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In this paper we investigate experimentally the waves produced by a parabolically shaped
wave maker partially immersed into a water-filled basin and oscillating in the vertical
direction. The main motivation of our study is to follow the analogy between light waves
that focus on caustics, creating zones of intense light concentration, and surface waves in
liquids. Similarly to light focusing, the surface waves undergo spatial focusing leading to
the growth of their amplitudes till they reach a cusp singularity. We detect three regimes.
In the first one, which corresponds to small forcing amplitudes, the wave field agrees well
with geometrical optics and with Pearcey diffraction theory near the caustics. In the second
regime, weak nonlinearities are detected. However, waves still focus as predicted. In the
third regime, at large forcing amplitude, a large-scale mean flow is generated. This flow is
concentrated in two symmetric jets emerging from the wave maker front wall and producing
two counter-rotating eddies because of the finite size of the basin. This large-scale flow
modifies the shape of the wave fronts and leads to a displacement of the cusp towards the
wave maker, modifying the analogy between light and surface waves.
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I. INTRODUCTION

Waves are ubiquitous in every day life. Two common examples are light and sound, but the
best-known illustration of traveling waves is certainly the circular wave pattern propagating on the
free surface when a stone is thrown in water. The theory of surface waves in liquids is based on
the assumptions that the flow is inviscid and nonrotational. When small amplitude is assumed for
the waves, the quadratic term in the Bernoulli equation can be neglected, and the linear dispersion
relation of surface waves is obtained:

ω2 =
(

gk + σk3

ρ

)
tanh(kH ), (1)

where ω is the wave frequency, k their wave number, ρ the liquid density, σ the surface tension
coefficient, g the gravity acceleration, and H the depth of the liquid layer. In the limit of deep water
(kH � 1) the waves are dispersive, that is, their phase velocity depends on their wavelength. On
the opposite limit (kH � 1), known as the shallow water approximation, the phase velocity is equal
to

√
gH irrespective of the magnitude of the wavelength. The usual picture for a wave profile is a

sinusoidal function, which is valid for linear waves. But, when the quadratic term of the Bernoulli
equation is taken into account (but small wave amplitude compared to water depth is still retained),
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new behaviors appear. For example, some asymmetries in the vertical direction appear (the troughs
are rounded and the crests become sharp), and the phase velocity exhibits a slight dependency on
the wave amplitude. Furthermore, waves of finite amplitude cannot grow indefinitely, and there is a
threshold in steepness above which they break [1], transferring energy to capillary waves, bubbles,
and turbulence [2,3]. Oceanic waves play a major role in the atmosphere-ocean balance [4], and it
is a major issue in oceanography to know the mechanisms for the production and the dissipation of
energy by waves, but also to quantify the transfer of mass and momentum between air and water.

The question about the condition for a wave to break is still open even if some efforts have
been made to establish dynamical or kinematical criteria for the appearance of wave breaking [1].
For instance, when a wave has components of different frequencies, the superimposition of these
components at some point in space and time could lead to the growth of the wave amplitude beyond
the aforementioned threshold [5,6]. A good method to study wave breaking, based on the work of
Longuet-Higgins [7], is to use temporal focusing due to the dependence of the group velocity upon
the frequency. A little more sophisticated method has been used by Rapp and Melville [8]. They
produce a wave train containing 32 components of equal amplitude, all focusing at a given point for
a precalculated time. In this manner, the sum of the 32 components leads to a breaking wave at the
point of focusing.

Here we study the geometrical focusing of water waves generated by a parabolic-shaped wave
maker. The growth of the wave slope is less than those obtained by Rapp and Melville [8] using
temporal focusing. However, focusing occurs for all time in our setup, which may be an advantage in
exploring wave breaking, as expected for future studies. This focalization process has already been
evoked for the formation of rogue waves in the ocean [6,9]. The ultimate goal of our study will be
to tackle some aspects of the breaking wave problem in the laboratory on a rather small facility. As
a first step, we present in this article the analogy of our hydrodynamical system with the focusing
of light in a cusp [10]. As already mentioned, if the waves have a small amplitude, the inherent
nonlinear properties of their propagation might not break the analogy with light. In this case, surface
waves focus as expected, following the ray theory of geometrical optics or, if we take into account
diffraction, the more sophisticated theory of Pearcey [11]. Then we will show that weak nonlinearity,
even if it breaks the vertical symmetry of the waves (crests and troughs are no more symmetric),
does not affect too much the theoretical prediction about focusing. On the contrary, this is no longer
the case when the forcing amplitude is strong enough to generate a steady large-scale surface flow.
This flow transports and deforms the waves and consequently moves the cusp much more closer to
the wave maker than the predicted locations of the Huygens cusp.

The present article is organized as follow: in Sec. II we describe the basic principles of geometrical
optics, and we give some details of the rays and wave fronts produced by a parabolic wave maker.
In Sec. III the experimental setup, the methods to study surface waves, and velocity on the free
surface are given. In Sec. IV the results of wave properties and focusing are described. Three different
subsections present, respectively, the small amplitude, the medium amplitude, and the large amplitude
wave focusing properties. In the case of medium amplitude the nonlinear effects are highlighted, in
particular the asymmetry of the wave profile. In the case of large amplitude, the properties and the
effects of large-scale surface flows are presented. Finally in Sec. V some conclusions and perspectives
are drawn.

