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In this work we investigate properties of the mean thermal energy balance equation using
a multiscaling analysis approach. The analysis of the mean thermal energy balance (MHB)
equation and the mean momentum balance (MMB) equation are presented side by side to
better demonstrate the similarities and differences between the two. The main findings of
this work include, first, the multiscaling for the MHB equation are similar to those for the
MMB equation in the outer layer, mesolayer, and log layer. Péclet number Peτ = PrReτ

in the MHB equation is the counterpart of Reτ in the MMB equation. Here Pr ≡ ν/α

denotes the Prandtl number of the fluid, which is the ratio between the kinematic viscosity
ν and the molecular thermal diffusivity α. Reτ = δuτ /ν is the Reynolds number of the
flow defined with the channel half-height δ and the friction velocity uτ . In the outer layer,
mesolayer, and log layer, the shapes of the mean temperature and the mean velocity are
very similar, and the shapes of the wall-normal turbulent transport of heat and momentum
are also similar. Second, the molecular thermal diffusion sublayer is strongly influenced
by the Prandtl number. At low Prandtl number (Pr < 1), the thickness of the molecular
thermal diffusion sublayer is y

It
= O( 1

Pr1/2
ν

uτ
) or y+

It
= O( 1

Pr1/2), a proper scaling for the

wall-normal distance is Pr1/2y+ where y+ = y/(ν/uτ ) is the inner-scaled wall-normal
distance, and a relevant Péclet number is Pr1/2Reτ . At very low Prandtl number (Pr � 1),
the molecular thermal diffusion sublayer becomes much thicker than the viscous sublayer
(molecular momentum diffusion sublayer). At large Prandtl number (Pr > 1), the thickness
of the molecular thermal diffusion sublayer is y+

It
= O( 1

Pr1/3), a proper scaling for the

wall-normal distance is Pr1/3y+, and a relevant Péclet number is Pr1/3Reτ . At very high
Prandtl number (Pr � 1), the molecular thermal diffusion sublayer becomes much thinner
than the viscous sublayer. Third, to be consistent with the scaled MHB equation, the “log
law” for the mean temperature is presented using an inner-scaled wall-normal distance
y/(α/uτ ) = Pry+. The main effect of the Prandtl number is the shifting of the additive
constant in the log law, due to the thickness of the molecular thermal diffusion sublayer and
buffer layer. Fourth and finally, Zagarola-Smits-style scaling is applied to the mean velocity
and the mean temperature deficit in the outer layer. An interpretation of the Zagarola-
Smits-style scaling is provided. At sufficiently high Reynolds number and Péclet number,
the Zagarola-Smits-style scaling is shown to be equivalent to the traditional scaling.

DOI: 10.1103/PhysRevFluids.3.094608

I. INTRODUCTION

Heat transfer in fluid flowing through parallel channels is one of the canonical flows most widely
studied in physical laboratories and numerical simulations. The flow is driven by an imposed
pressure gradient, and the heat transfer is maintained by a temperature difference between the
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channel walls and the fluid. Two common thermal boundary conditions used in physical experiments
or numerical simulations are constant wall temperature or constant wall heat flux. Despite its
simple geometry and numerous experimental, analytical, and numerical studies, however, our
understanding of heat transfer in turbulent channel flow is still incomplete.

Over the past 20 years, numerical simulation, especially direct numerical simulation (DNS), has
become an invaluable tool in investigating the fundamental nature of turbulent heat transfer [1–13].
Quantities that are difficult or impossible to measure in physical laboratories can be easily computed
in numerical simulations. However, DNS has been limited by computing power to a moderate
Reynolds number range between Reτ = 150 [5] and Reτ = 4000 [13], and a moderate Prandtl
number range between Pr = 0.025 and Pr = 10 [6]. Despite the limited Reynolds number and
Prandtl number range, DNS data have been essential in shedding light on the underlying physics in
heat transfer in turbulent wall-bounded flows, and the data are also critical in assessing multiscaling
analyses of turbulent heat transfer.

Using a scaling patch analysis approach [14,15], an alternative framework for describing the
structure of turbulent wall-bounded flow and turbulent heat transfer has been developed [16,17].
Traditionally, turbulent wall-bounded flows are divided into four layers: a viscous sublayer, a buffer
layer, a log layer, and an outer layer [18–20]. Based on the ratio between the turbulence term and
the viscous term in the mean momentum equation and mean energy equation, the scaling patch
analysis also divides the turbulent wall-bounded flows into four layers: a viscous sublayer, a mean
momentum or heat balance layer, a mesolayer, and an outer layer [16,17]. The scaling patch analysis
of the mean thermal energy balance equation has been further developed in Refs. [21–23].

Scaling of the mean temperature in convective turbulent boundary layers has been investigated
by Wang et al. [24] using a variant of the similarity theory by George and Castillo [25]. Seena and
Afzal investigated the mean momentum and thermal balance in fully developed turbulent channel
flow using matched asymptotic expansions [26]. Their analysis also reveals the existence of an
intermediate layer with its own characteristic scaling, between the traditional inner and outer layers.
Using a function of a series of logarithmic functions in the mesolayer, Seena and Afzal presented
closure models of Reynolds shear stress and Reynolds heat flux [27].

The goal of this paper is to gain insight into properties of heat transfer in turbulent wall-bounded
flows by identifying proper scaling for the mean thermal energy equation, in particular to elucidate
the role of Prandtl number and Reynolds number on the multiscaling of different layers. Another
goal of this work is to minimize the number of scaled variables and simplify notation in studying
the mean thermal energy equation.

The rest of the paper is organized as follows. In Sec. II the instantaneous and mean equations
for the thermal energy and momentum, as well as the boundary conditions, are presented. To better
match the boundary conditions, a transformed temperature is introduced. In Sec. III a multiscaling
analysis of the mean thermal energy equation is presented for the outer layer, log layer, molecular
diffusion sublayer, and mesolayer. We start with the outer layer to establish a proper scaling for the
wall-normal turbulent transport of heat. Section IV gives the summary and conclusions.

II. GOVERNING EQUATIONS

To better demonstrate the analogy between the thermal energy equation and the momentum
equation, we will present the two equations side by side. In each case, the left side is related to
the momentum equation and will be referred to as Eq. (a), and the right side is related to the thermal
energy equation and will be referred to as Eq. (b).

The instantaneous streamwise momentum equation and the instantaneous thermal energy equa-
tion for incompressible flow read [19,20]

∂ũi

∂ t̃
+ ũj

∂ũi

∂xj

= − 1

ρ

∂p̃

∂xi

+ ν
∂2ũi

∂x2
j

;
∂T̃

∂ t̃
+ ũj

∂T̃

∂xj

= α
∂2T̃

∂x2
j

. (1)

094608-2



MULTISCALING ANALYSIS OF THE MEAN THERMAL …

In this work we follow notation of Tennekes and Lumley for decomposing the instantaneous
quantities [19]. The tilde denotes instantaneous quantity, upper case letter denotes its mean, and
lower case denotes its fluctuation. For example, in ũi = Ui + ui, ũi is the instantaneous velocity
component in the i direction, Ui is its mean, and ui is its fluctuation. Similarly, in T̃ = T + t, T̃ is
the instantaneous temperature, T is the mean temperature, and t is the fluctuation temperature. In
Eq. (1) t̃ denotes time, and ρ is the fluid density.

