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This paper investigates the formation number of vortex rings generated by a piston-
cylinder mechanism in a confined tube. We use direct numerical simulations of axisym-
metric confined vortex rings to study the influence of different parameters on the separation
(or pinch-off) of the vortex ring from the trailing jet. It is shown that the structure of the
vortex ring at pinch-off depends on the type of injection program (pulse dominated by
either positive or negative acceleration ramps) and the confinement ratio Dw/D, where Dw

is the inner diameter of the tube and D the diameter of the cylinder. For low confinement
ratios (Dw/D � 2), a vortex of opposite sign generated at the lateral wall strongly interacts
with the vortex ring and the pinch-off is not clearly observed. The pinch-off is observed
and analyzed for confinement ratios Dw/D � 2.5. Direct numerical simulation data are
used to estimate the value of the formation time, which is the time necessary for the vortex
generator to inject the same amount of circulation as carried by the detached vortex ring.
The confined vortex ring at pinch-off is described by the model suggested by Danaila
et al. [I. Danaila et al., A model for confined vortex rings with elliptical core vorticity
distribution, J. Fluid Mech. 811, 67 (2017)]. This model allows us to take into account the
influence of the lateral wall and the elliptical shape of the vortex core. The value of the
formation time is predicted using this model and the slug-flow model.

DOI: 10.1103/PhysRevFluids.3.094701

I. INTRODUCTION

Laminar vortex rings are usually produced in the laboratory by pushing a column of fluid of
length L through a long cylinder of diameter D using a piston moving with a time-dependent
velocity Up(t ). For large piston stroke ratios (L/D > 2), Gharib et al. [1] observed that the
resulting flow consisted of a leading vortex ring followed by a trailing jet. The vorticity field of
the leading vortex ring was disconnected from the trailing jet at a critical time instant (pinch-off
time). When measuring the total circulation of the pinched-off vortex ring it was shown that it
represents only a fraction of the circulation produced at the tip of the cylinder by the motion
of the piston. The critical time at which the vortex generator produces the amount of circulation
absorbed by the vortex ring was called the formation time tf and the corresponding stroke ratio
F = (L/D)(tf ) = (1/D)

∫ tf
0 Up(τ )dτ , the formation number (see Ref. [2]). Note that for a constant

piston velocity Up(t ) = U0, the formation number can be expressed as F = (L/D)f = t̃f , where
t̃f = tf /(D/U0) is the nondimensional formation time. For long injection programs with L/D > F ,
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the circulation generated by the piston after the formation time is engulfed solely in the trailing
jet. Thus, the formation number describes the optimal scale for generated vortex rings and is
related to the Kelvin-Benjamin maximization principle for the formation of vortex rings [3]. As a
consequence, optimal pulsing conditions based on this result were investigated for various practical
systems, including cardiac flows [4], the pulsatile propulsion of aquatic creatures [5,6], synthetic jet
actuators, and propulsion devices [7,8].

The investigation of the universality of the formation number resulted in a large body of literature.
The value of the formation number F was found to be in the range 3.6–4.5 for laminar vortex rings
[1]. Subsequent studies showed that this value depends on a number of factors, including the velocity
profile at the vortex generator exit [9], the diameter of the vortex generator [10], the surrounding
coflow [11] or counterflow [12], and the piston velocity program [2,13]. Values for F in the range
1–8 were reported. The concept of the formation number was extended to more complex vortex ring
flows, such as buoyant plumes [14], negatively buoyant jets [15], and turbulent vortex rings [8], but
it has not yet been investigated for confined vortex rings.

The primary focus of this study is on the existence and the value of the formation number for
confined laminar vortex rings. The properties of vortex rings in unbounded domains have been
studied for over a century both theoretically and experimentally (see the reviews by Shariff and
Leonard [16], Lim and Nickels [17], and Fukumoto [18]). Surprisingly though, the investigation
of confined vortex ring flows is far less developed despite its obvious relevance for practical
applications, ranging from vortex ringlike structures in gasoline engines [19] to transient flow fields
in biological complex systems [4]. The recent experimental study by Stewart et al. [20] demonstrated
important differences between the evolution of a vortex ring confined in a tube and its evolution in
an unbounded domain, but the low stroke ratios used for these experiments did not allow the authors
to investigate the problem of the existence of the formation number for such flows. In the present
study, direct numerical simulations (DNS) will be used to establish the pinch-off and formation
number of confined laminar vortex rings (Sec. II).

In Sec. III we will use the approach suggested by Shusser and Gharib [21] to predict the value
of the formation number. Assuming that the pinch-off occurs when the translational velocity of
the vortex ring exceeds the velocity of the trailing jet, we match nondimensional hydrodynamic
integral quantities (energy and/or circulation) generated by the vortex generator (cylinder) with
those measured for the pinched-off vortex ring. Numerous previous studies [3,7,21–24] used the
classical [16,17] or the corrected [23,25] slug-flow model to characterize the vortex generator and
the Norbury-Fraenkel [26] inviscid vortex ring model for the pinched-off vortex ring. The Norbury-
Fraenkel model has severe limitations in describing confined vortex rings. For example, the vorticity
distribution in the vortex core is assumed to be linear, i.e., proportional to the distance to the axis
of symmetry (as in Hill’s spherical vortex model), which is far from the quasi-Gaussian distribution
observed for unconfined [27,28] or confined vortex rings [20,29,30]. The model recently suggested
by Danaila et al. [30] to describe confined and viscous vortex rings with an elliptical vortex core is
used in this study. It will be shown that taking into account the ellipticity of the vortex ring core and
the influence of the lateral wall leads to a more accurate prediction of the formation number.

II. DIRECT NUMERICAL SIMULATIONS OF A VISCOUS
AXISYMMETRIC VORTEX RING IN A TUBE

In this section we use the results of direct numerical simulation of axisymmetric incompressible
flows to investigate some of the features of confined vortex rings at pinch-off. The numerical code
for solving the incompressible Navier-Stokes equations in cylindrical coordinates was developed
by Danaila and Helie [31] (see also [29,32]). The incompressible Navier-Stokes equations written
in cylindrical coordinates (r, θ, x) were solved using the numerical method suggested by Rai and
Moin [33] and modified by Verzicco and Orlandi [34]. The method is described in detail by Orlandi
[35] (see also [36]). The equations were written in primitive variables (rvr , vθ , vx ) and solved on a
staggered grid to avoid the problem of singularities at the axis r = 0. Second-order finite differences
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FIG. 1. (a) Schematic of a vortex ring in a tube. (b) Time evolution of the piston velocity Up (τ ) for positive
sloping ramp and negative sloping ramp programs.

were used for the spatial discretization. For time advancement, the fractional-step method described
by Kim and Moin [37] was used. This method is based on a combination of a low-storage third-
order Runge-Kutta scheme for convective terms and the semi-implicit Crank-Nicolson scheme for
viscous terms. At each substep of the Runge-Kutta scheme, the momentum equations were solved
by the approximate factorisation technique (see Ref. [37]) and the Poisson equation was solved
for the pressure correction. The Poisson solver uses a fast Fourier transformation following the
azimuthal direction θ and an effective cyclic reduction method (Fishpack subroutines) for solving
the remaining two-dimensional system following the r and x directions. The method is globally
second-order accurate in space and time.

A. Physical and numerical parameters

The computational configuration is sketched in Fig. 1(a). We consider the case of laminar vortex
rings produced by pushing a column of fluid using a piston-cylinder mechanism [1] through a long
pipe of diameter D = 2R. Let us introduce D0 = 2R0 as the vortex ring diameter and Dw = 2Rw

as the diameter of the tube. In what follows, all parameters are normalized using D as the length
scale and the maximum piston velocity U0 as the velocity scale. The main physical parameter of the
flow is the Reynolds number based on the pipe diameter

ReD = U0D

ν
, (1)

where ν is the fluid kinematic viscosity. Using the timescale t0 = D/U0, the nondimensional time
in simulations is defined as

τ = tU0

D
= ReD

(
R0

D

)2

t∗, t∗ = νt

R2
0

, (2)

where t∗ denotes the timescale related to the vortex ring evolution.
The piston-cylinder generator was not simulated in this study. The vortex ring was generated

numerically by prescribing an appropriate axial velocity profile at the outlet section of the cylinder,
corresponding to the inlet section of the computational domain. We used a specified discharge
velocity (SDV) [32]

USDV(r, τ ) = U0Up(τ )Ub(r, τ ), (3)

where Up(τ ) is the piston velocity program (normalized by its maximum value U0). To reproduce
the impulsive injection program used in recent experiments with confined vortex rings by Stewart
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TABLE I. Parameters τ1 and τ2 of the injection program (4) and piston stroke
ratios Lp/D = ∫ τoff

0 Up (τ )dτ corresponding to the PS (positive sloping) ramp and NS
(negative sloping) ramp programs displayed in Fig. 1(b).

Program τ1 τ2 Lp/D

PS 5.54 8 4
NS 2.46 8 4

et al. [20], we considered a model for Up(τ ) similar to that suggested by Zhao et al. [38]:

Up(τ ) =
{

1
2

[
1 − cos

(
π τ

τ1

)]
, τ � τ1

1
2

[
1 + cos

(
π τ−τ1

τ2−τ1

)]
, τ1 < τ � τ2 ≈ τoff.