II. GEOMETRICAL OPTICS

Two concepts underlie geometrical optics: “rays” and “wave fronts.” A ray is a line along which a
wave propagates, while a wave front is a line of constant phase, which can be constructed as a curve
perpendicular to rays. In our study, the water surface is disturbed with an oscillating parabolic wave
maker [12,13]. To trace a ray we need the normal vector in all points of the parabola. If the equation
of the parabola reads

y0 = ax2
0 , (2)
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FIG. 1. Rays and wave fronts produced by a parabolic wave maker as predicted by geometrical optics. (a)
Rays starting at each point (x0, y0) of the parabolic wave maker following the normal to the parabola. (b) Wave
fronts produced by the parabolic wave maker. They are perpendicular to rays and move towards the top. (c)
Picture of the wave maker, the basin, and the shaker. The wave field is visualized by adding white concentrated
ink to water. The black dots are small floating beads used to measure the mean surface flow by particle tracking.

then the normal vector at any initial location is n̂ = (1,−2ax0 )√
(1+4a2x2

0 )
. Consequently any position (x, y) on

a ray starting at point (x0, y0) obeys the following equation:

(x, y) = (x0, y0) + (1,−2ax0)√(
1 + 4a2x2

0

)c t, (3)

where c is the phase speed of the waves and t is the time. The product c t is the distance d traveled
by a front along a ray from its starting point (x0, y0). In Fig. 1 we show both rays and wave fronts
emitted by the parabolic wave maker as they are predicted by the geometrical optics. Rays are
obtained from Eq. (3) leaving x0 constant and varying t , whereas wave fronts are recovered leaving t

constant and varying x0. In Sec. IV we will compare experimental wave fronts with those predicted
by geometrical optics.

According to geometrical optics, rays starting at point (x0, y0) converge to the curvature center of
the wave fronts, which can be calculated as a function of (x0, y0). The curvature κ can be calculated
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as usual for a planar curve:

κ =
d2y0

dx2
0[

1 + (
dy0

dx0

)2]3/2 . (4)

From this formula the radius of curvature is simply ρ = 1/κ . As energy is conserved along a ray
(dissipation is small and neglected), we can deduce that the amplitude η of a wave at any arbitrary
point satisfies

η = η0

√
ρ

ρ − d
, (5)

where d is the distance traveled by a ray from a starting point (x0, y0) at the parabolic wave maker and
η0 the wave initial amplitude. As can be seen in Eq. (5), the amplitude of the wave field should diverge
according to the ray theory at points where d = ρ. For instance along the symmetry axis (x = 0), the
greatest amplitudes are attained for d = ρ = 1/2a. This point (0, 1

2a
) of singular behavior for the

wave field is the summit of a cusp called the Huygens cusp. The wave field exhibits also the existence
of two caustics that merge at the summit of the Huygens cusp. The primary definition of a caustics
is a region (a line in two-dimensional wave fields and a surface for three-dimensional waves) where,
according to the ray theory, wave amplitude becomes infinite. Using Eqs. (2)–(5), we determine the
equation for these two caustics:

x = ±4

3

√
a

3

(
y − 1

2a

)3/2

. (6)

Caustics are also the loci where wave fronts fold, i.e., where there is a change in the sign of the
curvature of the waves fronts. Because of the divergence of the rays, wave amplitude is expected to
decrease after a caustics. Note also that if we reintroduce the oscillatory behavior of waves, diffraction
and interference are expected to be produced by the superimposition of more than one ray. Therefore,
ray theory breaks down if we consider spatial scales shorter than the wavelength as it is the case
for nearby caustics. In the 19th century, Airy developed a theory to describe the behavior of waves
near simple caustics [14]. He constructed a function having an oscillatory behavior in one domain
and an exponential decay in another one with the intention to reproduce the features of the wave
envelopes on both sides of caustics. However, Airy’s theory does not apply in the neighborhood of
the cusp, as three rays intersect there and not only two. Instead, we use a diffraction integral as done
in the pioneering work of Pearcey [11]. This is an approximate solution which does not diverge at
caustics and thus allows us to determine the behavior of linear waves around those. The wave field
is approximated by the following integral that simply represents the summation of all initial point
source contributions along the wave maker:

η(x, y) =
∫ +∞

−∞

exp[ikd(x0, x, y)]√
d(x0, x, y)

dx0

cos[θ (x0)]
, (7)

where d is as before the distance from point (x, y) to the parabola, cos[θ (x0)] the angle of the rays
versus the symmetric axis of the parabola, and k the wave number of the considered wave. Because
our interest is to describe the wave field in the vicinity of the singularity, we perform a Taylor
expansion of the length d around the Huygens cusp summit (0, 1

2a
). We use this expansion only in

the term kd(x0, x, y) inside the exponential, whereas in the denominator we use the approximation
d ≈ 1

2a
. The final result is known as the Pearcey integral [11]:

η(x, y) = k

i2π

exp(ikR)√
R

(
2R

ka2

)1/4 ∫ +∞

−∞
exp(i[s4 + Us2 + V s])ds, (8)

where R = 1
2a

, U = 2( k
2R

)
1
2 (R − y), V = − 2√

a
( k

2R
)

3
4 x, and s = ( ka2

2R
)

1
4
x0.
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The calculation of the Pearcey integral will be used later to compare its predictions with our
experimental results. We must remark that the wave maker has a finite size, so to make a correct
comparison with the experiments, the limits in the previous integral must be replaced by finite values.