In this work, we focus on the fully developed turbulent channel flow with constant wall heat flux,
qw = const. By “fully developed,” we mean both hydrodynamically and thermally fully developed.
In fully developed turbulent channel heat transfer with constant wall heat flux, the mean temperature,
the wall temperature, and the mixed mean temperature all increase linearly in the x direction. The
mean pressure gradient and the mean temperature gradient in the x direction can be found as [28,29]

− 1

ρ

∂P

∂x
= u2

τ

δ
;

∂T

∂x
= dTw

dx
= dTm

dx
= uτ

Ub

θτ

δ
, (2)

where uτ is defined by the wall shear stress τw as uτ = √
τw/ρ and is commonly called friction

velocity. θτ is defined by the wall heat flux as θτ = qw/(ρCpuτ ) where Cp is the heat capacity of
the fluid. θτ was first introduced by Squire, who called it friction temperature [30]. Tw is the wall
temperature. Ub = (

∫ δ

0 Udy)/δ is the bulk mean velocity, and Tm = (
∫ δ

0 UT dy)/(
∫ δ

0 Udy) is the
mixed mean temperature.

For fully developed turbulent channel flows, the mean momentum balance (MMB) equation and
the mean thermal energy equation can be expressed as

0 = u2
τ

δ
+ ν

∂2U

∂y2
+ ∂ (−〈vu〉)

∂y
; 0 = −U

∂T

∂x
+ α

∂2T

∂y2
+ ∂ (−〈vt〉)

∂y
, (3)

where −〈vu〉 denotes wall-normal turbulent transport of streamwise momentum, and −〈vt〉 denotes
wall-normal turbulent transport of heat. Angle brackets denote averaging. For brevity, we will call
the mean thermal energy balance equation or the mean heat balance equation the MHB equation in
the following.

The boundary conditions corresponding to Eq. (3) at y = 0 (channel wall) and y = δ (channel
centerline), respectively, are

y = 0 : U = 0, ν
∂U

∂y
= u2

τ , −〈vu〉 = 0; T = Tw, −α
∂T

∂y
= uτ θτ , −〈vt〉 = 0, (4)

y = δ : U = Uc, ν
∂U

∂y
= 0, −〈vu〉 = 0; T = Tc, −α

∂T

∂y
= 0, −〈vt〉 = 0. (5)

Uc and Tc are the mean velocity and the mean temperature at the channel centerline, respectively.
Boundary conditions at the channel centerline (y = δ) in Eq. (5) show close analogies between

the MHB equation and the MMB equation. However, the boundary conditions at the channel wall
(y = 0) in Eq. (4) show differences between the MHB equation and the MMB equation. Specifically,
the no-slip boundary condition for the velocity results in U |y=0 = 0, and the no-slip boundary
condition for the temperature results in T |y=0 = Tw.

In many numerical simulations and experimental studies of channel heat transfer, heat transfer is
established by adding heat through hotter channel walls, as sketched in Fig. 1. Hence fluid has the
highest temperature at the wall and lower temperature at the channel centerline. To formally match
the wall boundary conditions in Eq. (4), a transformed temperature is introduced as

θ̃ = Tw − T̃ . (6)

The mean temperature, its derivative, the fluctuation temperature, and the wall-normal turbulent
transport of heat using the original temperature and the transformed temperature are related to each
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FIG. 1. Sketch of a parallel channel flow heated with constant flux. T̃ is the instantaneous temperature; θ̃

is the transformed temperature.

other, respectively, as

� = Tw − T ;
∂T

∂y
= −∂�

∂y
; θ = −t ; −〈vt〉 = 〈vθ〉. (7)

Note that the transformed mean temperature � varies only in the wall-normal y direction, not in the
x direction, much like U . Using the transformed temperature, the MHB equation becomes

0 = −uτ θτ

δUb

U − α
∂2�

∂y2
+ ∂ (〈vθ〉)

∂y
. (8)

For brevity, we denote the wall-normal turbulent transport of streamwise momentum as Rvu =
−〈vu〉, and the wall-normal turbulent transport of heat as Rvθ = −〈vθ〉. The MMB equation and
the MHB equation using the transformed temperature can then be written as

0 = u2
τ

δ
+ ν

∂2U

∂y2
+ ∂Rvu

∂y
; 0 = uτ θτ

δ

U

Ub

+ α
∂2�

∂y2
+ ∂Rvθ

∂y
, (9)

and the corresponding boundary conditions are

y = 0 : U = 0, ν
∂U

∂y
= u2

τ , Rvu = 0; � = 0, α
∂�

∂y
= uτ θτ , Rvθ = 0, (10)

y = δ : U = Uc, ν
∂U

∂y
= 0, Rvu = 0; � = �c, α

∂�

∂y
= 0, Rvθ = 0. (11)

Equations (10) and (11) clearly show analogies in boundary conditions between the MHB equation
and the MMB equation.

Equations (9a) and (9b) show that the balance of the MMB equation and the MHB equation
are both established by three terms: a driving or source term, a molecular diffusion term, and a
turbulence term. In the MMB equation (9a), the driving “force” is the first term, which is the imposed
pressure gradient. The second term comes from the molecular diffusion and is negative across the
whole channel. In other words, the molecular diffusion term is always a “sink” term. The last term
is the gradient of wall-normal turbulent transport of momentum, and this term changes sign at the
Rvu peak location y

mm
. Between the channel wall and y

mm
, this turbulence term is positive and serves

as a “source” term. Between y
mm

and the channel centerline, this turbulence term becomes negative
and acts as a “sink” term.

Similarly, the first term in the MHB Eq. (9b), originating from the mean advection, is positive
across the whole channel and serves as a driving or source term. The second term is the molecular
diffusion term and is negative throughout the channel, acting as a “sink” term. The third term is
the turbulence term and changes sign at the Rvθ peak location y

mt
. Between the channel wall and
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y
mt

, this turbulence term is positive and serves as a “source” term. Between y
mt

and the channel
centerline, this turbulence term becomes negative and acts as a “sink” term.

In the next section, we will perform multiscaling analysis of the MHB Eq. (9b). We will also
present the corresponding multiscaling of the MMB equation, because it is more familiar, and offers
interesting comparison with the MHB equation.