(4)

The main integral characteristics of the vortex generator can be approximately estimated by the
so-called slug model [16,17]. This model assumes that at the exit plane of the vortex generator the
flow is parallel to the axis and the rate of change of the circulation is determined by the vorticity
flux across this plane. Thus, the stroke length Lp, circulation �p, impulse Ip, and kinetic energy Ep

of the discharged fluid at the cylinder tip are calculated as

Lp =
∫ τoff

0
Up(τ )dτ, �p = 1

2

∫ τoff

0
U 2

p (τ )dτ,

Ip = πD2

4

∫ τoff

0
U 2

p (τ )dτ, Ep = πD2

8

∫ τoff

0
U 3

p (τ )dτ. (5)

The velocity programs displayed in Fig. 1(b) are designed to obtain a piston stroke to diameter
ratio Lp/D = 4. This is motivated by the fact that the pinch-off has been observed [1,2] to occur at
a stroke ratio of approximately 4. The corresponding values of time constants τ1 and τ2 are given in
Table I. Recalling the results of the experimental study by Krueger and Gharib [2], we considered
two types of injection programs: a pulse dominated by an acceleration phase [positive sloping (PS)
ramp] and a pulse with a velocity deceleration during most of the injection period [negative sloping
(NS) ramp]. This allowed us to investigate the influence of the piston velocity program on the
characteristics of the vortex ring and its trailing jet at the pinch-off. Note that in recent experiments
of confined vortex rings by Stewart et al. [20], a PS-type program was used, but with a stroke ratio
Lp/D < 2, which was too low to observe the pinch-off (no trailing jet was generated).

In the SDV model (3), Ub(r, τ ) describes the radial dependence of the profile and takes the
hyperbolic tangent form commonly used in jet-flow simulations [39]

Ub(r, τ ) = 1

2

{
1 + tanh

[
1

4�

(
R

r
− r

R

)]}
, (6)

where � is the nondimensionalized vorticity thickness. As in most similar numerical simulations
[38,40], the parameters of the discharge velocity profile are assumed to be constant: U0 = 1,
R = 0.5, and � = 1/40. In all simulations the Reynolds number was set to ReD = 3400, as in
the previous numerical studies of confined vortex rings [29].

The fluid inside the domain was initially (τ = 0) at rest. We simulated the evolution of the vortex
ring until τ = 24. The length of the computational domain was taken as Ld = 12, which allowed us
to avoid the vortex ring coming close to the downstream boundary, where we apply the convective
boundary condition suggested by Orlanski [41], enforced by the global mass conservation procedure
described by Ruith et al. [36]. At r = Rw a nonslip wall boundary condition is imposed through
a ghost-cell procedure. The singularity r = 0 did not require a special treatment, as the solver
uses primitive variables (qr = rvr and qx = vx) and a staggered grid. Only qr was located at axis
r = 0, where the following boundary conditions were used: qr = 0 (per definition) and ∂qx/∂r = 0
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FIG. 2. Contours of vorticity ω at the early stage of formation of the vortex ring in a tube for a high
confinement case (Dw/D = 2). Dashed curves show contours of negative vorticity. Values of ω from −6 to
6 with increments of 1 are shown. Plots correspond to time instants (a) τ = 8, (b) τ = 10, and (c) τ = 12.
(d) Close-up of (c) showing the vortex structures generated at the lateral confinement wall. A PS injection
program was used (see Table I).

(symmetry). At the inflow section (x = 0), the velocity was imposed: qx = USDV(r, τ ) [following
the injection program (3)] and qr = 0 (no radial velocity). After the injection stopped, a wall
condition (qx = qr = 0) was imposed at the inflow section. The grid was uniform in both the axial
and radial directions with a refined grid size δr = δx = 0.01, which ensures grid convergence of
the results. Tests with a stretched grid in the radial direction, such that at least 30 grid points were
clustered within the vorticity layer at the inflow, showed identical results. The time step was set to
δτ = 0.001, which is below the admissible value imposed by the stability of the numerical scheme.
Time-step refinement tests showed negligible differences in the results obtained for lower δτ .

B. Numerical results

1. Pinch-off of the confined vortex ring

We first investigate the influence of the confinement parameter Dw/D on the vortex ring
pinch-off. The piston stroke ratio parameter is fixed at Lp/D = 4. High confinements correspond
to low Dw/D ratios, i.e., short distances between the center of the vortex and the lateral wall. In the
experimental study by Stewart et al. [20], considering a low stroke ratio (Lp/D = 1.2), the vortex
ring was observed to be clearly formed (i.e., without significant influence of the lateral wall) only
for confinements Dw/D � 1.5. This observation was confirmed by the numerical simulations of
Danaila et al. [29]. Due to the larger stroke ratio in our study, we started our numerical investigation
with a larger Dw/D confinement parameter. Figure 2 shows the early stage of the vortex ring
formation for Dw/D = 2. After the injection stops (τ > τoff = 8), the vortex ring continues to
grow by engulfing vorticity from the trailing jet. The velocity induced by the vortex ring generates
a vorticity layer at the lateral wall [Fig. 2(a)], which rolls into a vortex with negative vorticity
[Fig. 2(b)] evolving on the top of a positive vorticity layer [see Figs. 2(c) and 2(d)]. The proximity
of the primary vortex ring and the secondary vortex affects the separation of the vortex ring from its
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FIG. 3. Contours of vorticity ω at the early stage of formation of the vortex ring in a tube for a confinement
parameter (Dw/D = 2.5). Dashed curves show contours of negative vorticity. (a)–(c) The PS injection program
and (d)–(f) the NS injection program [Fig. 1(b)]. Three time instants are illustrated for each case: (a) and (d)
τ = 8, (b) and (e) τ = 10, and (c) and (f) τ = 12 (the injection was stopped at τoff = 8).

trailing jet. A clear vortex pinch-off process is difficult to observe in this case. Thus we considered
larger confinement parameters (Dw/D > 2).

Figure 3 shows clear evidence of the pinch-off process for confinement parameter Dw/D = 2.5.
For this case, the vorticity layer at the wall is too weak to roll into a secondary vortex. After the
injection is stopped, the pinch-off is observed for both PS [Figs. 3(a)–3(c)] and NS [Figs. 3(d)–3(f)]
injection programs. The pinch-off occurs earlier for the NS injection program, when compared to
the PS case [Figs. 3(b) and 3(e)]. This is explained by the higher acceleration of the piston motion
in the NS program [Fig. 1(b)]: At τoff = 8 [Figs. 3(a) and 3(d)] the vortex ring is formed farther
downstream than in the PS case. Also, it has a higher peak vorticity. Hence, at pinch-off, the NS
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FIG. 4. Time evolution of the maximum vorticity ωmax and streamwise position of the vorticity center
Xc corresponding to the maximum vorticity for (a) and (b) the PS injection program and (c) and (d) the NS
injection program.

case displays a more significant trailing jet than the PS case [Figs. 3(c) and 3(e)]. A similar evolution
was observed for unconfined vortex rings in the experimental study by Krueger and Gharib [2].

The difference between the PS and NS programs is also illustrated in Fig. 4, which plots the time
evolution of the parameters characterizing the vortex ring strength and trajectory: the maximum
value of the vorticity ωmax [Fig. 4(a)] and the streamwise position Xc [Fig. 4(b)] of the vortex
center corresponding to the maximum vorticity. As expected, the value of ωmax for the vortex ring
becomes larger and the ring travels faster when the confinement is reduced (Dw/D is increased). For
all confinement ratios Dw/D under consideration, the NS injection program generates a vortex ring
with a higher vorticity peak at its center and higher translation velocity (measured as dXc/dτ ). The
rate of decrease of the maximum vorticity is higher for the NS case. We can conclude from Figs. 3
and 4 that, for the same piston stroke ratio, the NS program generates a more intense (with a higher
vorticity peak), more compact (less elongated), and faster (higher velocity) vortex ring than the one
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produced by the PS program. These characteristics (vorticity, velocity, and geometrical parameters)
will be taken into account in the next section for modeling the vortex rings at pinch-off.

Also, Fig. 4 shows that for Dw/D � 4, the lateral wall has no significant impact on the vortex
ring evolution. The case Dw/D = 8 represents the asymptotic regime of an unconfined vortex ring.
Note that, for lower piston stroke ratios (Lp/D < 2), the influence of the lateral wall was found to
be negligible for Dw/D � 3 [20,29]. This was expected, since a long injection time allows a longer
and stronger interaction of the forming vortex ring with the lateral wall.

2. Formation time and formation number

At pinch-off, the vortex ring circulation �VR represents only a part of the total circulation �inj

generated by the injection process. The time instant τf at which the vortex generator (piston-cylinder
mechanism) produces exactly the same amount of circulation as the vortex ring at pinch-off was
defined by Gharib et al. [1] as the formation time of the vortex ring. The corresponding piston
displacement L/D is called the formation number and is denoted by F . To determine the value of
the formation time for the confined vortex ring, the vortex ring has to be properly separated from the
trailing jet. The presence of the lateral wall makes the separation of the vortex core rather delicate,
since intense vorticity layers develop near this wall and at the inflow section after the injection stops.
A special postprocessing program, based on the free finite-element solver FREEFEM++ [42,43], was
developed to properly separate the vortex ring core and compute flow integrals.