III. EXPERIMENTAL SETUP

Our experiments involve the measurements of both the topography of the oscillating free surface
and the velocity field on this surface. To investigate the wave fields, we use two methods developed
in the last decade: the synthetic Schlieren method [15] and the Fourier transform profilometry [16]
(FTP). Both methods have been developed on the basis of the use of digital cameras. The first
method is based on light refraction. To implement it, a pattern of dots randomly distributed is placed
at the bottom of the transparent liquid layer. When a surface wave travels, it induces an apparent
displacement δ

−→
r of each dot, related to the gradient of the free surface deformation through a linear

relation:

∇η = −δ
−→
r

h∗ , (9)

where 1
h∗ = 1

αH
− 1

L
with H the layer depth, L the distance from the camera to the liquid bottom, and

α is related to the ratio of the refractive indices of, respectively, the liquid (n′) and air (n): α = 1 − n′
n

.
In an air-water interface α = 0.24. To measure δ

−→
r , we use a PIV software; our choice was a free

distribution software developed by Meunier and Leweke, DPIVsoft [17]. Finally to calculate η, we
integrate Eq. (9) with a method of least squares because the system of equations is overdetermined.
The synthetic Schlieren method works well for waves of small amplitudes; however, it is not suitable
to studying high-amplitude nonlinear regimes. In this case, we use instead the FTP method, which
is based on light reflection. To implement it, the liquid-air interface must be opaque to produce a
diffuse reflection of light. For this purpose some concentrated white paint is added in the water.
Among a great variety of paints we have chosen the dye that produces a small modification of water
viscosity and surface tension [16]. A fringe pattern of a given spatial period p is then projected on
the liquid surface by the use a high-definition video projector (1920 × 1080 pixels). In a second step
the fringe pattern is recorded with a digital camera able to record frames with a depth of 16 bits per
color. To reconstruct the free surface topography we need to take snapshots when the liquid surface
is flat and then when it is deformed by the waves. These two images will be used to calculate the
phase changes of the fringe pattern due to the presence of the waves. Among some possible technical
configurations we use an arrangement where the camera and the projector have parallel axes. In this
case, the relation between the deformation of the free surface and the phase difference �φ is [16]

η = �φL

�φ − 2π
p

D
, (10)

where L is the distance from the camera to the liquid surface and D the distance between the camera
and the video projector lens.

The experiments using the synthetic Schlieren or FTP method were both carried out in a 1.2 m
long, 0.5 m wide, and 0.15 m deep basin. The basin was filled with water up to 12.5 cm. To produce
the waves, we used a parabolic wave maker with a geometric parameter a = 2 m−1 and 42 cm wide.
This wave generator plunges 2 mm into the water. In order to vibrate the wave maker, we connect it
to a shaker which is excited with a power supply capable of generating monochromatic waves with
frequencies in the range from 5 to 10 Hz. The initial amplitude of the waves is given by the amplitude
of the forcing. Both were checked to be proportional to the voltage applied to the shaker at a chosen
frequency. These excitations correspond to wavelengths lying between 2.3 and 6.6 cm with a phase
speed between 23.2 and 33.1 cm/s. Under these conditions, the produced waves are capillary-gravity
waves. The Huygens cusp is located 25 cm away from the parabola vertex, so the distance from the
wave maker to the caustics is covered by several wavelengths. To avoid wave reflection some pieces
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FIG. 2. Topography of the free surface measured with the synthetic Schlieren method for two frequencies:
(a) f = 5 Hz and η0 = 36 μm, (b) f = 10 Hz and η0 = 8 μm. For comparison we draw also some wave fronts
(black lines) as predicted by ray theory. These wave fronts are separated from each other by a wavelength λ.
The waves have small amplitudes, so nonlinearities are weak. The shape of the wave fronts and the value of the
wavelength λ agree very well, respectively, with the prediction of geometrical optics and the linear dispersion
relation for surface waves [see Eqs. (3) and (1)]. In addition we also draw the caustics (white line).

of foam were disposed all along the lateral walls of the basin. As we will see in the following, we
also measure the mean flow induced at the free surface in the case of large oscillation amplitudes. To
measure the velocity field we tracked during 2 min for each run polystyrene floating particles that
were randomly spread on the water surface.

IV. EXPERIMENTAL RESULTS

A. Small amplitude wave experiments: No evidence of nonlinear effects

The wave fields for small forcing amplitudes were investigated using the synthetic Schlieren
method. In Fig. 2 we show the topography of the free surface for two frequencies of 5 and 10 Hz.
The corresponding wavelengths are 6.6 cm and 2.3 cm, and their initial amplitudes are 36 μm and
8 μm. The area covered in the figure includes the region where spatial focusing occurs, the two
caustics, and a region where the wave amplitude decreases.

