

}
(t ′). (60)

Then, the square of the mean displacement to first order in the density is given by

〈�z(t )〉2 = (μF )2t2 + 4πnσ 3(μF )2t

∫ t

0
dt ′ L−1

{
�μ̂(ω, Pe)

(−iω)

}
(t ′) + O(n2). (61)

Collecting results, the time-dependent diffusion coefficient along the field, Dz(t, Pe) :=
(1/2)dVarz(t )/dt , can be written as

Dz(t, Pe) = Da + 2πnσ 3 D2
a

Dr

L−1

{
2�R̂(ω, Pe)

(−iω)
+ Pe2

(−iω)

∂�μ̂(ω, Pe)

∂ (−iωτ )

}
(t ), (62)

where we used the relation tL−1{(·)}(t ) = L−1{∂ (·)/∂ (−iω)}(t ) of the Laplace transform.
For small times the probe particle does not interact with the bath particles and the diffusion

coefficient is given by the bare one, Dz(t → 0, Pe) = Da . Only in the equilibrium case, the
diffusion coefficient decreases monotonically (see Fig. 2) to its stationary-state value D

eq
z /D =

1 − (Da/Dr )2πnσ 3/3.
For any finite driving, a minimum of least diffusivity emerges at intermediate times such that

the growth of the fluctuations speeds up again until the stationary diffusion coefficient is reached
(Fig. 2 inset). With increasing driving the time of least diffusivity becomes smaller and smaller. The
time-dependent growth becomes arbitrarily large as the Péclet number is increased, even at small
densities. A growing time-dependent diffusion coefficient is a fingerprint of transient superdiffusive
behavior.

The superdiffusion becomes more and more pronounced upon increasing the force beyond values
that are feasible for numerical implementation of our analytical solution (Pe � 103). Nevertheless,
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FIG. 3. Time-dependent fluctuations Varz(t ) = 〈�za (t )2〉 − 〈�za (t )〉2 and local exponent α(t ) =
dln[Varz(t )]/dln(t ) (inset) of the probe particle along the applied force obtained from Brownian-dynamics
simulation of equal-sized colloids (Db = Da) for different strength of the driving. The solid lines correspond
to the diffusive asymptote Varz(t ) = 2Dz(Pe)t and the dashed lines are the asymptotic model Varz(t ) =
(Da/Dr )2(μFt )3/3l∗ with the empirical mean-free path length l∗ ≈ 1/nσ 2.

in simulations the regime of these large Péclet numbers can still be accessed (Fig. 3). The window
of superdiffusion opens for stronger driving and the local exponent for the variance

α(t ) := dln[Varz(t )]

dln(t )
= 2Dz(t, Pe)t

Varz(t )
(63)

approaches a value of 3 at intermediate times. The long-time behavior is for all forces diffusive with
a strongly enhanced diffusion coefficient Dz(Pe)/D � πnσ 3Pe[ln(2) − 1/4]/6, for Pe → ∞ [4].

Let us rationalize the superdiffusive behavior in terms of an asymptotic model for the limit
of strong driving. Therefore, we adapt an earlier asymptotic model valid for the driven lattice
Lorentz model [35]. Here, the probe particle’s motion is dominated by the drift with constant
velocity μF along the force until it hits a bath particle for the first time and then slowly slides
along its surface. In this time regime, the motion becomes essentially one-dimensional such that the
probability distribution for the relative motion, P(�z, t ), consists of freely moving particles with
fixed velocity or particles that are transiently blocked by bath particles. The free path lengths are
exponentially distributed, since at low density the positions of the bath particles are independent,
and the probability distribution can be estimated directly to

P(�z, t ) = δ(�z − vt )e−�z/l∗ + (1/l∗)e−�z/l∗ϑ (vt − �z), (64)

where l∗ = 1/n�∗ denotes a mean-free path length. The first term corresponds to the freely moving
probe (with v = μF ), while the second term accounts for the blocked probe particles.

From the distribution of the displacements [Eq. (64)], it is straightforward to calculate the mean
and the mean-square displacement. Then, the growth of the fluctuations for the probe particle is
obtained from Eq. (54), where we discarded the diffusive contribution since we are only interested
in the drift motion. As a result, the distribution of the displacements implies a strong initial growth
of the variance with

Varz(t ) =
(

Da

Dr

)2 (μFt )3

3l∗
, (65)

which is also confirmed by Brownian-dynamics simulation (Fig. 3). Empirically we find that
the relevant scattering cross section �∗ ≈ σ 2 is smaller than the geometric cross section πσ 2,
leading to a mean-free path length of l∗ ≈ 1/nσ 2. The smaller scattering cross section can be
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Brownian-dynamics simulations of equal-sized colloids, Db = Da , and Lorentz systems with Db = 0.

readily interpreted since only head-on collisions effectively stop the directed motion (in the lattice
variant no empirical correction was necessary; the scattering cross section coincides with the
geometrical one [35]). Matching the superdiffusion with the short-time asymptote 2Dat yields as
crossover time ∼Pe−3/2. Similarly the terminal time of superdiffusion is set by the time the probe
particle needs to pass a bath particle σ/μF ∼ 1/Pe leading by crossover matching to the scaling
prediction Dz(Pe) ∼ n Pe for the diffusion coefficient consistent with Ref. [4]. Thus, the window
of superdiffusion expands as Pe1/2 as the force is increased.