The velocity field obtained from the DNS using second-order finite-difference schemes is easily
represented as a finite-element field by splitting each rectangular finite-difference cell into two
triangles. The DNS values at the computational nodes are then used to represent the velocity field
as a P1 (piecewise linear) function on the triangular mesh. This procedure avoids interpolations
between the DNS finite-difference grid and the finite-element grid used for postprocessing.

A general method used in numerical and experimental studies to separate a vortex ring consists
of the following steps: The center C of the vortex is first located as the point of maximum vorticity
ωmax and the vortex core is then defined as the unique domain bounded by the vorticity contour
ω/ωmax = ωcut including the center C. The cutoff level ωcut is generally set based on trial and error.
Threshold values have ranged from 2% and 5% in numerical studies [3,9,38,44] to approximately
10% in experiments [45]. In our previous studies [29–31], the value ωcut = 5% proved optimal for
identifying the vortex ring in the postformation phase. In the present study, we defined the vorticity
patch �0.05 = {(r, x) | ω(r, x)/ωmax � 0.05} and followed its evolution during both formation and
postformation phases. The level-set contour defining the boundary of �0.05 was accurately computed
using P1 finite-element interpolation. The vorticity layers near the inflow section (x = 0) and the
lateral wall (r = Rw) were discarded before computing the level set.

Before the pinch-off (formation phase), the domain �0.05 is a simply connected open set, as
illustrated for the PS injection program in Figs. 5(a) (τ = 8) and 5(b) (τ = 10). After the pinch-off,
the domain �0.05 becomes disconnected, with two disjoint sets: �0.05 = �VR ∪ �T. The vortex ring
domain �VR contains the vortex center C, while �T represents the trailing jet near the inflow section
[Fig. 5(c)]. Following the evolution of the vorticity patch, �0.05 can thus be considered an effective
practical method of detecting the pinch-off. Also, we show in Fig. 5 the boundary of the vorticity
patch �0.01, corresponding to ωcut = 1%. Note that this cutoff level is too low to be used for the
detection of the pinch-off, since �0.01 also includes the diffuse low-vorticity region between the
vortex ring and the trailing jet.

Let �∗ be a general vorticity patch used in the postprocessing program. The domain �∗ was
remeshed with triangular finite elements to accurately represent the curved border of the domain
[in Fig. 5(c) very large triangles are used for illustration only]. The DNS vorticity field was
then interpolated to the new finite-element mesh, without any loss of accuracy. All operations
(identifying the level set, separating the simply connected sets, remeshing the domains inside
level-set contours, and finally interpolation of DNS data) were performed with basic functions
available in FREEFEM++. The finite-element representation of vorticity patches allowed us to use
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FIG. 5. Vorticity domain �0.05 = {(r, x ) | ω(r, x )/ωmax � 0.05} (gray patches) used to compute integral
quantities for the case of the PS injection program. Time instants (a) τ = 8, (b) τ = 10, and (c) τ = 12.
The corresponding vorticity fields are illustrated in Figs. 3(a)–3(c). The inside area of �0.05 is remeshed
using triangular finite elements [a mesh using larger triangles than in the actual postprocessing is shown for
illustration in (c)]. The border of the domain �0.01 = {(r, x ) | ω(r, x )/ωmax � 0.01} is also shown (in blue).

high- (sixth- to tenth-) order quadrature rules to compute the integral characteristics: circulation �,
hydrodynamic impulse I , and energy E,

�∗ =
∫

�∗
ω dr dz, I∗ = π

∫
�∗

ωr2dr dz, E∗ = π

∫
�∗

ω� dr dz. (7)

The Stokes stream function � is obtained by numerically solving the partial differential equation

L� = ω in �∗ with L := − ∂

∂r

(
1

r

∂

∂r

)
− ∂

∂x

(
1

r

∂

∂x

)
(8)

and Dirichlet boundary conditions derived from the velocity field. Solving (8) with finite elements in
FREEFEM++ is very simple and takes only five lines of code, since L is a linear self-adjoint elliptic
operator.

0 2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dw/D = 2.5
Dw/D = 3
Dw/D = 4
Dw/D = 8

VR

f

(a)

0.01

0.05

0 2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dw/D = 2.5
Dw/D = 3
Dw/D = 4
Dw/D = 8

VR

f

(b)

0.01

0.05

FIG. 6. Time evolution of circulation �∗ computed from (7) for three vorticity patches (�∗ = �0.05, �0.01,
and �VR). The vortex ring circulation �VR was computed only after the pinch-off. The (a) PS injection program
and (b) NS injection program were used.
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TABLE II. Parameters of the vortex ring at pinch-off (see Fig. 6): vortex ring circulation �VR, formation
time τf , formation number F [i.e., the piston displacement (L/D)f at formation time], and nondimensional
energy E∗

VR = EVR/I
1/2
VR �

3/2
VR . The parameters are computed for time instants corresponding to the maximum

value of the vortex ring circulation �VR.

Dw/D �VR τf F = (L/D)f E∗
VR

PS
2.5 1.42 6.1 3.31 0.23
3 1.39 6.0 3.22 0.26
4 1.39 6.0 3.22 0.29
8 1.39 6.0 3.22 0.31

NS
2.5 1.28 3.9 2.60 0.26
3 1.24 3.8 2.51 0.31
4 1.24 3.8 2.51 0.34
8 1.25 3.8 2.51 0.35

Figure 6 shows the time evolution of circulation �∗, computed using this method, for �∗ = �0.05,
�0.01, and �VR. During the injection phase (τ � τoff), the circulation increases rapidly and attains
its maximum. For the formation phase, the values of �0.01 and �0.05 are very close (the maximum
difference between them is 6%). This is expected as the vorticity during the injection is concentrated
within a very thin layer [see Figs. 3(a) and 3(d)] and the vorticity patch �0.01 differs from �0.05

by a small region of low vorticity [see Fig. 5(a)]. We assume that the circulation of the injection
phase is represented by �inj = �0.05. This assumption is valid for τ � τoff. After the pinch-off, it
is possible to compute the circulation of the vortex ring �VR and the circulation of the trailing jet
�T, using patches �VR and �T shown in Fig. 5(c). Since �0.05 = �VR ∪ �T, it follows from (7)
that �0.05 = �VR + �T after the pinch-off. Figure 6 shows that �VR and �0.01 are almost constant
during the postformation phase, while the circulation of the trailing jet (�0.05 − �VR) decreases very
quickly with τ . This observation and the corresponding increase of the difference (�0.01 − �0.05)
with τ imply that the low-vorticity region connecting the vortex ring to its tail rapidly spreads by
viscous diffusion [see Figs. 5(b) and 5(c)].

The NS injection program generates the flow with the steepest increase in total circulation, but
maximum values of the flow circulation are similar for NS (�max

inj = 1.63) and PS (�max
inj = 1.70)

programs. Table II presents the parameters of the vortex ring at pinch-off, which is considered to
occur at the time instant corresponding to the maximum value of the vortex ring circulation �VR

observed during the postformation phase. The formation time τf is inferred from Fig. 6 as the
physical time necessary for the vortex generator to produce the circulation engulfed by the vortex
ring at pinch-off, i.e., �inj(τf ) = �VR (see the dashed curves in Fig. 6). The piston displacement
corresponds to the formation time F = (L/D)f = ∫ τf

0 Up(τ )dτ .
Figure 6 and Table II show that the confinement ratio Dw/D has little influence on the formation

number F for Dw/D � 3. The formation number ranges from 3.22 to 3.31 for the PS program and
from 2.51 to 2.60 for the NS injection program. These values are slightly lower compared to those
obtained experimentally by Krueger and Gharib [2] for the unconfined vortex ring: F = 3.3–4.4
for the PS case and F = 2.4–2.9 for the NS case. Krueger and Gharib suggested that a shift of
approximately L/D = 1 should be applied to obtain a collapse between the values of the formation
numbers for the PS and NS cases. This suggestion holds for our results, obtained for confined vortex
rings, if a shift of L/D = 0.7 is applied. Note that, for an unconfined vortex ring, numerous studies
[1,2,7,9–12,14,21,22] have suggested various ways to manipulate the injection process and thus
obtain different values of the formation number, ranging from 1 to 4.5.
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FIG. 7. Time evolution of the nondimensional energy E∗
VR = EVR/I

1/2
VR �

3/2
VR after pinch-off. The (a) PS and

(b) NS injection programs were used.

Also, Table II presents the values of the normalized energy E∗
VR = EVR/I

1/2
VR �

3/2
VR at pinch-off.

It has been shown [3,22] that each vortex ring generator has a specific rate for feeding the flow
with the kinetic energy, impulse, and circulation, resulting in specific values for E∗

VR. Figure 7
shows that E∗

VR is almost constant after the pinch-off and during the entire postformation phase.
This result will be useful in the next section, which focuses on the theoretical prediction of the
formation number. The time evolution of E∗

VR for the NS case decreases slightly and displays larger
values than those obtained with the PS program for all confinement ratios. We can conclude that
the confinement has little effect on the value of the nondimensional energy E∗

VR of the pinched-
off vortex for confinement ratios Dw/D � 4. The values of E∗

VR obtained for low confinements
(Dw/D = 8) for both PS and NS injection programs are consistent with previous experimental
and theoretical studies, suggesting that E∗

VR ≈ 0.3 is a universal scale for unconfined vortex rings
generated by a piston-cylinder mechanism [46]. For higher confinements, the value of E∗

VR is lower,
suggesting that the interaction of the vortex ring with the lateral wall slows down the rate at which
the vortex is fed with kinetic energy.