In order to compare the experimental data with geometrical optics, we include in the figure
some wave fronts as predicted by Eq. (3). The first one is superimposed to the experimental curve of
maximal amplitude closest to the wave maker. The other wave fronts are separated from each other by
a wavelength λ with the aim to test if the dispersion relation (1) holds. We see that experimental lines
of maximal amplitudes coincide perfectly with these curves, indicating that the predicted value of λ

agrees with observations. In addition we have also drawn the two caustics. From a visual inspection
of these figures, we can observe that the actual form of wave fields for small forcing amplitudes
agree very well with geometrical optics predictions. Indeed, and as expected, for small amplitudes
the nonlinear effects are negligible, meaning that the linear theory is appropriate to describe the wave
fields. To get a better picture of the wave profiles, we present in Fig. 3 graphs of η as a function of
y along the symmetry axis (x = 0) and for the two frequencies already considered. As can be seen,
both curves are symmetric versus η = 0, meaning that crests and troughs are symmetric, attesting
the absence of nonlinear effects. In addition, we can also observe that the amplitudes grow by a
factor between 3.5 and 4.25, from the wave maker (y = 0) until a point located between 25 cm and
30 cm. As we will see later, this amplification factor stays around 4 in the different experiments we
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FIG. 3. Deformation of the free surface η versus y along the symmetry axis (x = 0). (a) f = 5 Hz,
wavelength λ = 6.5 cm, and initial amplitude η0 = 36 μm. (b) f = 10 Hz, wavelength λ = 2.3 cm and initial
amplitude η0 = 8 μm. Both curves are symmetric with respect to η = 0, attesting that nonlinearities are weak.
Waves travel from left to right. For comparison we include the prediction of the ray theory for the wave envelope
as given by Eq. (5) (blue line), the Pearcey prediction for the wave envelope, calculated from Eq. (8) (black
dashed line), and the position of the Huygens cusp y = 1

2a
(vertical red dashed line). The crests of experimental

waves at both frequencies agree with the prediction of the ray theory when y < 20 cm, but for larger y, the
Pearcey integral gives a better approximation.

performed and is less than those obtained by Rapp and Melville [8] using temporal focusing. The
aforementioned point of maximal amplitude is close to the position of the Huygens cusp, which is
y = 1

2a
= 25 cm in our experiments. In Fig. 3 the Huygens cusp is indicated by a vertical red line.

According to the ray theory, the wave amplitude goes to infinity in that point, whereas in Pearcey
theory, the maximal amplitude is reached in the vicinity of it. The experimental data are in good
agreement with the Pearcey predictions.

B. Medium amplitude wave experiments: Emergence of weak nonlinear effects

A question then comes up: When does the linear theory fail to work? To answer this question
we recall the pioneering work of Stokes [18] where he deduced some results about surface waves
of finite but small amplitude. At leading order the results of linear wave theory are recovered, for
instance, the dispersion relation for gravity waves (w2 = gk). At next order, he found that the height
of elevations exceeds the depth of troughs. In his theory the deformation of the free surface is given
as the sum of two trigonometric functions:

η(y) = a cos(ky) + ka2

2
cos(2ky). (11)

According to this equation the derivative ∂η

∂y
(which can be measured directly from the synthetic

Schlieren method) is

∂η

∂y
= −ka sin(ky) − (ka)2 sin(2ky). (12)

In order to recover the behavior of the wave envelope, we need to calculate the maximum and
minimum values of η. These are, respectively, ηmax = a(1 + ka

2 ) and ηmin = −a(1 − ka
2 ). From

these two relations it appears that the wave exhibits an asymmetry in the vertical direction. As a
consequence the positive branch of the envelope becomes different from the negative one (for the
last one we take its absolute value). To detect this asymmetry it is necessary that the difference (in
absolute value) of positive and negative branches of the envelope (which is a2k) becomes larger that
the resolution of the synthetic Schlieren method. To estimate the resolution of the synthetic Schlieren
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FIG. 4. Envelopes of η for a monochromatic wave of frequency f = 10 Hz. (a) Initial amplitude η0 = 8 μm.
(b) Initial amplitude η0 = 24 μm. The blue curve is the positive branch of the envelope, whereas the red curve
is the absolute value of the negative one. For comparison we include the predictions of the Pearcey integral
(continuous black line) and the ray theory (dashed black lines). In the first case both branches of the envelopes
remain close to each other, so nonlinear effects are undetectable. In the second case, the maximum difference
between the two curves is approximately 10 μm, which is approximatively 2.5 times the prediction made by
Stokes.

method we use the formula given by Moisy [15]:

�η

ηrms

≈ 5
Lε

λN
, (13)

where L is the length of a side of the area covered by the image, N is the number of points in the grid,
λ is the wavelength, and ε is the uncertainty of the input displacement field. In our measurements we
use L = 23 cm and N = 96 and λ lies in the interval from 2.3 to 6.6 cm. In addition if we assume that
the wave is nearly sinusoidal, ηrms ≈ a√