C. Long-time behavior

Let us specialize our time-dependent solution to the stationary state. The stationary mobility
μ(Pe) follows as a special case from Eq. (47) via

μ(Pe)/μ = lim
ω→0

(−iω)μ̂(ω, Pe)/μ = 1 + 2πnσ 3 Da

Dr

�μ0(Pe), (66)

where the coefficient �μ0(Pe) is defined via a low-frequency expansion of the auxiliary function

�μ̂(ω, Pe) = �μ0(Pe) + (−iωτ )�μ1(Pe) + · · · , ω → 0. (67)

For small driving and small frequency, we can determine the coefficients a� of the auxiliary
function �μ̂(ω, Pe) [Eq. (56)] by an inversion of the tridiagonal matrix equation [Eq. (32)] and
by considering the frequency-independent contribution:

�μ0(Pe) = −1

3
+ 2

45
Pe2 − 1

24
|Pe|3 + 128

4725
Pe4 + O(|Pe|5), Pe → 0. (68)

Inserting this result into Eq. (66), we recover the previously derived asymptotic expansion [Eq. (1)]
[1]. In particular, in equilibrium, �μ0(Pe → 0) = −1/3 and for equal-sized colloids with relative
diffusion coefficient Dr = 2Da and packing fraction ϕ = πnσ 3/6, we obtain the known result
from equilibrium, μ(Pe = 0)/μ = 1 − 2ϕ [37]. In the limit of large forces, Pe → ∞, the analytic
solution for the mobility [Eq. (66)] approaches the limit μ(Pe → ∞)/μ = 1 − (Da/Dr )πnσ 3/3
(Fig. 4), derived earlier in terms of a boundary layer analysis [1].
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Similarly, for the stationary diffusion coefficient Dz(Pe), we perform the limit of small frequen-
cies in Eq. (62) and obtain

Dz(Pe)/Da = lim
ω→0

(−iω)D̂z(ω, Pe)/Da = 1 + 2πnσ 3 Da

Dr

[2�R0(Pe) + Pe2�μ1(Pe)], (69)

where the coefficient �μ1(Pe) is defined in Eq. (67) and the coefficient �R0(Pe) := �R̂(ω →
0, Pe) is the small-frequency limit of the auxiliary function �R̂(ω, Pe) [Eq. (57)]. Similar to
the coefficient �μ0(Pe), we determine the coefficients a� and ∂a�/∂q by matrix inversion of the
tridiagonal matrix equation [Eq. (32)] in powers of the Péclet number and the frequency. The
coefficients are then obtained as

�R0(Pe) = −1

6
+ 17

270
Pe2 − 11

144
|Pe|3 + 1679

28350
Pe4 + O(|Pe|)5, Pe → 0, (70)

�μ1(Pe) = 1

6
− 1

6
|Pe| + 101

810
Pe2 − 17

216
|Pe|3 + 310571

6804000
Pe4 + O(|Pe|)5, Pe → 0, (71)

and the series expansion of the diffusion coefficient parallel to the applied field is calculated to

Dz(Pe)/Da = 1 − 2πnσ 3

3

Da

Dr

[
1 − 79

90
Pe2 + 23

24
|Pe|3 − 6893

9450
Pe4 + O(|Pe|)5

]
. (72)

With our solution, we recover the leading correction O(Pe2) to the equilibrium case, which was
calculated earlier [4]. Furthermore, our calculation extends this result to arbitrary order and reveals
the emergence of nonanalytic contributions similar to the mobility in the stationary state.