III. THEORETICAL PREDICTION OF THE FORMATION NUMBER
OF A CONFINED VORTEX RING

The idea behind most theoretical studies predicting the formation number of unconfined vortex
rings is to match two models in terms of the nondimensional hydrodynamic quantities (energy
and/or circulation) characterizing the vortex generator and the pinched-off vortex ring, respectively.
For the former, the classical [16,17] or corrected [23,25] slug-flow model is used as a crude
estimation, while the latter is based on a theoretical vortex ring model. The Norbury-Fraenkel
model [26] for the inviscid vortex ring is commonly used to describe experimentally or numerically
generated vortex rings and then estimate the formation number [3,7,21–24]. More realistic vortex
ring models, taking into account viscous effects and the Gaussian distribution of the vorticity in the
vortex core, were also used to predict the formation number of unconfined vortex rings [47,48].

In the present work, we use the model recently suggested by Danaila et al. [30] to describe
confined vortex rings with elliptically shaped vortex cores. We anticipate that taking into account
the ellipticity of the core of the vortex ring will lead to a more accurate prediction of the formation
number. We start by presenting the closed formulas of the vortex ring model and the fit between its
parameters and DNS data. Finally, we use the approach suggested by Shusser and Gharib [21],
assuming that the pinch-off starts when the translational velocity of the vortex ring equals the
velocity of the trailing jet.
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A. Model for confined vortex rings with elliptical cores

A theoretical model for a confined vortex ring was suggested by Brasseur [49,50]. The stream
function �w describing the flow generated by a vortex ring in a tube was presented as the sum of
the stream function of an unbounded vortex ring � and the wall-induced correction (−�0):

�w(x, r ) = �(x, r ) − �0(x, r ). (9)

Brasseur represented the unbounded vortex ring as a circular vortex filament (CVF) [51], with given
initial circulation �0 and radius R0 [see Fig. 1(a)]. The correction �0 refers to a potential flow
added to the CVF flow to satisfy the boundary condition at the wall, i.e., 1

r
∂�
∂x

= 1
r

∂�0

∂x
for r = Rw

(no flow through the tube wall). To derive the correction �0, the potential of the flow was expanded
into a special series of harmonics, with the first harmonic being a point dipole and other terms
the derivatives of that dipole [49]. Next the point dipole was replaced with the Green’s function to
Laplace’s equation with Neumann boundary conditions, and used to derive a closed expression for
the correction �0. An implicit assumption of Brasseur’s approach was that the flow field far from the
vortex core depends on its total circulation but not on the details of the vorticity distribution. Thus,
Brasseur’s model is completely described by the expressions for vorticity and the Stokes stream
function

ωCVF = �0δ(r − R0)δ(x − X0), (10)

�CVF = �0R0r

2

∫ ∞

0
exp (−xμ)J1(R0μ)J1(rμ)dμ, (11)

�0
CVF = �0R0r

π

∫ ∞

0

K1(μRw )

I1(μRw )
I1(R0μ)I1(rμ) cos(xμ)dμ, (12)

where δ is the Dirac delta function, X0 is the streamwise position of the vortex center, and I1 and
K1 are the modified Bessel functions of the first and second kind, respectively.

Danaila et al. [29] applied Brasseur’s method using not the CVF but a more realistic vorticity
distribution in the vortex ring core. Kaplanski and Rudi [47] derived an unconfined vortex ring
model based on a linear first-order solution to the Navier-Stokes equation for an axisymmetric
geometry and arbitrary times (see also [52]). The vorticity in this model [i.e., vortex rings with
a circular core (VRC)] was predicted to be quasi-isotropic Gaussian, very close to that measured in
experiments [27],

ωVRC = �0

R2
0

θ3
c√
2π

exp

(
− (r2

1 + x2
1 + 1)θ2

c

2

)
I1

(
r1θ

2
c

)
, (13)

where

x1 = x − X0

R0
, r1 = r

R0
. (14)

The model based on (13) uses a single geometric parameter θc, which makes it attractive for practical
applications. Thus, the VRC class of vortex rings can be considered as the viscous analog to
Norbury’s inviscid vortices. The main advantage of using this model is the better description of
the vorticity distribution in the vortex core. The parameter θc depends on a viscous length scale Lc:

θc = R0

Lc

. (15)

The original VRC model was based on the assumption of a time-dependent viscous scale Lc(t ) =√
2νt , where ν is the fluid kinematic viscosity. The generalization of this model for turbulent vortex

rings was discussed in [53]. The model is valid not only in the limit of small Reynolds numbers
ReVR = �0/ν, but also for large ReVR at short times t (see Ref. [48]). Using the vorticity distribution
(13) and series expansions similar to that used in Brasseur’s approach, Danaila et al. [29] derived
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closed analytical formulas for the stream function correction. Finally, the confined VRC model was
described by the vorticity distribution (13) and the two stream functions used in (9),

�VRC = (�0R0)
r1θc

4

∫ ∞

0

[
exp(x1θcμ)erfc

(
μ + x1θc√

2

)
+ exp(−x1θcμ)erfc

(
μ − x1θc√

2

)]
×J1(r1θcμ)J1(θcμ)dμ, (16)

�0
VRC = (�0R0)

r1

π

∫ ∞

0

K1(μ/ε)

I1(μ/ε)
I1(μ)I1(r1μ) cos(x1μ)dμ, (17)

where J1 is the Bessel function of the first kind and erfc the complementary error function. Note
that the stream function correction (17) is identical to that found by Brasseur [49] for the circular
vortex filament. The predictions of the confined VRC model were shown to be in agreement with
available experimental data [20] and results of direct numerical simulations.

To further improve the VRC model for the confined vortex ring, Danaila et al. [30] took into
account the elliptical (elongated) shape of the vortex ring core. This is a model of vortex rings with
elliptical core (VRE). The introduction of the VRE was motivated by numerical and experimental
observations showing that the vorticity field of unconfined or confined vortex rings deforms with
time [54]; at later stages it becomes elongated due to the Reynolds number effects [27,31]. For
confined vortex rings, this deformation is accentuated by their interaction with the lateral walls [29],
leading to changes in vortex ring integral characteristics. The description of the vorticity distribution
in the VRE model was based on the previous model for unconfined elliptical-core vortex rings
suggested by Kaplanski et al. [55],

ωVRE = �0

R2
0

θ3
e

β
√

2π
exp

(
−

[
r2

1 + (x1/β )2 + 1
]
θ2
e

2

)
I1

(
r1θ

2
e

)
, (18)

where

θe = λθc = R0

Le

. (19)

Compared to the quasi-isotropic Gaussian distribution (13), the vorticity distribution (18) uses two
parameters β and λ describing the deformation (elongation or compression) along axes x and r ,
respectively. For the sake of simplicity, a viscous length scale Le was introduced in (19), with Le =
Lc/λ. Thus, we can use β and θe (or β and Le = R0/θe) as the two parameters that fully describe
the vorticity distribution in an elliptical-core vortex ring of given radius R0. Note that the vorticity
distribution (18) was derived by imposing weak perturbations on the first-order solution (13), in
order to find an approximation of the nonlinear solution to the Navier-Stokes equations for high
Reynolds numbers. Using the vorticity function (18) within Brasseur’s approach to derive the stream
function correction due to the tube wall involved some technical analytical developments, presented
in detail in [30]. Closed formulas were obtained for the two terms in (9). The VRE model for the
confined vortex ring was finally described by the vorticity distribution (18) and stream functions

�VRE = (�0R0)
r1θe

4

∫ ∞

0
exp

(
(β2 − 1)

μ2

2

)[
exp(μx1θe )erfc

(
μβ + x1θe/β√

2

)

+ exp(−μx1θe )erfc

(
μβ − x1θe/β√

2

)]
J1(θeμ)J1(r1θeμ)dμ (20)

and

�0
VRE = (�0R0)

r1

π

∫ ∞

0
exp

(
−(β2 − 1)

μ2

2θ2
e

)K1(μ/ε)

I1(μ/ε)
I1(r1μ)I1(μ) cos(μx1)dμ. (21)

The VRE model will be used in the following to describe confined vortex rings simulated
numerically. The translational velocity predicted by the model can be inferred from the following
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FIG. 8. Contours of (a) normalized vorticity ω/ωmax and (b) corresponding normalized stream function
ψ/ψmax: DNS results (solid lines) and the prediction of the vortex ring model (dashed lines) after fitting
parameters Lef and β (values indicated in Table III). Values of ω/ωmax and ψ/ψmax are shown from 0.1 to
0.9 with increments of 0.1. Case PS, Dw/D = 3, and τ = 14.

fundamental equation (see [51,56]):

UVRE =
∫ ∞

−∞

∫ Rw

0

(
�w

VRE − 6x
∂�w

VRE

∂x

)
ωVREdr dx

/(
2

∫ ∞

−∞

∫ Rw

0
r2ωVREdr dx

)
. (22)

To compare the predictions of the model with DNS data, one needs to estimate the values of
parameters β and θe at a given time instant τ = τf . Using (18) for the vorticity distribution, with
the approximation I1(r1θ

2
e ) ≈ exp(r1θ

2
e )/

√
2πr1θ2

e , valid for large r1θ
2
e (in our case, for r1 > 0 and

θe > 4), we fitted the DNS vorticity field with the expression

ωef = �0f

π

(
R0f

r

)1/2 1

2βL2
ef

exp

(
− 1

2L2
ef

(r − R0f )2 − 1

2(βLef )2
(x − X0f )2

)
. (23)

Since FREEFEM++ is interfaced to the state-of-the-art optimizer Ipopt [57] using the interior point
minimization method, one can compute a fully nonlinear fit of all five independent parameters in
(23): �ef , R0f , X0f , 1

2L2
ef

, and 1
2β2L2

ef

. A simpler alternative is to take the values for R0f , X0f , and �ef

from DNS and to fit the remaining two parameters Lef and β. Here we used the second procedure,
which has the advantage of being very fast and more convenient for a practical application of
the model to describe experimental or numerically generated vortex rings. Also, it can be useful
for the reconstruction of the velocity field generated around a vortex ring when only incomplete
measurements of the velocity are available [58,59].