2
. In most experiments the resolution of η is �η ≈ 1–2 μm,

which is roughly the same as in the paper of Moisy [15]. Contrary to the behavior of the deformation
η, the envelope of the derivative ∂η

∂y
is symmetric in the Stokes theory. The envelopes of both η and

∂η

∂y
were calculated following the evolution of waves in 1250 events. We have tested these predictions

with monochromatic waves of various frequencies. For reasons of space in this paper we include
only the results for the frequency of 10 Hz (λ = 2.3 cm) for two forcing amplitudes for the wave
maker, η0 = 8 μm and η0 = 24 μm. In the first case the maximum amplitude is 34 μm, whereas
in the second case the maximum amplitude is 110 μm. Taking these amplitudes as the value for a,
the Stokes theory predicts that the maximum separation between the two branches of the envelope
of η is, respectively, 0.3 μm and 4 μm. For the smaller amplitude the separation is less than our
resolution, but in the second case not only the difference is greater than the resolution but it also
represents about 4% of the wave amplitude. In Fig. 4 we present the two branches of the envelope
of η (the positive branch is colored in blue, whereas the negative one is colored in red) for the two
initial amplitudes mentioned before. With the aim to compare our results with the linear wave theory
predictions, we include in the figure the prediction given by the Pearcey integral (the black line) and
by the ray theory (the dashed line). For the smaller amplitude [Fig. 4(a)] both branches collapse on
the complete interval. This result reflects that the nonlinear behavior remains undetectable here. On
the contrary, the behavior is different for the larger amplitude η0 = 24 μm [see Fig. 4(b)]. In this
case there is a clear difference between the two branches of the wave envelope. Maximum values
are, respectively, 110 μm for the positive branch (blue line) and 100 μm for the negative one (red
line). Then the difference between both branches is approximately 2.5 times the prediction of Stokes
theory. This result is in accordance with Stokes theory in the sense that the crests are larger than
troughs, but the theory underestimates the difference found in the experiment. This is probably due
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FIG. 5. Envelopes of ∂η

∂y
for a monochromatic wave of frequency f = 10 Hz. (a) Initial amplitude η0 =

8 μm. (b) Initial amplitude η0 = 24 μm. The blue curve is the positive branch of the envelope, and the red curve
is the negative one. For both cases positive and negative branches of envelope collapse, in agreement with the
weak nonlinear theory by Stokes.

to the fact that the results of Stokes [18] are deduced for plane waves. As for the linear case studied
in Sec. IV A, the predictions of linear waves and the ray theory are in an acceptable agreement
with experimental data for y < 20 cm. In the vicinity of the Huygens cusp (y = 25 cm) the ray
theory fails to predict correctly the wave behavior because it diverges at y = 1

2a
. On the contrary, the

envelope calculated with the Pearcey integral agrees well with the experimental data. In Fig. 4(a),
both experimental curves lie under the black curve, whereas in Fig. 4(b), the positive branch of the
envelope is larger than the black line in the vicinity of the Huygens cusp. The comparison of positive
(blue line) and negative (red line) of the envelope of ∂η

∂y
are shown in Fig. 5. As predicted by Stokes

theory, both branches collapse on one another in both cases.

C. Large amplitude wave experiments: Strong nonlinear effects

To test the possibility to increase more the amplitudes by focusing, we increased the forcing
amplitude of the wave maker and thus of the generated waves. In these cases, the synthetic Schlieren
method cannot be used any longer, and instead we use the FTP method. We choose a fringe pattern
of periodicity p = 2 mm so that its spatial resolution (of the order of p) is much smaller than the
features of interest and the minimum wavelength is λ = 2.3 cm. The topography of the free surface
is measured in the region −12 cm < x < 12 cm and 5 cm < y < 35 cm. In this subsection, we
present some results for waves of frequency f = 6.5 Hz, and the corresponding wavelength given
by the dispersion relation (1) is λ = 4.2 cm. We have chosen three different amplitudes to explore
the regime of strong nonlinearity. The first case corresponds to an initial amplitude η0 = 200 μm.
In Fig. 6 we present both a wave profile along the symmetry axis and the topography of the free
surface in the x-y plane. As expected, the wave amplitude grows on account of spatial focusing, and
the wave develops a vertical asymmetry. The maximum amplitude of the crests is ηmax = 0.074 cm,
whereas the maximum amplitude of the depressions is ηmin = 0.062 cm. In the preceding subsection
the product ka was used to quantify the nonlinearity. If we consider these results, and assume that
a = (ηmax + ηmin)/2, then the maximum value of ka is now 0.1044, which is approximately three
times those of the precedent subsection. Then we expect to have a more pronounced nonlinear
behavior. According to Stokes theory the difference between the crests and the troughs should be
�η = ka2 = 0.0069 cm. This value is less than the experimental result: ηmax − ηmin = 0.012 cm, by
a factor 1.7. As before, we observe that if Stokes theory is able to detect the expected dissymmetry,
it underestimates its amplitude in our case. Another insight in the wave behavior appears when we
study the shape of the wave fronts. For this purpose in Fig. 6(b) we plot the topography of the free
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FIG. 6. (a) Wave profile η versus y along the symmetry axis (blue line) for a monochromatic wave of
frequency f = 6.5 Hz and an initial amplitude η0 = 200 μm. For comparison we include the prediction of
both the ray theory (continuous black line) and the Pearcey integral (black dashed line) for the envelope of the
waves. The wave exhibits an asymmetry with respect to η = 0, which is a signature of a nonlinear behavior.
In addition, wave crests are larger than the prediction of the wave envelope for y < 20 cm. (b) Topography of
the free surface. For comparison we include some wave fronts as predicted from Eq. (3) (black lines) and the
caustics (white lines). Despite the existence of a nonlinear behavior, there is still an agreement on the shape of
the wave fronts between experiments and the ray theory prediction.