III. MULTISCALING ANALYSIS

It is known that the characteristic length scale, velocity scale, and temperature scale vary in
different layer of a turbulent channel flow [18]. To determine a proper scaling for different layer of
turbulent channel flow, therefore, it is crucial to identify proper scales for the wall-normal distance,
the mean velocity and temperature, and the turbulent terms.

In the following we present multiscaling analysis for the outer layer, log layer, molecular diffu-
sion sublayer, and mesolayer. For each layer, proper length scale, velocity scale, and temperature
scale are identified, and the role of Prandtl number and Péclet number are determined.

A. Scaling in the outer layer

In the outer layer of turbulent channel flows, a proper and natural length scale is the channel
half-height lo = δ. Normalized by lo, the outer-scaled wall-normal distance is denoted as

η = y

lo
= y

δ
. (12)

Traditionally, the mean streamwise velocity U and the wall-normal turbulent transport of
streamwise momentum Rvu are normalized by the friction velocity uτ . Similarly, the traditional
scaling of the mean temperature � and the wall-normal turbulent transport of heat Rvθ also employs
the friction temperature and velocity as

U+ = U

uτ

, R+
vu = Rvu

u2
τ

; �+ = �

θτ

, R+
vθ = Rvθ

uτ θτ

. (13)

Using the scaling in Eqs. (12) and (13), the outer-scaled MMB equation and MHB equation for
the outer layer of the turbulent channel can be written as

0 = 1 + 1

Reτ

∂2U+

∂η2
+ ∂R+

vu

∂η
; 0 = U+

U+
b

+ 1

Peτ

∂2�+

∂η2
+ ∂R+

vθ

∂η
, (14)

where Peτ = Reτ Pr is the Péclet number defined with friction velocity.

1. Outer scaling of Rvu and Rvθ

To check the validity of the outer-scaled Eq. (14), we first present the outer-scaled profiles of
Rvu and Rvθ in Fig. 2. Profiles of R+

vu from different Reynolds numbers collapse well in the channel
outer region η � 0.2, as shown in Fig. 2(a). As Reynolds number increases, the Rvu peak location
moves monotonically toward smaller η, and the peak value of R+

vu monotonically increases towards
a value of 1. The case at Reτ = 180, not surprisingly, shows low Reynolds number effect.

In comparison, Fig. 2(b) displays a more complicated variation of Rvθ . This is not surprising,
because Rvθ is affected by two parameters: the Prandtl number of the fluid and the Reynolds number
of the flow. As shown in Eqs. (14a) and 14(b), Peτ in the MHB equation is the counterpart of Reτ

in the MMB equation. Indeed, Fig. 2(b) shows that the peak Rvθ location also moves to smaller η

with increasing Peτ , and the peak value of R+
vθ approaches 1 as Peτ increases. The scaling for the

Rvθ peak location and peak value will be discussed below in the subsection on the mesolayer.
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(b)(a)

FIG. 2. (a) Outer scaling of the wall-normal turbulent transport of streamwise momentum R+
vu versus η.

(b) Outer scaling of the wall-normal turbulent transport of heat R+
vθ versus η. The legend lists the Prandtl and

Reynolds numbers of the data as (Pr; Reτ ). The dashed black line represents (1 − η). DNS data I are from
Kawamura’s group [2,6–8,11], and DNS data II are from Ref. [13].

In the outer layer of turbulent channel flow at large Reynolds number and Péclet number, the
second term in Eqs. (14a) and (14b) is smaller than the other terms, due to the presence of a prefactor
[1/Reτ ] � 1 or [1/Peτ ] � 1. Thus in the outer layer of turbulent channel flow at high Reτ and Peτ ,
Eqs. (14a) and (14b) can be approximated as

0 ≈ 1 + ∂R+
vu

∂η
; 0 ≈ U+

U+
b

+ ∂R+
vθ

∂η
. (15)

Moreover in the outer region of turbulent channel flow at sufficient high Reynolds number, U+ ≈
U+

b , so the MHB equation can be further approximated as

0 ≈ 1 + ∂R+
vθ

∂η
. (16)

Integrating the approximate Eq. (15a) and the approximate Eq. (16) along the wall-normal
direction produces approximations for R+

vu and R+
vθ in the outer layer at sufficiently high Reynolds

number and Péclet number as

R+
vu(η) ≈ 1 − η; R+

vθ (η) ≈ 1 − η. (17)

In Fig. 2(a) a straight line (1 − η) is plotted, and it agrees reasonable well with R+
vu in the outer

layer of turbulent channel flow at sufficiently high Reynolds number. The variation in Fig. 2(b)
reflects the effect of Prandtl numbers. At a low Péclet number, such as Reτ = 180 and Pr = 0.025,
heat transfer is more laminar-like than turbulent-like. Therefore, R+

vθ should deviate from the (1 −
η) approximation, which is valid for high Péclet numbers. Excluding the low Péclet number data
(Pr = 0.025, colored red in the figure), Fig. 2(b) shows that the Rvθ data are better approximated
by the (1 − η) curve. In short, Fig. 2 shows that R+

vu versus η and R+
vθ versus η properly scale

the wall-normal turbulent transport of momentum and heat in the outer layer at sufficiently high
Reynolds number Reτ and sufficiently high Péclet number Peτ .

Equations (17a) and (17b) reveal that R+
vu(η) and R+

vθ (η) are bounded by 1, an indicator of proper
scaling. As η approaches 0, R+

vu and R+
vθ would approach 1 according to Eqs. (17a) and (17b).

However, dictated by the no-slip boundary conditions, R+
vu(η) and R+

vθ (η) must be 0 at the wall.
Therefore, within a thin layer adjacent to the wall, R+

vu and R+
vθ must decrease from their peak values

to 0 at the channel wall. In other words, the approximate Eqs. (17a) and (17b) are not applicable in
the inner region, and another scaling has to be applied there.
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FIG. 3. (a) Traditional outer scaling of the mean streamwise velocity deficit. (b) Traditional outer scaling
of the mean temperature deficit. The dashed black curve represents (U+

c − U+) at Reτ = 4000.

2. Traditional outer scaling of the mean velocity and temperature deficit

In Fig. 3 we evaluate the appropriateness of outer-scaled Eq. (14) by plotting the profiles of
mean velocity and mean temperature in the outer layer. Traditionally, the mean velocity and the
mean temperature in the outer region are presented as the deficit from their centerline values:

Uc − U

uτ

= U+
c − U+;

�c − �

θτ

= �+
c − �+. (18)

An obvious advantage of the deficit profile is that it forces a data collapse at the channel centerline
η = 1 with a zero deficit.

Figure 3(a) shows reasonable collapse of the mean velocity deficit profiles from different
Reynolds numbers. In comparison, Fig. 3(b) shows more variation in the scaled mean temperature
deficit profiles, especially at low Prandtl number and Reynolds number. The variations can be
attributed to, first, low Reynolds number effect, specifically at Reτ = 180; second, low Péclet
number effect, as in the case at Reτ = 640 and Pr = 0.025, and the Reynolds number of this case is
large enough, but the Péclet number is small at Peτ = 16; and, third, a deficiency of the traditional
scaling.