An illustration of how accurately the vortex ring model can describe the geometry of the DNS
vortex ring is presented in Fig. 8. The values of the parameters used in the model to reconstruct
vorticity and stream function fields are shown in Table III. After fitting Lef and β, the parameter
θef = R0f /Lef is computed to complete the definition of the theoretical vortex ring. Formula (18)
is then used to reconstruct the theoretical vorticity field ω(r, x) and compute integral characteristics
in the same way as in DNS (taking into account only the vorticity of the vortex core for which
ω/ωmax > 0.05). Figure 8(a) shows that the vorticity distribution of the DNS vortex is elongated
along the x axis and can be reasonably described by an elliptical shape, as in the theoretical model.
Also, one can see an asymmetric (with respect to its center) deformation in the r direction of the
vortex predicted by DNS, which cannot be explained based on the assumption of a simple elliptic
geometry.
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TABLE III. Parameters of the model describing the confined vortex ring at pinch-off.

Inferred from DNS data Fitted to DNS Computed after fit

R0f X0f �f E∗ β Le θe �VR E∗
VR b B (L/D)VR

Case PS, Dw/D = 3, τ = 14
0.735 3.415 1.39 0.26 1.43 0.16 4.59 1.33 0.27 0.71 0.59 3.8

Case NS, Dw/D = 3, τ = 12
0.745 3.365 1.24 0.30 1.33 0.14 5.32 1.21 0.32 0.71 0.64 3.4

On the other hand, Fig. 8(b) shows that the model accurately describes the stream function
distribution of the vortex ring. The deformation of the stream function near the lateral wall is
correctly reproduced based on Eqs. (9), (20), and (21). For DNS data, the stream function ψ

is computed by solving (8) numerically with vorticity corresponding to the vortex ring core
(ω/ωmax � 0.05). The vorticity layer generated at the wall is ignored to allow a comparison with the
theoretical model which does not take into account such effects. Good agreement between DNS data
and predictions of the model for the normalized stream function contours confirms the hypothesis
that the stream function is not sensitive to the details of the vorticity distribution (see Refs. [29,30]).

Table III shows the exact values of the parameters used to reconstruct the pinched-off vortex
ring using the confined elliptical-core vortex ring model. For a typical case of confinement ratio
Dw/D = 3, the vortex ring can be considered as detached from the trailing slug at τ = 14 for the
PS injection program (Fig. 8) and τ = 12 for the NS case. The parameters R0f , X0f , and �f are
taken from the DNS, while β, Le, and θe are computed by fitting the vorticity distribution (18) with
DNS data. After truncating the theoretically reconstructed vorticity field at ω/ωmax � 0.05, as in the
postprocessing of DNS data, the values of the circulation �VR and nondimensional energy E∗

VR of
the vortex ring are computed and compared to the corresponding values �f and E∗ obtained from
DNS data. Note that the agreement between the DNS vortex ring and the theoretically reconstructed
one is very good. The reconstructed vortex ring has slightly lower circulation compared with the
one inferred from DNS data (�VR � �f ), but their nondimensional energies are similar E∗

VR � E∗.
The fit of the model parameters with DNS data was investigated for the entire postformation

phase (τ � 10). Figures 9(a) and 9(b) show that the ellipticity parameter β is almost constant after
pinch-off. The PS injection program generates more elongated vortex rings (higher values of β)
than the NS program. Also, for confinement ratios Dw/D � 4, we approach the asymptotic limit
represented by the unconfined vortex ring, with the elongation parameter β ≈ 1.4 for the PS case
and β ≈ 1.3 for the NS case. These values are in agreement with previously published data [55].
The time evolution of the viscous parameter θe, given by (19), is shown in Figs. 9(c) and 9(d).
For unconfined vortex rings, relevant to practical applications [18,31], typical values of θe were
reported to range between 3 and 4.5. The reduction of the viscous parameter θe with time depends on
the injection program. In theoretical models, heuristic power laws are commonly used to model the
decrease of θe with time [53]. The exact determination of the exponent of the power law would imply
following the vortex ring postformation evolution for a long time. For the present investigation, only
the values of parameters θe and β at the pinch-off are relevant to the prediction of the formation time,
as described in the next section.

B. Prediction of the formation number

Shusser and Gharib [21] assumed that the pinch-off starts when the translational velocity of the
vortex ring equals the jet velocity near the vortex. The latter is generally predicted using the classical
slug-flow model. It is possible to refine the predictions of this model by taking into account several
effects in the slug-flow model, such as the boundary-layer correction for the centerline velocity at
the vortex generator exit [32,60,61], the specific form of the piston velocity program [23], or the
overpressure correction at the cylinder exit [25,62].
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FIG. 9. Time evolution of the parameters describing the vortex ring geometry during the postformation
phase. The parameter θe is related to the viscous length of the model (19), while β > 0 describes the elongation
along the longitudinal x axis. All parameters are fitted from DNS data. The (a) and (c) PS and (b) and (d) NS
injection programs were used for the analysis.

In what follows, we suggest a unified frame for different versions of Shusser and Gharib’s pinch-
off model. Assuming that the flow rate near the vortex ring Q1 = (πR2

VR)UVR equals the flow rate
delivered by the vortex generator Q2 = (πD2/4)Ucl, the pinch-off is expected when

UVR = D2

4R2
VR

Ucl, (24)

where UVR is the translational velocity of the vortex ring, RVR is its radius, D is the diameter of
the vortex generator pipe, and Ucl the centerline velocity of the injected flow profile at the pipe exit.
The centerline velocity is time dependent and can be described as

Ucl(τ ) = U0Up(τ )χ (τ ), (25)

where U0 is the piston bulk velocity, Up the piston velocity program [see Eq. (4)], and χ a correction
accounting for the growth of the boundary layer at the cylinder wall during the injection process.
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The following expression for χ was used for long-time injection programs [32]:

χ (τ ) = 1

1 − 8√
πReD

√
τ + 8

ReD
τ

. (26)

The injected flow can be described by the so-called slug-flow model [16,17], which provides simple
expressions for the circulation, impulse, and energy delivered at the vortex generator (i.e., cylinder)
exit:

�s (τ ) = U0D

2

∫ τ

0

(
Ucl(s)

U0

)2

ds + �p = U0D

2
[αs (τ ) + αp], (27)

Is (τ ) = πD3U0

4

∫ τ

0

(
Ucl(s)

U0

)2

ds = πD3U0

4
αs (τ ), (28)

Es (τ ) = πD3U 2
0

8

∫ τ

0

(
Ucl(s)

U0

)3

ds = πD3U 2
0

8
βs (τ ). (29)

Using (25), the nondimensional functions used in the previous expressions are presented as

αs (τ ) =
∫ τ

0
[Up(s)χ (s)]2ds, βs (τ ) =

∫ τ

0
[Up(s)χ (s)]3ds. (30)

Note the difference between this approach and that of the classical slug-flow model (5) in which
the approximation Ucl ≈ Up is generally used. In expression (27) for the slug-flow circulation, we
introduced the correction [25] αp due to the overpressure arising at the cylinder exit plane. It is
well known that the classical slug-flow model, for which αp = 0, underestimates the circulation
injected in the flow by the vortex generator. Models for the overpressure correction were suggested
depending on the type of vortex generator (orifice or nozzle) [25] and the type of injection (parallel
or with nonzero radial velocity) [63].

The piston stroke ratio is calculated as(
L

D

)
s

(τ ) =
∫ τ

0
Up(s)ds = γs (τ ). (31)

It is useful to introduce the expression for the nondimensional energy [1] inferred from the slug-flow
model:

E∗
s (τ ) = Es (τ )√

Is (τ )�s (τ )3
=

√
π

2

βs√
αs (αs + αp )3

. (32)

The next step in the approach suggested by Shusser and Gharib [21] is to link the predictions of
the slug-flow model with the characteristics of the actual vortex ring, observed at the pinch-off. To
this end, the vortex ring is usually described by a vortex ring model allowing one to express the
main integrals of motion as functions of its geometric characteristics. The Norbury-Fraenkel vortex
ring model [26] is largely used for this purpose [1,7,9,21,23,61] since a single geometric parameter
is necessary to express the ring’s integral characteristics. However, in the Norbury-Fraenkel model
the vorticity distribution in the vortex core is linear, i.e., proportional to the distance to the axis
of symmetry (as in Hill’s spherical vortex model), which is different from the quasi-Gaussian
distribution observed for unconfined [27,28] or confined vortex rings [20,29,30]. Therefore, a more
realistic vortex ring model, described in the preceding section, will be used for this part of the
pinch-off model.