surface in the x-y plane. For comparison we include in the same figure some wave fronts as predicted
by the ray theory (black curves). The visual agreement between theoretical and experimental data is
satisfactory. Consequently, even if the nonlinearity is present for the results presented in Fig. 6, it is
not strong enough to modify the shape of the wave fronts and their focusing.

When increasing the amplitude further, the wave field is highly modified. This can be seen in
Fig. 7 where both the wave profile along the symmetry axis and the topography of the free surface

FIG. 7. (a) Wave profile versus y along the symmetry axis of a monochromatic wave of frequency f =
6.5 Hz and an initial amplitude η0 = 500 μm (blue line). For comparison we include the prediction of both the
ray theory (continuous black line) and the Pearcey integral (black dashed line) for the wave’s envelope. The
wave profile is modified with respect to the case presented in Fig. 6. First, the position of maximal amplitude
moves towards the wave maker. Second, the discrepancy between the amplitude of the crests and the envelopes
is even greater. (b) Wave field in the domain −12 cm < x < 12 cm and 5 cm < y < 35 cm. For comparison,
some wave fronts as predicted by the ray theory [deduced from Eq. (3)] are included (black lines) together with
their corresponding caustics (white lines). The agreement with geometrical optics holds only near the plunger.
Two differences emerge: first, the wavelength is no more equal to 4.2 cm, and, second, the wave fronts shape
differs from the parabolic shape when moving away from the wave maker.
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FIG. 8. (a) Wave profile versus y along the symmetry axis of a monochromatic wave of frequency f =
6.5 Hz and an initial amplitude η0 = 900 μm (blue line). For comparison we include the prediction for the
waves envelope of both the ray theory (continuous black line) and the Pearcey integral (black dashed line). The
position of maximum amplitude stands approximately at y = 15. This point is closer to the wave maker than
those obtained in the experiments with initial amplitudes η0 = 200 μm and η0 = 500 μm. (b) Wave field in the
domain −12 cm < x < 12 cm and 5 cm < y < 35 cm. For comparison, some wave fronts as predicted by the
ray theory [deduced from Eq. (3)] (black lines) and the caustics (white lines) are included. The wave field is
very different to the prediction from geometrical optics.

are plotted for a wave of initial amplitude η0 = 500 μm. First, Fig. 7(a) shows that the maximum
amplitude happens in a point near y = 20 cm, which is not in agreement with the ray theory. Second,
in Fig. 7(b) we plot the topography of the free surface, and we observe that the wave fronts exhibit
differences with the ray theory as the wave goes away from the wave maker. For this amplitude, the
agreement between ray theory and experiments holds only for the first period. For the remaining
wave fronts, the differences occur in two respects: first, the distance between two successive crests
for the experimental data is larger than the expected wavelength of 4.2 cm. Second, the curvature
of the second and third wave fronts increases near the symmetry axis, enhancing the focusing. On
the contrary, the fourth wave front corresponds to a diverging wave. At this position (y ≈ 20 cm)
the ray theory predicts that the wave fronts should still be convergent. Conversely, the curvature
of experimental wave fronts on the side of the pattern (top and bottom of the figure) are smaller
than the corresponding theoretical ones. A further increase of the initial amplitude makes even more
evident these modifications. This can be seen in Fig. 8, where we present the wave profile along
the symmetry axis and the topography of the free surface for an initial amplitude η0 = 900 μm.
The wave profile shown in Fig. 8(a) has a maximum amplitude located at y = 15 cm, very far from
the expected 25 cm. After this point the wave amplitude decreases, which is a signature that the
waves become divergent. As a consequence, Fig. 8(b) shows some important differences between
experimental results and the prediction of ray theory (black lines). As in the previous figure, near
the symmetry axis the curvature of the second and third experimental wave fronts is greater than
the prediction of the ray theory. This behavior leads to a more pronounced focusing (from now we
will call it “super” focusing), and therefore the point where curvature of wave fronts changes sign
is close to y = 15 cm, a position which is 40% closer to the wave maker as compared to its position
obtained with small amplitude waves [see Fig. 6(b)].