Next we will present an alternative scaling for the mean temperature deficit and the mean velocity
deficit in the outer layer.

3. Alternative outer scaling of the mean temperature deficit and mean velocity deficit

In studying turbulent pipe flows and flat-plate turbulent boundary layer flows, Zagarola and Smits
found that the mean velocity deficit profiles (Uc − U ) in the outer layer collapse better if scaled
by (δ1m/δ)Uc than if scaled by uτ as in the traditional scaling [31]. Here δ1m denotes the mass
displacement thickness defined as

δ1m ≡
∫ δ

0

[
1 − U (y)

Uc

]
dy = Uc − Ub

Uc

δ. (19)

Similarly, a thermal displacement thickness δ1θ can be defined as

δ1θ ≡
∫ δ

0

[
1 − �(y)U (y)

�cUb

]
dy = �c − �m

�c

δ. (20)

Wang et al. have applied a Zagarola-Smits-style scaling for the mean temperature distribution
within turbulent boundary layer flows [24]. Their definition of the thermal displacement thickness
is

∫ δ

0
T −T∞
Tw−T∞

dy.
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FIG. 4. (a) (U+
c − U+

b ) versus Reynolds number. Note that if a logarithmic function is used to approximate
U+, (U+

c − U+
b ) ≈ 1/κ ≈ 2.5. (b) (�+

c − �+
m) versus Peτ . DNS data from Kawamura’s group cover Reynolds

numbers of Reτ = 180, 395, 640, 1020, and Prandtl numbers of Pr = 0.025 to 10 [2,6–8,11]. PBO data include
Reynolds numbers of Reτ = 550, 1000, 2000, 4000 and Prandtl numbers of Pr = 0.2, 0.71, 1.0 [13].

Using the definitions in Eqs. (19) and (20), the Zagarola-Smits-style scaling for the mean velocity
and the mean temperature can be expressed as

UZS = δ1m

δ
Uc =

(
δ1m

δ
U+

c

)
uτ = (U+

c − U+
b )uτ , (21)

�ZS = δ1θ

δ
�c =

(
δ1θ

δ
�+

c

)
θτ = (�+

c − �+
m)θτ . (22)

When the Zagarola-Smits-style velocity scale is presented as UZS = (δ1m/δ)Uc, it is not clear
whether UZS is an outer velocity scale, an inner velocity scale, or a mixed velocity scale. Uc is an
outer velocity scale, but δ1m/δ is a small number that decreases toward 0 at an infinite Reynolds
number, as shown in Ref. [32].

In Eqs. (21) and (22) we show that the ZS scale can also be presented as a product of (U+
c − U+

b )
and the inner velocity scale uτ , or as a product of (�+

c − �+
m) and the friction temperature θτ . In

other words, UZS and �ZS are the traditional inner scale of uτ and θτ multiplied by a weight function.
By determining the Reynolds number and the Péclet number dependence of the weight function, we
can then compare the ZS scale with the traditional scale.

Figure 4(a) shows that (U+
c − U+

b ) approaches a constant value at sufficiently high Reynolds
number. It is known that at high Reynolds number, the mean velocity profile U+ can be reasonably
approximated by a logarithmic function, except in the near-wall region [19]. However, this near-wall
region becomes a negligible fraction of the channel height at high Reτ . Approximating U+ by
a logarithmic function, it can be easily shown that at sufficiently high Reynolds number (U+

c −
U+

b ) ≈ 1/κ ≈ 2.5 where κ is the von Kárman constant. Figure 4(a) shows that the constant value
at high Reynolds number is indeed close to be 2.5. Therefore at high Reynolds number, UZS is
equivalent to the traditional inner velocity scale uτ , differing by a numerical factor of about 2.5.

Figure 4(b) shows that (�+
c − �+

m) also approaches a constant value at sufficiently high Péclet
number. Thus �ZS is equivalent to the traditional inner temperature scale θτ at high Péclet number.
Comparing data from Kawamura’s group [2,6–8,11] and PBO [13], the larger Prandtl number data
from Kawamura’s group have larger values of (�+

c − �+
m). However, as Reynolds number increases,

the difference becomes smaller. In the following we will show that deviation at large Prandtl number
is related to the thickness of the molecular thermal diffusion layer.

The mean temperature deficit and the mean velocity deficit scaled by the Zagarola-Smits scale
can be written as

U ∗ZS = Uc − U

UZS

= U+
c − U+

U+
c − U+

b

; �∗ZS = �c − �

�ZS

= �+
c − �+

�+
c − �+

m

. (23)
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FIG. 5. (a) Zagarola-Smits-style scaled mean streamwise velocity deficit. (b) Zagarola-Smits-style scaled
mean temperature deficit. The dashed black curve represents (U+

c − U+)/(U+
c − U+

b ) at Reτ = 4000.

Using the Zagarola-Smits-style scaling, the MMB equation and the MHB equation become

0 = 1 −
(

U+
c − U+

b

Reτ

)
∂2U ∗ZS

∂η2
+ ∂R+

vu

∂η
; 0 = U+

U+
b

−
(

�+
c − �+

m

Peτ

)
∂2�∗ZS

∂η2
+ ∂R+

vθ

∂η
. (24)

Mathematically the outer-scaled Eq. (24) using the ZS scale is equivalent to the traditional outer-
scaled Eq. (14). The transformation between Eqs. (24) and (14) is most easily accomplished using
the following differentials:

dU ∗ZS = − 1

U+
c − U+

b

dU+; d�∗ZS = − 1

�+
c − �+

m

d�+. (25)

Replacing dU+ or d�+ in Eq. (14) with dU ∗ZS or d�∗ZS , the prefactor of the second term in
Eq. (14) is multiplied by (U+

c − U+
b ) or (�+

c − �+
m) to produce Eq. (24). As shown in Fig. 4, both

(U+
c − U+

b ) and (�+
c − �+

m) are bounded and approach a constant value of O(1) at sufficiently
high Reynolds number and Péclet number. Therefore, the alternative outer scaling Eq. (24) using
ZS scaling is as valid as the traditional outer scaling.

In Fig. 5 we present the mean velocity deficit and the mean temperature deficit scaled by
Zagarola-Smits-style scaling. Compared with the traditional scaling in Fig. 3, the ZS scaled mean
velocity deficit collapse better, especially for data at low to moderate Reynolds number and Péclet
number. Compared with the Zagarola-Smits-style scaled mean velocity deficit in Fig. 5(a), the
Zagarola-Smits-style scaled mean temperature displays more variation in Fig. 5(b). The variation
again reflects the effect of Péclet numbers. For example, at Reτ = 180 and Pr = 0.025, the Péclet
number is so low that the heat transfer is more laminar-like than turbulent-like. Consequently the
Zagarola-Smits-style scaled mean temperature at these low Péclet numbers should systematically
deviate from the data at higher Péclet numbers.