As can be inferred from the stationary mobility (Fig. 4) and the stationary diffusion coefficient
(Fig. 5), both series expansions [Eqs. (1) and (72)] break down already at moderate driving.
However, the numerical evaluation via the matrix inversion [Eq. (32)] is valid for the full range
of Péclet numbers, which was shown first by Khair and Brady [2] for the mobility. The limiting
value of the stationary mobility as well as the asymptotic behavior O(Pe) of the stationary diffusion
coefficient for large Péclet numbers (Fig. 5) [4] is nicely corroborated in the Brownian-dynamics
simulations.
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FIG. 6. Top: Simulation results for the time-dependent pair-distribution function g(�r, t ) for Péclet number
Pe = 32 and density nσ 3 = 0.01. As time progresses, tDa/σ

2 = 4 × 10−4, 4 × 10−2, 4 (left to right), the tracer
piles up probability in front and leaves a trail of depleted probability. Bottom: Analytic result for the real part
of the pair-distribution function in the frequency domain Re[−iωĝ(�r, ω)] at the same driving Pe = 32 for
frequencies ωσ 2/2πDa = 1/(4 × 10−4), 1/(4 × 10−2), 1/4 (left to right).

D. Time-dependent pair-distribution function

Our solution provides also the time-dependent pair-distribution function g(�r, t ) for the relative
distance �r of the tracer and the bath particles by integrating the conditional probability distribution
ψ (�r, t |�r ′) over all �r ′. In the frequency domain, ĝ(�r, ω) = ψ̂q=0(�r, ω)

√
V and with Eq. (28), we find

for |�r| > σ

−iωĝ(�r, ω) = 1 + eμ �F ·�r/2Dr

∞∑
�=0

a�

k�(κr )

k�(κσ )
P�(cos ϑ ), (73)

where the coefficients a� ≡ a�(qσ, κσ, Pe) are to be evaluated at zero wave number q = 0. In
particular, in equilibrium all coefficients vanish (a� = 0) and the pair-distribution function reduces
to the stationary step function.

Simulation results for the time evolution of the pair-distribution function are displayed in
Fig. 6. Shortly after switching on the force, the pair-distribution function is still almost spherically
symmetric; there has been no time to propagate the information of the strong perturbing force to the
surroundings. Quickly the tracer’s motion is obstructed by the bath particles such that probability
accumulates in front of the tracer particle. For longer times, a trailing wake evolves where
probability is depleted behind the tracer particle. The numerical results for the pair-distribution
function in the frequency domain shown in Fig. 6 corroborate this picture. For small frequencies we
recover the stationary distribution calculated in Refs. [1,2]. For high Péclet numbers the stationary
two-particle distribution function becomes strongly asymmetric as was shown first Ref. [1] and
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more systematically in Ref. [2]. Probability piles up in a narrow boundary layer in front of the
pulled particle and leaves behind a wake extending to larger and larger distances O(Pe) as the
driving force is increased.

IV. SUMMARY AND CONCLUSION

We have derived an analytic solution for the full time-dependent response of a probe particle
driven out of equilibrium by a step force in first order of the density of bath particles (discarding in-
ertial and hydrodynamic effects). The response is completely encoded in the self-energy from which,
in principle, all moments along the force can be generated. In comparison to the known self-energy
in equilibrium, the force results in a complex shift of the frequency −iωτ �→ −iωτ + (Pe/2)2 =
κ2σ 2 encoded in the complex wave number κσ , an explicit regular variation of the expansion
coefficients a� via the boundary condition, and a shift in the wave number qσ �→ qσ + i Pe/2. The
shift in the frequency reveals that the nonanalytic frequency behavior in equilibrium, as manifested
in the long-time tails, and the nonanalytic dependence on the driving are merely two sides of
the same coin. In particular, this explains why at any finite driving the approach of the nonlinear
mobility to its stationary value becomes exponentially fast. Furthermore, this reveals that, for finite
times, all response functions are analytic functions in the driving; however, this does not hold for
infinite times since the limits do not commute.

The emergence of nonanalytic behavior and a divergent time scale for Pe → 0 calls for an
explanation in terms of physics. The stationary Smoluchowski equation is nonuniform at small
Péclet number (the same physics has been discussed for the advection-diffusion equation in the
seminal contribution by Acrivos and Taylor [52]): it displays an outer region at distances r � σ/Pe
where advection dominates, and an inner one where diffusion is the dominant contribution. For
the transport coefficient already to order O(Pe2) both regions need to be calculated and matching
the solutions makes the nonanalytic contributions evident [2]. For nonzero frequencies or finite
times the advected Smoluchowski equation is regular and solutions decay exponentially fast on
the “skin penetration” depth

√
Dr/ω ∼ √

Drt . Correspondingly, if the skin penetration depth is
smaller than the inner region, i.e., for times

√
Drt,� σ/Pe, i.e., t � τF = τ/Pe2, one can safely

ignore the presence of the outer region and the system behaves as in linear response. In contrast,
for large enough times, the skin penetration depth covers the outer region and the nonlinearities
become important. The interplay of the divergent boundary layer and the skin penetration depth is
the origin of noncommuting limits. Mathematically related, but not quite identical, is the problem
of the time-dependent motion at small but finite Reynolds number [53].