The results shown in Figs. 7 and 8 raise the following question: What is the source of the observed
change in the wave pattern? We have found that the responsible of this unexpected behavior is
the emergence of an horizontal large-scale flow at the liquid-air interface. This flow modifies the
propagation of the waves, promoting a “super” focalization. This large-scale flow is formed by two
recirculating cells and two jets situated on both sides of the symmetry axis of the wave maker.
These cells play a major role in the properties of the wave field. The presence of the large-scale
flow was detected by tracking small polystyrene particles on the free surface. These polystyrene
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FIG. 9. Large-scale velocity field produced by a monochromatic wave of frequency f = 6.5 Hz and two
different initial amplitudes: (a) η0 = 500 μm and (b) η0 = 900 μm. These amplitudes are the same as those
used for experiment shown in Figs. 7 and 8. The wave maker is drawn in red on the left. Two vortices and two
jets appear, symmetrically located with respect to the center line. When measuring the vorticity field, it appears
to be different from zero, which is in contrary to the assumptions made to deduce the Stokes drift.

particles (around 4 mm in diameter spheres) are spread on the liquid-air interface. They have been
painted in black, and the liquid was colored in white in order to facilitate their detection by contrast
with the surrounding fluid. Initially the particles were uniformly distributed on the liquid surface
with the aim to get data of the velocity field on all the domain. The positions of the particles were
measured by taking images of the free surface at a rate of 25 frames/s with a full high-definition
video camera (1920 × 1080 pixels) during 2 min, giving 3000 frames for each experiment. The
position of individual particles are then tracked in all frames, and the velocity fields are deduced by
differentiating the positions of each individual particle. The domain covers an area of 44 cm × 40 cm
containing the wave maker and a region where wave evolves. To measure the velocity of the particles,
the domain is divided in squares of 16 × 16 pixels (the corresponding length of a side of the square
is 7 mm). When a particle reaches a cell, its velocity is assigned to the center of that cell. Finally
the value of the velocity assigned to each square is the mean of the velocities of all the particles
reaching the cell. In Fig. 9 we show the velocity field in the x-y plane corresponding to a wave of
frequency f = 6.5 Hz and two different initial amplitudes η0 = 500 μm and η0 = 900 μm, that is,
the same amplitudes as the waves presented in Figs. 7 and 8. In Fig. 9(a), which corresponds to an
initial amplitude of η0 = 500 μm, the centers of the recirculating cells are located, respectively, at
positions (15 cm, 16 cm) and (−15 cm, 16 cm). When the amplitude is η0 = 900 μm [see Fig. 9(b)]
the cell centers are located at (12 cm, 15 cm) and (−12 cm, 15 cm). In general when increasing
the wave amplitude the vortices approach to the wave maker. At the same time the direction of the
jets is modified by a change of initial amplitude η0. The larger is the wave amplitude, the larger is
the transversal component (along the x direction) of the velocity inside the jets. The points where
the jets are deflected and redirected along the y axis correspond roughly to the position of maximal
wave amplitude. It is important to point out that when η0 decreases, the flow weakens and we recover
gradually the results of geometrical optics. Nevertheless, as the wave amplitude increases, the two jets
act to modify the position of the maximal wave amplitude. When the amplitude rises from 500 μm
up to 900 μm, the point of maximal amplitude moves from (0 cm, 20 cm) to (0 cm, 15 cm).

To estimate the modifications induced by the large-scale flow on the wave field, we proceed as
follows. At the wave maker, the shape of the wave front is a parabola. As the wave moves away,
we add the local velocity of the flow to the wave speed to calculate the new form of the wave front.
This procedure allows us to modify the wave fronts taking into account the Doppler shift induced
by the large-scale flow at the free surface. The main modifications of the wave fronts happen in the
region where the two jets converge towards the symmetry axis. In Fig. 10 we draw the wave fronts
resulting from the corrections induced by the velocity field (black lines) for a wave of frequency
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FIG. 10. Wave fronts in the presence of the large-scale flow. Black lines are the calculated wave fronts
resulting from the transport induced by the large-scale velocity field. These wave fronts are superimposed
to the experimental results and are in good agreement. (a) Wave field for η = 500 μm and (b) wave field
for η = 900 μm. The presence of the large-scale flow modifies the shape of wave fronts. The Huygens cusp
is located at y = 21.5 cm in the first case and at y = 16 cm in the second case. The resulting caustics are
represented by the white lines.

f = 6.5 Hz and two initial amplitudes, η0 = 500 μm and η0 = 900 μm. For comparison we include
the experimental data of the topography of the free surface. Finally, we have also included the two
caustics (blue lines). The caustics have been obtained by using the property that they are the locations
where wave fronts fold. As can be observed in Fig. 10, this Doppler shift argumentation fully explains
why the waves have experienced a “super” focusing due to the jets converging towards the symmetry
axis. This pushes away the Huygens cusp towards the left of the figure, i.e., closer to the wave maker.
For the initial amplitude η0 = 500 μm this point is located at (0 cm, 21 cm), whereas for the wave
of initial amplitude η0 = 900 μm the Huygens cusp is located at (0 cm, 16 cm).