In short, the better collapse of data in the outer layer of Fig. 5 indicates that the ZS scaling,
specifically the weight functions (U+

c − U+
b ) and (�+

c − �+
m), capture, to a certain degree, the low

Reynolds number and low Péclet number effects.

B. Scaling in the “log layer”

It has long been observed that in high Reynolds number turbulent wall-bounded flows there exists
a region in which the mean velocity profile can be approximated by a logarithmic function [18–20].
The log law is generally presented using the inner-scaled wall-normal distance y+ = y/(ν/uτ ) and
the inner-scaled mean streamwise velocity U+ = U/uτ as

U+ ≈ 1

κ
ln(y+) + B, (26)
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FIG. 6. (a) Traditional inner-scaled mean streamwise velocity versus inner-scaled wall-normal distance,
U+ versus y+. (b) Traditional inner-scaled mean temperature versus inner-scaled wall-normal distance, �+

versus y+.

where B is an additive constant. The existence of the “log layer” and the universality of κ have been
discussed comprehensively by Nagib and Chauhan [33]. In this work we do not argue for or against
the existence of an exact “log law.” We regard the logarithmic Eq. (26) as a good approximate
function for the mean velocity profile.

To reflect the “log law,” the wall-normal distance is scaled as y+ and the corresponding inner-
scaled MMB equation is

0 = 1

Reτ

+ ∂2U+

∂y+2
+ ∂R+

vu

∂y+ . (27)

Figures 6(a) and 7(a) show the profiles of the inner-scaled U+ and R+
vu versus y+. Data from

different Reynolds numbers collapse well in the inner region, indicating the appropriateness of the
scaling in Eq. (27).

According to Kader and Yaglom, the “log law” for mean temperature was first obtained by
Landau and Lifshitz [34]. Applying the classical Izakson-Millikan overlap method [35,36], Kader
and Yaglom derived the log law for mean temperature [37]. Recent high Reynolds number DNS [13]
has confirmed that the mean scalar field obeys a generalized logarithmic law. Using the traditional
inner-scaled wall-normal distance and the inner-scaled mean temperature �+, the log law for mean
temperature is commonly presented as

�+ ≈ 1

κθ

ln(y+) + β
θ
(Pr), (28)

FIG. 7. (a) Traditional inner-scaled turbulent wall-normal transport of streamwise momentum R+
vu versus

y+. (b) Traditional inner-scaled turbulent wall-normal transport of heat R+
vθ versus y+.
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TABLE I. Additive constant β
θ
(Pr) in the thermal log law proposed by previous researchers.

Researcher(s) β
θ
(Pr)

Squire (1951) [30] ln[(5Pr + 1)/30)] + 8.55 + 5Pr
Levich (1962) [39] α

θ
ln(Pr) + const

Gowen and Smith (1967) [40] ln[(5Pr + 1)/30)] + 8.55Prt + 5Pr
Neumann (1968) [41] 3.5Pr
Fortier (1968) [42] 2.5ln(Pr) + 2.7Pr − 1

2.12ln(Pr) + (12.5Pr2/3 − 5.3) for Pr � 0.7 (KA-28)
Kader and Yaglom (1972) [37]

2.12ln(Pr) + (12.5Pr2/3 − 1.5) for Pr � 1 (KA-31)
Kader (1981) [38] 2.12ln(Pr) + (14.8Pr2/3 − 10Pr1/3 + 1.69)
Kays and Crawford (1993) [43] 13.39Pr2/3 − 5.66

where κθ is the counterpart of the von Kárman constant. Kader suggested a valued of κθ ≈ 1/2.12
based on a wide range of experimental data [38] (Kader used the notation of α

θ
= 1/κθ = 2.12).

The additive constant β
θ

strongly depends on the Prandtl number, and different forms have been
proposed in the past, as listed in Table I.

The inner-scaled mean MHB equation corresponding to the traditional thermal log law, using y+
and �+, reads

0 = 1

Reτ

U+

U+
b

+ 1

Pr

∂2�+

∂y+2
+ ∂R+

vθ

∂y+ . (29)

The traditional inner-scaled mean temperature �+ and turbulent wall-normal turbulent transport
of heat R+

vθ from different Reynolds number and Prandtl number do not collapse in the inner region,
as shown in Figs. 6(b) and 7(b). This is not surprising because, formally, the traditional inner-scaled
MHB Eq. (29) is not an analogy of the inner-scaled MMB Eq. (27), due to the presence of a prefactor
1/Pr in front of the second term in the MHB Eq. (29).

Next we present an alternative inner scaling to better represent the “log layer” for the MHB
equation. The objective of the alternative scaling is to make the scaled MHB equation formally
analogous to the inner-scaled MMB Eq. (27). This can be achieved at least in three ways: (1) rescale
the mean temperature only, (2) rescale the wall-normal distance only, and (3) rescale both the mean
temperature and the wall-normal distance.

1. Alternative inner scaling for the mean thermal energy equation: Rescale distance

Analogous to the definition of inner-length scale for momentum transfer, a thermal inner length
scale can be defined as

lα ≡ α

uτ

, (30)

and a thermal inner-scaled wall-normal distance can then be defined as

y+θ ≡ y

lα
= y

α/uτ

= y+Pr. (31)

Hence an alternative inner scaling of the MHB equation can be expressed as

0 = 1

Peτ

U+

U+
b

+ ∂2�+

∂y+θ2
+ ∂R+

vθ

∂y+θ
, (32)

where the Péclet number is defined as Peτ = Reτ Pr. Note that the scaling for R+
vθ itself remains the

same, but its gradient in the wall-normal direction is modified through y+θ . Formally, the Peτ in the
MHB Eq. (32) is the counterpart of Reτ in the MMB Eq. (27).

094608-11



TIE WEI

FIG. 8. Alternative inner scaling for the mean thermal energy equation by rescaling the wall-normal
distance as y+θ = y+Pr. (a) Mean temperature. Dashed lines represent the log law at different Prandtl
numbers. The solid black line represents the linear behavior in the molecular diffusion sublayer. (b) Turbulent
wall-normal transport of heat.

In Fig. 8 we present the inner-scaled mean temperature and wall-normal turbulent transport of
heat versus the alternative inner-scaled wall-normal distance y+θ . A salient property of y+θ = y+Pr
is that the slope of the “log layer” from different Prandtl numbers is roughly the same, indicated
by the dashed lines with the same slope in Fig. 8(a). The effect of Prandtl numbers is to shift the
end of the molecular thermal diffusion sublayer and buffer layer to larger y+θ with increasing Pr.
Figure 8(b) shows that the profiles of R+

vθ from different Péclet numbers display a similar shape
with respect to y+θ at sufficiently high Péclet numbers. As the Péclet number increases, the R+

vθ

peak value increases and approaches a value of 1. At the same time, the R+
vθ peak location moves

outward as the Péclet number increases.
A log law consistent with the alternative inner-scaled MHB Eq. (32), using y+θ instead of y+,

reads

�+ ≈ 1

κθ

ln(y+θ ) + Bθ (Pr) = 1

κθ

ln(Pry+) + Bθ (Pr). (33)

Note that the additive constant Bθ (Pr) = βθ (Pr) − 1
κθ

ln(Pr).
Figure 8 shows that y+θ is a good choice to present the “log layer.” However, the molecular

thermal diffusion sublayer and buffer layer require scaling different from y+θ , which is addressed in
the following section.