The full solution provides the first direct access to the time-dependent fluctuations along the
force. Here we explicitly characterized the transient superdiffusion which connects the short-time
bare diffusion and the long-time enhanced diffusion [4]. The emergence of superdiffusion has been
rationalized by considering the distribution of the free path lengths.

Let us comment also on hydrodynamic interactions. Progress has been made for certain limiting
cases: In equilibrium, the stationary diffusion coefficients have been estimated by including instan-
taneous hydrodynamic interactions at the level of the Oseen tensor, as well as including near-field
corrections. Results for the density-induced suppression depend somewhat on the approximation of
the hydrodynamic interactions but are close to the diffusion coefficient neglecting hydrodynamics
[37,54–56]. For the driven case, hydrodynamic interactions have been accounted for in the stationary
state for both the structure deformation as well as the mobility for all Péclet numbers [41]. The
force-induced corrections to the stationary diffusion coefficient have been elaborated only recently,
and it has been shown that hydrodynamic interactions do not lead to qualitatively new behavior,
although the numerical values change. In particular, the low-force corrections are still O(Pe2), and
in the regime of strong forces they still scale as O(Pe), however with a slow convergence to the
asymptotic result [56].

A second effect due to hydrodynamics arises due to frequency-dependent hydrodynamic inter-
actions implying hydrodynamic memory. Here, the slow vortex diffusion of transverse momentum
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in the fluid leads to a characteristic algebraic decay of the form �Bt−3/2, B > 0, for the velocity-
autocorrelation function of the particle [57,58]. Hence, one may ask the question if the long-time tail
due to hydrodynamics dominates the long-time tail �−At−5/2, A > 0, due to repeated collisions
of the probe particle with the bath particles. Taking physical values from experiments [59,60] and
comparing both tails shows that, in principle, a window of time opens where the algebraic decay due
to the collision of the probe particle with bath particles dominates before hydrodynamics becomes
relevant at larger times.

Our predictions for the time-dependent response of a driven colloid can be tested, in principle, in
laboratory experiments on a colloidal suspension via particle tracking. The general scenario persists
also for soft spheres and is not restricted to dilute systems. To first order in the density, the different
diffusivities of probe and bath particles can be trivially accounted for, e.g., by a rescaling of time.
In particular, the case of a dilute and quenched array of obstacles (Lorentz model) is also included.
Simulation of the Lorentz model, where the bath particles are pinned, was added to the comparison
of the mobility and diffusivity with theory in Figs. 4 and 5.

Our analysis of the driven colloid shows that the nonequilibrium stationary state is inherently
a nonanalytic function of the driving such that the transport coefficients cannot be expanded in a
Taylor series beyond linear response. Although this has been derived to first order in the densities
only, this behavior is anticipated to be generic and valid for arbitrary densities. Arguably, such
relations should hold universally in a general nonlinear response framework. This view is supported
by recent predictions for a two-dimensional or three-dimensional driven lattice Lorentz gas [34–36],
where qualitatively the same scenario applies.
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APPENDIX: COMPUTER SIMULATIONS

We have simulated the motion of the pulled probe particle in the presence of bath particles
interacting via a hard-core potential using event-driven pseudo-Brownian-dynamics simulation
[61] ignoring inertial effects or hydrodynamic interactions. The starting point for the stochastic
simulation of the suspension is the Langevin equation

d�r =
√

2Da �η(t )dt + μF �ezdt, (A1)

which describes the change of position d�r of the probe particle in terms of the Gaussian white noise
process �η with zero mean and covariance 〈ηi (t )ηj (t )〉 = δij δ(t − t ′). For the bath particles, the same
equation with F = 0 holds. The Langevin equation [Eq. (A1)] is implemented by introducing a fixed
Brownian time step τB , such that for every step, the pseudovelocity

�v =
√

2Da

τB

Nη + μF �ez (A2)

is assigned to the probe and the bath particles (F = 0). Between these Brownian interrupts the
particles move with constant velocities and collide elastically [61]. The normal distributed random
variable Nη arises from discretization of the white noise and has zero mean and unit variance. The
Brownian time step τB should be much smaller than the diffusion time σ 2/Da and the drift time
σ/μF .
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For the colloidal case, we have used equilibrated configurations consisting of 1000 parti-
cles at a fixed number density nσ 3 = 0.01, and a typical value of the Brownian time step is
τB � 10−3(σ 2/Da )/max(1, Pe). For each data set, we have simulated at least 107 independent
trajectories. For the case of the Lorentz system, we freeze the dynamics of the bath particles and
apply the stochastic dynamics only to the tracer particle.
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