The vortex ring can be described using the nondimensional parameters [21,22,60]

b = RVR

√
π�VR

2IVR
, B = UVR

√
πIVR

�3
VR

. (33)
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Using the pinch-off criterion (24) and further assuming that at the pinch-off �VR ≈ �s and IVR ≈ Is ,
we can derive the equation

π
√

2

4

1

b2B
=

√
αs (τ )[αs (τ ) + αp]

Up(τ )χ (τ )
, (34)

which has to be solved once the left-hand side is estimated from the vortex ring parameters at
pinch-off. The solution gives us the formation time τf and the formation number

F =
(

L

D

)
f

= γs (τf ). (35)

The link between this approach and the previous formulations of the pinch-off model by Shusser
and Gharib can be obtained by introducing(

L

D

)
VR

= π
√

2

4

1

b2B
, (36)

which is the expression of the formation number obtained if a classical slug-flow model, with
constant piston velocity [Up(τ ) = 1] and no corrections [χ (τ ) = 1 and αp = 0], is considered.
Indeed, for this case, we obtain from (30) that αs = βs = γs = τ and finally from (34) and (36)
that (L/D)VR = τ . The formation number for this case is inferred directly from (35) as (L/D)f =
τf = (L/D)VR = π

√
2

4
1

b2B
. The corresponding nondimensional energy is obtained from Eq. (32)

as E∗
f = √

π
2

1
τf

. These formulas were extensively used in the literature to predict the value of the
formation number [1,7,9,21,22,31] or the value of the translational velocity of the vortex ring [5].

Corrections taking into account the boundary-layer growth at the wall of the cylinder were used
by considering [32,60,61] Up(τ ) = 1 and different formulas for χ (τ ) [e.g., Eq. (26)]. The influence
of the piston velocity program was assessed [23] by taking χ (τ ) = 1 and different Up(τ ) (impulsive,
linear, and trapezoidal velocity programs).

For the present study, we consider the piston velocity program Up(τ ) expressed by (4) and ignore
the boundary-layer correction (i.e., χ = 1), since injection times are short. On the other hand, we
use the overpressure correction model [25], suggesting that for the orifice vortex generator (used
in our simulations) �p ≈ U0D

2 and hence αp ≈ 1. The vortex ring at pinch-off is described by the
model suggested by Danaila et al. [30] for confined viscous vortex rings with elliptical cores. We
use the fitted parameters from Table III to compute the values for b, B, and (L/D)VR from (33).
These computed values are shown in the last three columns of Table III.

(L
/D

) V
R

1 1.1 1.2 1.3 1.4 1.5 1.6
3.2

3.4

3.6

3.8

4

4.2

4.4

e = 5.32

e = 4.0

e = 4.8
e = 4.59
e = 4.4

FIG. 10. Values of (L/D)VR [see Eq. (36)] versus geometrical parameters β and θe [cf. Eqs. (18) and (19)].
The symbols show the values taken from Table III for the PS (circle) and NS (square) injection programs.
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Note that parameter (L/D)VR depends on the geometric characteristics of the vortex ring: the
ellipticity parameter β and the ratio θe between the vortex radius and its viscous characteristic
length [cf. Eqs. (18) and (19)]. Figure 10 illustrates this dependence. The values for the PS and NS
simulations presented in Table III are shown as circle and square, respectively. Figure 10 covers a
large range of values of β and θe, typical for numerically or experimentally generated vortex rings.

Finally, we used the values taken from Table III to solve Eq. (34) and find the value of the
formation time τf , and the formation number from Eq. (35). We obtained τf = 6.2 (F = 3.39) for
the PS program and τf = 4.1 (F = 2.76) for the NS program. These values are close to the DNS
values from Table II: F = 3.22 and F = 2.51 for the PS and NS programs, respectively.

IV. SUMMARY

The results of a number of numerical experiments that investigate the properties of confined
vortex rings were presented. These experiments were motivated by laboratory piston-cylinder
experiments of unconfined [2] or confined [20] vortex rings. The simulated piston velocity programs
match these experiments and consider triangular pulses [20] dominated by either positive (PS) or
negative (NS) acceleration ramps [2].

For low confinement ratios (Dw/D � 2), the shear layer at the lateral wall rolls up into a strong
vortex and the pinch-off is not observed. The pinch-off is clearly observed for confinement ratios
Dw/D � 2.5, for which the lateral shear layer is still present but its influence on the evolution of
the vortex ring is reduced. For Dw/D � 4, the evolution of the confined vortex ring is similar to
that of the unconfined one.

The value of the formation time τF , defined as the time at which the piston motion generates the
amount of vorticity engulfed by the pinched-off vortex ring, was obtained. The formation number
was computed as the corresponding piston stroke ratio (L/D) at the formation time. These concepts
of formation time and formation number were introduced by Krueger and Gharib [2] in connection
with the nonuniform (impulsive) velocity programs used for piston motion. The obtained values for
the formation number (F = 3.22–3.31 for the PS and F = 2.51–2.60 for the NS injection programs)
are lower than those reported for the unconfined vortex rings [2] (F = 3.3–4.4 for the PS case and
F = 2.4–2.9 for the NS case). Confinement was shown to have little influence on the value of the
formation time for Dw/D � 3.

Using the model suggested by Danaila et al. [30], the pinch-off was described by capturing the
elliptical shape of the vorticity distribution in the core and the bending of the streamlines of flow
near the lateral wall. These could not be captured by the Norbury-Fraenkel inviscid vortex ring
model. The approach suggested by Shusser and Gharib [21] was used to predict the value of the
formation number. Good predictions were obtained for both PS and NS cases.

It was suggested that the concepts of formation time and number can allow one to generate
optimal confined vortex rings in a wide range of applications with confining walls, ranging from
cardiac flows [4] to propulsion devices [7,8] and internal combustion engines [19], and thus increase
their efficiency.

ACKNOWLEDGMENTS

The authors are grateful to EPSRC (Grant No. EP/M002608/1) for their financial support and to
Centre Régional Informatique et d’Applications Numériques de Normandie (France) for providing
computational resources (Projects No. 2015001 and No. 2017010).

[1] M. Gharib, E. Rambod, and K. Shariff, A universal time scale for vortex ring formation, J. Fluid Mech.
360, 121 (1998).

094701-19

https://doi.org/10.1017/S0022112097008410
https://doi.org/10.1017/S0022112097008410
https://doi.org/10.1017/S0022112097008410
https://doi.org/10.1017/S0022112097008410


I. DANAILA et al.

[2] S. Krueger and M. Gharib, The significance of vortex ring formation on the impulse and thrust of a starting
jet, Phys. Fluids 15, 1271 (2003).

[3] K. Mohseni, Statistical equilibrium theory for axisymmetric flow: Kelvin’s variational principle and an
explanation for the vortex ring pinch-off process, Phys. Fluids 13, 1924 (2001).

[4] M. Gharib, E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri, Optimal vortex formation as an index
of cardiac health, Proc. Natl. Acad. Sci. USA 103, 6305 (2006).

[5] K. Mohseni, A formulation for calculating the translational velocity of a vortex ring or pair, Bioinspir.
Biomim. 1, S57 (2006).

[6] J. O. Dabiri, Optimal vortex formation as a unifying principle in biological propulsion, Annu. Rev. Fluid
Mech. 41, 17 (2009).

[7] P. F. Linden and J. S. Turner, The formation of ‘optimal’ vortex rings, and the efficiency of propulsion
devices, J. Fluid Mech. 427, 61 (2001).

[8] J. M. Lawson and J. R. Dawson, The formation of turbulent vortex rings by synthetic jets, Phys. Fluids
25, 105113 (2013).

[9] M. Rosenfeld, E. Rambod, and M. Gharib, Circulation and formation number of a laminar vortex ring,
J. Fluid Mech. 376, 297 (1998).

[10] J. O. Dabiri and M. Gharib, Starting flow through nozzles with temporally variable exit diameter, J. Fluid
Mech. 538, 111 (2005).

[11] S. Krueger, J. O. Dabiri, and M. Gharib, Vortex ring pinch-off in the presence of simultaneously initiated
uniform background co-flow, Phys. Fluids 15, L49 (2003).

[12] J. O. Dabiri and M. Gharib, Delay of vortex ring pinchoff by an imposed bulk conterflow, Phys. Fluids
16, L28 (2004).

[13] K. Schlueter-Kuck and J. O. Dabiri, Pressure evolution in the shear layer of forming vortex rings, Phys.
Rev. Fluids 1, 012501 (2016).

[14] M. Shusser and M. Gharib, A model for vortex ring formation in a starting buoyant plume, J. Fluid Mech.
416, 173 (2000).

[15] R. Q. Wang, A. W. K. Law, and E. E. Adams, Pinch-off and formation number of negatively buoyant jets,
Phys. Fluids 23, 052101 (2011).