C. Scaling in the molecular diffusion sublayer

It is well known that, within a thin layer adjacent to the channel wall, the increase of the mean
temperature with wall-normal distance can be approximated by a linear function [38]. A common
way to present the linear profile in the literature is by rescaling the mean temperature as

�+θ = �

θτ Pr
= �+

Pr
. (34)

Plotting �+θ versus the traditionally inner-scaled wall-normal distance y+, the near-wall region can
be approximated by a straight line, as shown in Fig. 9(a). Using �+θ , an alternative inner-scaled
MHB equation can be written as

0 = 1

Reτ

U+

U+
b

+ ∂2�+θ

∂y+2
+ ∂R+

vθ

∂y+ . (35)

Nominally this inner-scaled MHB equation is analogous to the inner-scaled MMB Eq. (27). Note
that in this alternative inner scaling, the wall-normal turbulent transport of heat is not affected, and
Péclet number does not appear in the equation.
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FIG. 9. (a) Rescaled mean temperature as �+θ = �+
Pr versus y+. The solid black line represents the linear

function. (b) Inner-scaled wall-normal turbulent transport of heat R+
vθ versus y+.

To evaluate the validity of this rescaling, Fig. 9(a) presents profiles of �+θ = �+/Pr versus y+
on loglog axes, to better show the near-wall region. Figure 9(a) clearly shows that the rescaled mean
temperature from different Reτ and Pr collapses well onto a straight line for small y+, but the slopes
of the rescaled mean temperature profiles are different outside the “linear region.” In other words,
�+θ versus y+ is not a good way to represent the log law of the mean temperature.

Figure 9(b) shows that the inner-scaled R+
vθ profiles from different Reτ and Pr do not collapse in

the molecular thermal diffusion sublayer. Moreover, the trend of R+
vθ in Fig. 9(b) is not as obvious

as in Fig. 8(b). Figure 9 indicates that y+ is not an appropriate scaling in the molecular thermal
diffusion sublayer. In short, Eq. (35) is not a good choice of inner scaling for the molecular thermal
diffusion sublayer, and presenting �+/Pr versus y+ should be avoided in the study of turbulent heat
transfer, as it does not correspond to a proper scaling of the MHB equation.

In the following we will rescale both � and y to better represent the scaling in the molecular
thermal diffusion sublayer.

1. Thickness of the molecular diffusion sublayer

In a fully developed turbulent channel flow, there exists a thin layer adjacent to the wall where
U+ ≈ y+, as shown in Fig. 6(a). The thickness of this viscous sublayer, or molecular momentum
diffusion sublayer, is y+ � 6 [19]. In other words, the thickness of the molecular momentum
diffusion sublayer is

y
Im

≈ 6
ν

uτ

or y+
Im

≈ 6. (36)

Similarly, there also exists a molecular thermal diffusion sublayer in which �+ grows linearly
with y+, as shown in Figs. 8(a) and 9(a). However, unlike the momentum transfer case, the thickness
of the molecular thermal diffusion sublayer is strongly influenced by the Prandtl number of the fluid.

The thickness of the molecular thermal diffusion sublayer y
It

can be defined in several ways. For
example, Kader used an eddy viscosity model for Rvθ and defined the thickness of y

It
by specifying

certain properties of the eddy viscosity [38]. One can also define the thickness of y
It

based on the
ratio between the diffusion term and the turbulence term in the MHB Eq. (29) or (35) [23]. Here we
adopt a simpler and more practical definition based on the deviation of � from the linear shape as

�+ − Pry+

�+ ≈ −0.05. (37)

The 5% is chosen to match the thickness of the viscous sublayer y
Im

at Pr = 1. Figure 10 shows that
the thickness of the molecular thermal diffusion layer, based on DNS data from Kawamura’s group
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FIG. 10. Thickness of the molecular thermal diffusion sublayer, y
It

.

[2,6–8,11] and PBO [13]. The DNS data indicate that

y
It

≈
(

5
ν

uτ

)
Pr−1/2 or y+

It
≈ 5

Pr1/2 Pr < O(1), (38)

y
It

≈
(

6
ν

uτ

)
Pr−1/3 or y+

It
≈ 6

Pr1/3 Pr > O(1). (39)

Figure 10 shows that the transition between low Prandtl number scaling and high Prandtl number
scaling occurs at Pr ≈ 0.5, but more data and especially high-resolution DNS data are required to
more precisely determine the transition Prandtl number.

At this stage, the Prandtl number dependence of the molecular thermal diffusion sublayer
thickness, and specifically the power laws in Eqs. (38) and (39) and the exponents of −1/2 and
−1/3, is empirically driven. The power law Prandtl number dependence can be obtained by a
simple dimensional consideration, but a more rigorous physically based derivation of the Prandtl
number dependence remains open. Monin and Yaglom comprehensively examined the dependence
of conductive sublayer thickness on the Prandtl number [20]. Based on an extensive review of
experimental data of mass and heat transfer, in particular data for high Prandtl numbers or Schmidt
numbers, Monin and Yaglom concluded that the exponent of the Prandtl number dependence is
about −1/3 [20]. However, subtle differences between the Prandtl number dependence at low
Prandtl numbers and high Prandtl numbers have been reported by researchers, and an exponent
of −1/2 has been suggested for low Prandtl numbers [38,44–47].

Equations (38) and (39) show that the thickness of the molecular thermal diffusion sublayer
is strongly influenced by the Prandtl number. Therefore, scaling of the wall-normal distance in
the molecular thermal diffusion sublayer must incorporate the Prandtl number of the fluid. In the
following, we present a general way of rescaling the wall-normal distance, and the accompanying
rescaling of the mean temperature.

2. Alternative inner scaling: Rescale both � and y

A general way of presenting the rescaled � and y is using differentials [14,15]:

dy∗ = Prbdy+; d�∗ = Prad�+. (40)
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FIG. 11. Scaling of the molecular thermal diffusion and buffer layer at small Prandtl number Pr < 1.
(a) Mean temperature �+/Pr1/2 versus Pr1/2y+. The solid gray line indicates linear behavior. The dashed black
line represents the mean velocity profile at Reτ = 1000. (b) Wall-normal turbulent transport of heat R+

vθ versus
Pr1/2y+. The dashed black line represents the Reynolds shear stress at Reτ = 1000.