The large-scale flow presented in Fig. 9 cannot be explained within the framework of the Stokes
theory [18] because as we will see in the following, its intensity is not proportional to the square
of the wave amplitude. A way to quantify the intensity of the flow is to determine the maximum
values of the components (u, v) of its velocity field. The position where maximum values are attained
is different for each of these components. For the transversal velocity u, its maximum value umax

happens along the jets, whereas for the longitudinal velocity v, its maximum value (vmax) happens
along the symmetry axis. In Fig. 11 we plot umax versus the initial amplitude η0 of the waves. As it can
be seen in the figure, for small values of η0, there is a linear relation between umax and η0. For larger
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FIG. 11. Maximum value of the transversal component of the large-scale flow velocity fieldumax as a function
of the wave amplitude η0. At weak wave amplitude, we observe a linear relation. However, umax saturates for
large values of η0 and then slightly decreases. The overall behavior does not match with the Stokes drift but
agrees with the results by Punzmann et al. [19].
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FIG. 12. Longitudinal velocity v profile along the x direction, for two different waves amplitudes, η0 =
250 μm (continuous line) and η0 = 900 μm (dashed line), for y = 26.4 cm and 20.2 cm, respectively. The
maximum value of the velocity happens at the symmetry axis. We observe also negative values inside two
intervals located symmetrically along the side of the container and corresponding to the back flow.

values of the wave amplitude, umax saturates and even decreases. This behavior does not agree with
the quadratic expected behavior of the Stokes drift but is close to the results obtained by Punzmann
et al. [19]. The behavior of the v component of the velocity field is shown in Fig. 12, where we plot
v as a function of x for two different values of the wave amplitude, η0 = 250 μm and η0 = 900 μm.
We have chosen to plot these profiles at the position where u reaches its maximal value (y = 26.4
cm and y = 20.2 cm, respectively). The maximum value of v happens at the symmetry axis (x = 0),
and again the relation between vmax and η0 is not quadratic. Besides, both curves show two intervals
where v is negative, indicating that the velocity and the wave propagation are pointing in opposite
direction. Another difference with Stokes drift theory is that the vorticity is nonzero, contrary to the
assumption of a nonlinear potential theory of waves. In our experiments, we observe that the vorticity
is concentrated in the two vortices and in the two jets. This can be seen in Fig. 13, where we have
plotted the vorticity distribution in the x-y the plane for the two amplitudes considered here.

The appearance of this flow has been related to the boundary layer detachment of the liquid in
contact with the wave maker as reported in recent papers. In particular, Punzmann et al. [19] present
results of a flow produced by a plunger oscillating in the vertical direction. They found a large-scale
flow composed of two or more vortices. To our understanding, a major role is played by the wave
maker in the production of the large-scale flow. Of course, it produces the waves but its vertical

FIG. 13. Vorticity distribution of the large-scale flow on the free surface. (a) Initial amplitude η0 = 500 μm
and (b) initial amplitude η0 = 900 μm. The vorticity is concentrated in the two recirculating cells and in the
two jets. The flow is rotational, meaning that it does not fulfill the assumptions of the Stokes drift theory.
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motion leads also to a horizontal displacement of the water because of mass conservation. Due to the
nonslip boundary condition, the horizontal velocity of the fluid in contact with the wave maker falls
to zero, and in consequence a boundary layer is formed. The boundary layer develops on both sides
of the symmetry axis, producing a converging flow which moves away from the wave maker. The
detachment of the boundary layer leads to the formation of two jets directed toward the symmetry
axis. Because of the finite size of our container, the back flow is located along the lateral wall of the
basin.

V. CONCLUSIONS

In this paper, the wave field produced by a parabolic wave maker has been investigated. Three
regimes have been detected. In the first one, which corresponds to small amplitude waves, the
experiments agree very well with the linear wave theory and with the ray theory. The wave profile
is symmetric in the vertical direction, and maximal amplitude occurs near the Huygens cusp (y =
25 cm). In the second regime, the nonlinearity is weak, but we can observe some effects associated
to it. In particular, there is an asymmetry in the wave profile along the vertical direction. This implies
that the amplitudes of the crests are larger than the amplitudes of the troughs. This behavior has been
predicted by Stokes for plane waves, but for waves produced by a parabolic wave maker, the difference
in amplitude between crests and troughs is larger than the difference predicted by Stokes theory. On
the other hand, the shape of the wave fronts is not modified by the emergence of the nonlinearities,
and wave focusing is still in accordance with the Pearcey integral prediction. Finally the third regime
corresponds to a strong nonlinear behavior; a large-scale flow is superimposed on the wave field and
modifies the shape of the wave fronts. In each point, the waves move with a speed which is the sum
of the phase speed plus the local large-scale velocity field. This leads to a spatial “super” focusing
where maximum amplitude is attained at a position closer to the wave maker by an amount as large as
40%. Nonetheless, in the three regimes, the spatial focusing technique leads to an amplification factor
about four, slightly increasing with the wave frequency in accordance with the Pearcey integral, but
lower than the growths observed in Ref. [8]. Note, however, that higher amplification rates and wave
breaking can also be obtained by spatial focusing (of a single wave front) as performed by Tejerina
and Le Gal, for instance [12]. In the third regime, we think that the emergence of the large-scale flow
is related to the detachment of the boundary layer along the wave maker wall. Its nature is different
from the Stokes drift in two respects: first, because its amplitude is not proportional to the square
of the wave amplitude and, second, because the flow is rotational. Moreover, this large-scale flow
that deforms the wave fronts might in consequence inhibit the breaking of the waves by limiting the
growth of their slopes. This subject will deserve future analysis.
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