[16] K. Shariff and A. Leonard, Vortex rings, Annu. Rev. Fluid Mech. 24, 235 (1992).
[17] T. T. Lim and T. B. Nickels, in Fluid Vortices, edited by S. I. Green (Kluwer, Dordrecht, 1995), p. 95.
[18] Y. Fukumoto, Global evolution of viscous vortex rings, Theor. Comput. Fluid Dyn. 24, 335 (2010).
[19] S. Begg, F. Kaplanski, S. S. Sazhin, M. Hindle, and M. Heikal, Vortex ring-like structures in gasoline fuel

sprays under cold-start conditions, Int. J. Engine Res. 10, 195 (2009).
[20] K. Stewart, C. Niebel, S. Jung, and P. Vlachos, The decay of confined vortex rings, Exp. Fluids 53, 163

(2012).
[21] M. Shusser and M. Gharib, Energy and velocity of a forming vortex ring, Phys. Fluids 12, 618 (2000).
[22] K. Mohseni and M. Gharib, A model for universal time scale of vortex ring formation, Phys. Fluids 10,

2436 (1998).
[23] M. Shusser, M. Rosenfeld, J. O. Dabiri, and M. Gharib, Effect of time-dependent piston velocity program

on vortex ring formation in a piston/cylinder arrangement, Phys. Fluids 18, 033601 (2006).
[24] L. Gao and S. C. M. Yu, A model for the pinch-off process of the leading vortex ring in a starting jet,

J. Fluid Mech. 656, 205 (2010).
[25] P. S. Krueger and M. Gharib, An over-pressure correction to the slug model for vortex ring calculation,

J. Fluid Mech. 545, 427 (2005).
[26] J. Norbury, A family of steady vortex rings, J. Fluid Mech. 57, 417 (1973).
[27] A. Weigand and M. Gharib, On the evolution of laminar vortex rings, Exp. Fluids 22, 447 (1997).
[28] J. E. Cater, J. Soria, and T. T. Lim, The interaction of the piston vortex with a piston-generated vortex

ring, J. Fluid Mech. 499, 327 (2004).
[29] I. Danaila, F. Kaplanski, and S. S. Sazhin, Modelling of confined vortex rings, J. Fluid Mech. 774, 267

(2015).
[30] I. Danaila, F. Kaplanski, and S. S. Sazhin, A model for confined vortex rings with elliptical core vorticity

distribution, J. Fluid Mech. 811, 67 (2017).

094701-20

https://doi.org/10.1063/1.1564600
https://doi.org/10.1063/1.1564600
https://doi.org/10.1063/1.1564600
https://doi.org/10.1063/1.1564600
https://doi.org/10.1063/1.1368850
https://doi.org/10.1063/1.1368850
https://doi.org/10.1063/1.1368850
https://doi.org/10.1063/1.1368850
https://doi.org/10.1073/pnas.0600520103
https://doi.org/10.1073/pnas.0600520103
https://doi.org/10.1073/pnas.0600520103
https://doi.org/10.1073/pnas.0600520103
https://doi.org/10.1088/1748-3182/1/4/S08
https://doi.org/10.1088/1748-3182/1/4/S08
https://doi.org/10.1088/1748-3182/1/4/S08
https://doi.org/10.1088/1748-3182/1/4/S08
https://doi.org/10.1146/annurev.fluid.010908.165232
https://doi.org/10.1146/annurev.fluid.010908.165232
https://doi.org/10.1146/annurev.fluid.010908.165232
https://doi.org/10.1146/annurev.fluid.010908.165232
https://doi.org/10.1017/S0022112000002263
https://doi.org/10.1017/S0022112000002263
https://doi.org/10.1017/S0022112000002263
https://doi.org/10.1017/S0022112000002263
https://doi.org/10.1063/1.4825283
https://doi.org/10.1063/1.4825283
https://doi.org/10.1063/1.4825283
https://doi.org/10.1063/1.4825283
https://doi.org/10.1017/S0022112098003115
https://doi.org/10.1017/S0022112098003115
https://doi.org/10.1017/S0022112098003115
https://doi.org/10.1017/S0022112098003115
https://doi.org/10.1017/S002211200500515X
https://doi.org/10.1017/S002211200500515X
https://doi.org/10.1017/S002211200500515X
https://doi.org/10.1017/S002211200500515X
https://doi.org/10.1063/1.1584436
https://doi.org/10.1063/1.1584436
https://doi.org/10.1063/1.1584436
https://doi.org/10.1063/1.1584436
https://doi.org/10.1063/1.1669353
https://doi.org/10.1063/1.1669353
https://doi.org/10.1063/1.1669353
https://doi.org/10.1063/1.1669353
https://doi.org/10.1103/PhysRevFluids.1.012501
https://doi.org/10.1103/PhysRevFluids.1.012501
https://doi.org/10.1103/PhysRevFluids.1.012501
https://doi.org/10.1103/PhysRevFluids.1.012501
https://doi.org/10.1017/S0022112000008727
https://doi.org/10.1017/S0022112000008727
https://doi.org/10.1017/S0022112000008727
https://doi.org/10.1017/S0022112000008727
https://doi.org/10.1063/1.3584133
https://doi.org/10.1063/1.3584133
https://doi.org/10.1063/1.3584133
https://doi.org/10.1063/1.3584133
https://doi.org/10.1146/annurev.fl.24.010192.001315
https://doi.org/10.1146/annurev.fl.24.010192.001315
https://doi.org/10.1146/annurev.fl.24.010192.001315
https://doi.org/10.1146/annurev.fl.24.010192.001315
https://doi.org/10.1007/s00162-009-0155-0
https://doi.org/10.1007/s00162-009-0155-0
https://doi.org/10.1007/s00162-009-0155-0
https://doi.org/10.1007/s00162-009-0155-0
https://doi.org/10.1243/14680874JER02809
https://doi.org/10.1243/14680874JER02809
https://doi.org/10.1243/14680874JER02809
https://doi.org/10.1243/14680874JER02809
https://doi.org/10.1007/s00348-012-1277-5
https://doi.org/10.1007/s00348-012-1277-5
https://doi.org/10.1007/s00348-012-1277-5
https://doi.org/10.1007/s00348-012-1277-5
https://doi.org/10.1063/1.870268
https://doi.org/10.1063/1.870268
https://doi.org/10.1063/1.870268
https://doi.org/10.1063/1.870268
https://doi.org/10.1063/1.869785
https://doi.org/10.1063/1.869785
https://doi.org/10.1063/1.869785
https://doi.org/10.1063/1.869785
https://doi.org/10.1063/1.2188918
https://doi.org/10.1063/1.2188918
https://doi.org/10.1063/1.2188918
https://doi.org/10.1063/1.2188918
https://doi.org/10.1017/S0022112010001138
https://doi.org/10.1017/S0022112010001138
https://doi.org/10.1017/S0022112010001138
https://doi.org/10.1017/S0022112010001138
https://doi.org/10.1017/S0022112005006853
https://doi.org/10.1017/S0022112005006853
https://doi.org/10.1017/S0022112005006853
https://doi.org/10.1017/S0022112005006853
https://doi.org/10.1017/S0022112073001266
https://doi.org/10.1017/S0022112073001266
https://doi.org/10.1017/S0022112073001266
https://doi.org/10.1017/S0022112073001266
https://doi.org/10.1007/s003480050071
https://doi.org/10.1007/s003480050071
https://doi.org/10.1007/s003480050071
https://doi.org/10.1007/s003480050071
https://doi.org/10.1017/S0022112003006980
https://doi.org/10.1017/S0022112003006980
https://doi.org/10.1017/S0022112003006980
https://doi.org/10.1017/S0022112003006980
https://doi.org/10.1017/jfm.2015.261
https://doi.org/10.1017/jfm.2015.261
https://doi.org/10.1017/jfm.2015.261
https://doi.org/10.1017/jfm.2015.261
https://doi.org/10.1017/jfm.2016.752
https://doi.org/10.1017/jfm.2016.752
https://doi.org/10.1017/jfm.2016.752
https://doi.org/10.1017/jfm.2016.752


FORMATION NUMBER OF CONFINED VORTEX RINGS

[31] I. Danaila and J. Helie, Numerical simulation of the postformation evolution of a laminar vortex ring,
Phys. Fluids 20, 073602 (2008).

[32] I. Danaila, C. Vadean, and S. Danaila, Specified discharge velocity models for the numerical simulation
of laminar vortex rings, Theor. Comput. Fluid Dyn. 23, 317 (2009).

[33] M. Rai and P. Moin, Direct simulations of turbulent flow using finite-difference schemes, J. Comput. Phys.
96, 15 (1991).

[34] R. Verzicco and P. Orlandi, A finite-difference scheme for three-dimensional incompressible flow in
cylindrical coordinates, J. Comput. Phys. 123, 402 (1996).

[35] P. Orlandi, Fluid Flow Phenomena: A Numerical Toolkit (Kluwer Academic, Dordrecht, 1999).
[36] M. R. Ruith, P. Chen, and E. Meiburg, Development of boundary conditions for direct numerical

simulations of three-dimensional vortex breakdown phenomena in semi-infinite domains, Comput. Fluids
33, 1225 (2004).

[37] J. Kim and P. Moin, Application of a fractional step method to incompressible Navier-Stokes equations,
J. Comput. Phys. 59, 308 (1985).