The rescaled MHB equation becomes

0 = 1

Reτ

U+

U+
b

+
(

1

Pr

Pr−a

Pr−2b

)
∂2�∗

∂y∗2
+ 1

Pr−b

∂R+
vθ

∂y∗ . (41)

Multiplying the equation by Pr−b produces

0 =
(

1

Reτ Prb

)
U+

U+
b

+
(

1

Pr1+a−b

)
∂2�∗

∂y∗2
+ ∂R+

vθ

∂y∗ . (42)

To make Eq. (42) formally analogous to the inner-scaled MMB Eq. (27), the prefactor in front of
the second term has to be 1:

a = b − 1. (43)

Therefore, an alternative inner-scaled mean thermal energy equation can be written as

0 =
(

1

Reτ Prb

)
U+

U+
b

+ ∂2(Prb−1�+)

∂ (Prby+)2
+ ∂R+

vθ

∂ (Prby+)
. (44)

The rescaling of the wall-normal distance as y+Prb has been employed by Saha and colleagues
[21,22]. One implication of Eq. (44) is that for the scaling of the molecular thermal diffusion
sublayer, the relevant Péclet number is Reτ Prb, not Peτ = Reτ Pr.

3. Scaling of the molecular thermal diffusion sublayer for Pr � 1

For low Prandtl number, the molecular thermal diffusion sublayer thickness is y+
It

≈ 5/Pr1/2

or b = 1/2, as shown in Sec. III C 1. Hence a proper rescaling of the wall-normal distance y is
y+Pr1/2, and the corresponding inner-scaled mean temperature is �+/Pr1/2. The alternative inner-
scaled MHB equation for the molecular thermal diffusion sublayer at low Pr becomes

0 =
(

1

Reτ Pr1/2

)
U+

U+
b

+ ∂2(�+/Pr1/2)

∂ (Pr1/2y+)2
+ ∂R+

vθ

∂ (Pr1/2y+)
. (45)

Figure 11(a) presents the rescaled mean temperature �+/Pr1/2 versus Pr1/2y+ from DNS data
at low Prandtl numbers, showing good agreement in the molecular thermal diffusion sublayer and
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FIG. 12. Scaling of the molecular thermal diffusion sublayer and buffer layer at large Prandtl number Pr >

1. (a) Mean temperature �+/Pr2/3 versus Pr1/3y+. Solid curve represents the linear profile, and the dashed
curve is mean velocity profile U+ versus y+. (b) Wall-normal turbulent transport of heat R+

vθ versus Pr1/3y+.
Dashed curve is R+

vu versus y+.

buffer layer. Figure 11(b) also shows good collapse of R+
vθ versus Pr1/2y+ in the molecular thermal

diffusion sublayer and buffer layer. To highlight the similarity between the MHB equation and the
MMB equation, one U+ profile is plotted versus y+ in Fig. 11(a), and one R+

vu profile is plotted
versus y+ in Fig. 11(b). Figure 11 displays a striking similarity, when properly scaled, between
the mean velocity or Reynolds shear stress and the mean temperature or turbulent transport of heat
within the molecular diffusion sublayer.

4. Scaling of the molecular thermal diffusion sublayer for P r � 1

At high Prandtl number, the molecular thermal diffusion sublayer thickness is y+ ≈ 6/Pr1/3

or b = 1/3, as shown in Sec. III C 1. Thus a proper rescaling of y is y+Pr1/3, the corresponding
inner-scaled mean temperature is �+/Pr2/3, and the alternative inner-scaled equation is

0 =
(

1

Reτ Pr1/3

)
U+

U+
b

+ ∂2(�+/Pr2/3)

∂ (Pr1/3y+)2
+ ∂R+

vθ

∂ (Pr1/3y+)
. (46)

Figure 12(a) shows the scaled mean temperature �+/Pr2/3 versus Pr1/3y+. The mean temperature
profiles from cases with different Reynolds numbers and Prandtl number Pr � 0.71 collapse well
in the molecular diffusion sublayer and buffer layer. Figure 12(b) shows that R+

vθ from different
Re and Pr also collapse well in the molecular sublayer when plotted against Pr1/3y+. To highlight
the similarity between turbulent heat transfer and flow in the molecular diffusion sublayer, the U+
profile and R+

vu profile at Reτ = 1000 are presented in Fig. 12. Again, when properly scaled, the
mean temperature and wall-normal turbulent transport of heat are nearly identical to the mean flow
and the Reynolds shear stress within the molecular diffusion sublayer. In short, Fig. 12 supports the
validity of the inner-scaled Eq. (46) at large Prandtl number.

At very large Prandtl number, say, Pr = 1000, the molecular thermal diffusion sublayer thickness
is y+

It
≈ 0.6, which is deep inside the viscous sublayer. As a result, ultra-fine resolution is required

for the numerical simulation of heat transfer at large Prandtl number.

D. Scaling in the mesolayer

The concept of a mesolayer or intermediate layer in turbulent wall-bounded flows has been
proposed by a number of researchers, including Long and Chen [48], Afzal [49,50], Sreenivasan
[51], Wosnik et al. [52], and Wei et al. [16]. The mesolayer centers around the peak of Rvu, as
shown in Fig. 2.

The properties of peak Rvu value and location have been experimentally measured and ana-
lytically studied. It has long been known that the peak Rvu location scales as y

mm
∼ √

δν/uτ or
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FIG. 13. (a) Peak location of the turbulent wall-normal transport of streamwise momentum, y
mm

. (b) Peak
location of the turbulent wall-normal transport of heat, y

mt
. DNS from Kawamura’s group covers Reτ = 180 to

1020 and Pr = 0.025 to Pr = 10. DNS from [13] covers Reτ = 550, 1000, 2000, 4000 and Pr = 0.2, 0.71, 1.0.

y+
mm

∼ √
Reτ [48,49,53]. The peak value of Rvu is known to scale as R+

vu,max ∼ 1 − O(1/
√

Reτ ). In
Fig. 13(a) Reynolds number dependence of the peak Rvu location is plotted as y

mm
/
√

δν/uτ versus
Reτ . At sufficiently high Reynolds number Reτ � 1000, Fig. 13(a) shows that the peak Rvu location
is y

mm
≈ 1.5

√
δν/uτ . Figure 14(a) presents the Reynolds number dependence of the peak value of

Rvu as (1 − R+
vu,max)

√
Reτ versus Reτ . For Reτ � 1000, (1 − R+

vu,max)
√

Reτ ≈ 3.1.
A thermal mesolayer has also been proposed for the mean thermal energy balance equation

[17,26]. Analogous to the momentum mesolayer, the thermal mesolayer centers around the peak of
Rvθ . To identify proper scaling for the thermal mesolayer, it is essential to determine the properties
of the peak Rvθ location and value, and in particular the dependence on Reynolds number, Prandtl
number, and Péclet number.