[38] W. Zhao, H. F. Steven, and L. G. Mongeau, Effects of trailing jet instability on vortex ring formation,
Phys. Fluids 12, 589 (2000).

[39] A. Michalke, Survey on jet instability theory, Prog. Aerosp. Sci. 21, 159 (1984).
[40] S. James and C. K. Madnia, Direct numerical simulation of a laminar vortex ring, Phys. Fluids 8, 2400

(1996).
[41] I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys. 21, 251

(1976).
[42] F. Hecht, O. Pironneau, A. Le Hyaric, and K. Ohtsuke, FreeFem++ manual, 2007, available at

http://www.freefem.org.
[43] F. Hecht, New developments in freefem++, J. Numer. Math. 20, 251 (2012).
[44] R. Sau and K. Mahesh, Passive scalar mixing in vortex rings, J. Fluid Mech. 582, 449 (2007).
[45] J. O. Dabiri and M. Gharib, Fluid entrainment by isolated vortex rings, J. Fluid Mech. 511, 311 (2004).
[46] K. Mohseni, H. Ran, and T. Colonius, Numerical experiments on vortex ring formation, J. Fluid Mech.

430, 267 (2001).
[47] F. B. Kaplanski and Y. A. Rudi, A model for the formation of “optimal” vortex ring taking into account

viscosity, Phys. Fluids 17, 087101 (2005).
[48] Y. Fukumoto and F. B. Kaplanski, Global time evolution of an axisymmetric vortex ring at low Reynolds

numbers, Phys. Fluids 20, 053103 (2008).
[49] J. G. Brasseur, Kinematics and dynamics of vortex rings in a tube, Ph.D. thesis, Stanford University, Joint

Institute for Aeronautics and Acoustics Report No. TR-26, 1979.
[50] J. G. Brasseur, Evolution characteristics of vortex rings over a wide range of Reynolds numbers, in

Proceedings of the Fourth Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference, Atlanta,
1986 (AIAA, Reston, 1986), paper 1986-1097, pp. 1–11.

[51] H. Lamb, Hydrodynamics (Dover, New York, 1932).
[52] F. B. Kaplanski and Y. A. Rudi, Dynamics of a viscous vortex ring, Int. J. Fluid Mech. Res. 26, 618

(1999).
[53] F. Kaplanski, S. S. Sazhin, Y. Fukumoto, S. Begg, and M. Heikal, A generalized vortex ring model,

J. Fluid Mech. 622, 233 (2009).
[54] Y. Fukumoto and H. K. Moffatt, Motion and expansion of a viscous vortex ring. Part 1. A higher-order

asymptotic formula for the velocity, J. Fluid Mech. 417, 1 (2000).
[55] F. B. Kaplanski, Y. Fukumoto, and Y. A. Rudi, Reynolds-number effect on vortex ring evolution in a

viscous fluid, Phys. Fluids 24, 033101 (2012).
[56] H. Helmholtz, On integrals of the hydrodynamical equations, which express vortex-motion, Philos. Mag.

33, 485 (1867).
[57] A. Wächter, An interior point algorithm for large-scale nonlinear optimization with applications in process

engineering, Ph.D. thesis, Carnegie Mellon University, 2002.
[58] Y. Zhang and I. Danaila, A finite element BFGS algorithm for the reconstruction of the flow field generated

by vortex rings, J. Numer. Math. 20, 325 (2012).

094701-21

https://doi.org/10.1063/1.2949286
https://doi.org/10.1063/1.2949286
https://doi.org/10.1063/1.2949286
https://doi.org/10.1063/1.2949286
https://doi.org/10.1007/s00162-009-0142-5
https://doi.org/10.1007/s00162-009-0142-5
https://doi.org/10.1007/s00162-009-0142-5
https://doi.org/10.1007/s00162-009-0142-5
https://doi.org/10.1016/0021-9991(91)90264-L
https://doi.org/10.1016/0021-9991(91)90264-L
https://doi.org/10.1016/0021-9991(91)90264-L
https://doi.org/10.1016/0021-9991(91)90264-L
https://doi.org/10.1006/jcph.1996.0033
https://doi.org/10.1006/jcph.1996.0033
https://doi.org/10.1006/jcph.1996.0033
https://doi.org/10.1006/jcph.1996.0033
https://doi.org/10.1016/j.compfluid.2003.04.001
https://doi.org/10.1016/j.compfluid.2003.04.001
https://doi.org/10.1016/j.compfluid.2003.04.001
https://doi.org/10.1016/j.compfluid.2003.04.001
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.1063/1.870264
https://doi.org/10.1063/1.870264
https://doi.org/10.1063/1.870264
https://doi.org/10.1063/1.870264
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1063/1.869041
https://doi.org/10.1063/1.869041
https://doi.org/10.1063/1.869041
https://doi.org/10.1063/1.869041
https://doi.org/10.1016/0021-9991(76)90023-1
https://doi.org/10.1016/0021-9991(76)90023-1
https://doi.org/10.1016/0021-9991(76)90023-1
https://doi.org/10.1016/0021-9991(76)90023-1
http://www.freefem.org
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1017/S0022112007006349
https://doi.org/10.1017/S0022112007006349
https://doi.org/10.1017/S0022112007006349
https://doi.org/10.1017/S0022112007006349
https://doi.org/10.1017/S0022112004009784
https://doi.org/10.1017/S0022112004009784
https://doi.org/10.1017/S0022112004009784
https://doi.org/10.1017/S0022112004009784
https://doi.org/10.1017/S0022112000003025
https://doi.org/10.1017/S0022112000003025
https://doi.org/10.1017/S0022112000003025
https://doi.org/10.1017/S0022112000003025
https://doi.org/10.1063/1.1996928
https://doi.org/10.1063/1.1996928
https://doi.org/10.1063/1.1996928
https://doi.org/10.1063/1.1996928
https://doi.org/10.1063/1.2925682
https://doi.org/10.1063/1.2925682
https://doi.org/10.1063/1.2925682
https://doi.org/10.1063/1.2925682
https://doi.org/10.1615/InterJFluidMechRes.v26.i5-6.60
https://doi.org/10.1615/InterJFluidMechRes.v26.i5-6.60
https://doi.org/10.1615/InterJFluidMechRes.v26.i5-6.60
https://doi.org/10.1615/InterJFluidMechRes.v26.i5-6.60
https://doi.org/10.1017/S0022112008005168
https://doi.org/10.1017/S0022112008005168
https://doi.org/10.1017/S0022112008005168
https://doi.org/10.1017/S0022112008005168
https://doi.org/10.1017/S0022112000008995
https://doi.org/10.1017/S0022112000008995
https://doi.org/10.1017/S0022112000008995
https://doi.org/10.1017/S0022112000008995
https://doi.org/10.1063/1.3693276
https://doi.org/10.1063/1.3693276
https://doi.org/10.1063/1.3693276
https://doi.org/10.1063/1.3693276
https://doi.org/10.1080/14786446708639824
https://doi.org/10.1080/14786446708639824
https://doi.org/10.1080/14786446708639824
https://doi.org/10.1080/14786446708639824
https://doi.org/10.1515/jnum-2012-0017
https://doi.org/10.1515/jnum-2012-0017
https://doi.org/10.1515/jnum-2012-0017
https://doi.org/10.1515/jnum-2012-0017


I. DANAILA et al.

[59] I. Danaila and B. Protas, Optimal reconstruction of inviscid vortices, Proc. R. Soc. A 471, 20150323
(2015).

[60] M. Shusser, M. Gharib, M. Rosenfeld, and K. Mohseni, On the effect of pipe boundary layer growth on
the formation of a laminar vortex ring generated by a piston-cylinder arrangement, Theor. Comput. Fluid
Dyn. 15, 303 (2002).

[61] J. O. Dabiri and M. Gharib, A revised slug model boundary layer correction for starting jet vorticity flux,
Theor. Comput. Fluid Dyn. 17, 293 (2004).

[62] P. S. Krueger, Circulation and trajectories of vortex rings formed from tube and orifice openings, Physica
D 237, 2218 (2008).

[63] M. Krieg and K. Mohseni, Modelling circulation, impulse and kinetic energy of starting jets with non-zero
radial velocity, J. Fluid Mech. 719, 488 (2013).

094701-22

https://doi.org/10.1098/rspa.2015.0323
https://doi.org/10.1098/rspa.2015.0323
https://doi.org/10.1098/rspa.2015.0323
https://doi.org/10.1098/rspa.2015.0323
https://doi.org/10.1007/s001620100051
https://doi.org/10.1007/s001620100051
https://doi.org/10.1007/s001620100051
https://doi.org/10.1007/s001620100051
https://doi.org/10.1007/s00162-004-0106-8
https://doi.org/10.1007/s00162-004-0106-8
https://doi.org/10.1007/s00162-004-0106-8
https://doi.org/10.1007/s00162-004-0106-8
https://doi.org/10.1016/j.physd.2008.01.004
https://doi.org/10.1016/j.physd.2008.01.004
https://doi.org/10.1016/j.physd.2008.01.004
https://doi.org/10.1016/j.physd.2008.01.004
https://doi.org/10.1017/jfm.2013.9
https://doi.org/10.1017/jfm.2013.9
https://doi.org/10.1017/jfm.2013.9
https://doi.org/10.1017/jfm.2013.9