Figure 13(b) presents the Péclet number dependence of the peak Rvθ location y
mt

by plotting
y

mt
/
√

δα/uτ versus Peτ . DNS data of PBO in Fig. 13(b) show that, at sufficiently large Reynolds
number and Péclet number, the peak Rvθ location y

mt
location scales as

y
mt

≈ 1.5

√
δα

uτ

, or y+
mt

≈ 1.5

√
Reτ

Pr
, or y+θ

mt
≈ 1.5

√
Reτ Pr = 1.5

√
Peτ . (47)

FIG. 14. (a) Peak value of the turbulent wall-normal transport of streamwise momentum, (1 −
R+

vu,max)
√

Reτ , versus Reynolds number. (b) Peak value of the turbulent wall-normal transport of heat,
(1 − R+

vθ,max)
√

Peτ , versus Péclet number.
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Figure 13(b) shows that the y
mt

locations at larger Prandtl number simulations from Kawamura’s
group have larger values. As discussed above, the thickness of the molecular thermal diffusion
sublayer and buffer layer scales as y

It
∼ O( 1

Pr1/3
ν
uτ

) or y+θ

It
∼ O(Pr2/3) for large Prandtl number. As

a result, the peak Rvθ location y+θ

mt
is shifted outward by O(Pr2/3), as shown in Fig. 13(b). However,

as Reynolds number increases,
√

PrReτ � Pr2/3 and shifting of the molecular thermal diffusion
sublayer becomes negligible. For example, at Pr = 1000, the thickness of the molecular thermal
diffusion sublayer is 6Pr2/3 = 600. According to Eq. (47), peak Rvθ location is approximately
1.5

√
Reτ Pr = 636 for Reτ = 180. In other words, the outward shifting of the molecular thermal

diffusion sublayer is comparable to the scaling in Eq. (47). However, at a very high Reynolds number
of Reτ = 1e5, 1.5

√
Reτ Pr = 15 000 becomes much larger than 6Pr2/3 = 600.

Figure 14(b) presents the Péclet number dependence of the peak Rvθ value by plotting (1 −
R+

vθ,max)
√

Peτ versus Peτ . DNS data indicate that at sufficiently high Péclet number the peak value
of Rvθ scales as

1 − R+
vθ,max ≈ 3.0√

Peτ

. (48)

The deviation at larger Prandtl number in Fig. 14(b) is again caused by the molecular thermal
diffusion sublayer mentioned above.

Scaling relations for the peak Rvθ location and value, Eqs. (47) and (48), are not new. Similar
relations have been reported in previous studies, for example, in Refs. [12,23,26,54].

Mesoscaling of the mean thermal energy equation has been proposed by Wei et al. [17] and
further developed in Refs. [21–23]. Following Fife et al. [15,55], we present the mesoscaling of the
mean thermal energy equation using differentials

dy+θ = α
θ
dy�θ , dR+

vθ = β
θ
dR

�θ

vθ . (49)

Note that αθ and βθ in Eq. (49) are not related to the notation in Eq. (28). Substituting the
differentials in Eq. (49) into Eq. (32) produces

0 = 1

Peτ

U+

U+
b

+ 1

α2
θ

∂2�+

∂y+θ 2
+ β

θ

α
θ

∂R
�θ

vθ

∂y+θ
. (50)

Matching the formal order of magnitude of each term in Eq. (50) yields [15,55]

1

Peτ

= 1

α2
θ

;
1

α2
θ

= β
θ

α
θ

. (51)

Thus the parameters α
θ

and β
θ

in the differentials of Eq. (49) become

α
θ
=

√
Peτ ; β

θ
= 1√

Peτ

. (52)

The mesoscaling of the wall-normal distance and Rvθ is

y�θ = y+θ − y+θ

mt√
Peτ

; R
�θ

vθ =
√

Peτ (R+
vθ − R+

vθ,max). (53)

In comparison, the parameters for the mesoscaling of the MMB are [16]

α
m

=
√

Reτ , β
m

= 1√
Reτ

, (54)

y� = y+ − y+
mm√

Reτ

, R�
vu =

√
Reτ (R+

vu − R+
vu,max). (55)
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FIG. 15. Mesoscaling of (a) wall-normal turbulent transport of momentum; (b) wall-normal turbulent
transport of heat.

The mesoscaled MMB equation and MHB equation can be written as

0 = 1 + ∂2U+

∂y�2
+ ∂R�

vu

∂y�
; 0 = U+

U+
b

+ ∂2�+

∂y�θ 2
+ ∂R

�θ

vθ

∂y�θ
. (56)

By construction, a salient property of the mesoscaling is that the prefactor of each term is 1.
Figure 15(a) shows that the mesoscaled R�

vu profiles from different Reynolds numbers collapse
well around the mesolayer, supporting the appropriateness the mesoscaling Eq. (56). Similarly, the
mesoscaled R

�θ

vθ profiles from different Reynolds numbers and Prandtl numbers collapses well in
Fig. 15(b). This collapse shows that the effect of Prandtl number is represented well by the Péclet
number Peτ = PrReτ used in Eq. (52).

It is challenging to use the exact mesoscaling in Eq. (53) to present experimental data, as the
peak Rvθ data are often not available from experimental measurements. Wei et al. [56] introduced
an approximate mesoscaling as

√
Reτ (R+

vu − 1) versus y+/
√

Reτ . The corresponding approximate
thermal mesoscaling is

√
Peτ (R+

vθ − 1) versus y+θ /
√

Peτ = (Pry+)/
√

Peτ . As shown in Fig. 16, the
approximate mesoscaling collapses the DNS data reasonably well.

In the outer layer the mesoscaling for Rvu and Rvθ transitions naturally to outer scaling, due to
the following relation:

∂R�
vu

∂y�
=

1
βm

1
αm

∂R+
vu

∂y+ = Reτ

∂R+
vu

∂y+ = ∂R+
vu

∂η
;

∂R
�θ

vθ

∂y�θ
=

1
βθ

1
αθ

∂R+
vθ

∂y+θ
= Peτ

∂R+
vθ

∂y+θ
= ∂R+

vθ

∂η
. (57)

FIG. 16. Approximate mesoscaling of (a) wall-normal turbulent transport of momentum; (b) wall-normal
turbulent transport of heat.
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TABLE II. Summary of multiscaling of the MHB equation, in comparison with the MMB equation. Note
that Zagarola-Smits-style scaling in Eq. (24) is also valid in the outer layer.

MMB equation MHB equation

Diffusion sublayer 0 = 1
[Reτ ] + ∂2U+

∂y+2 + ∂R+
vu

∂y+ 0 = 1[
Reτ Pr

1
2
] U+

U+
b

+ ∂2
(
�+/Pr

1
2
)

∂

(
Pr

1
2 y+

)2 + ∂R+
vθ

∂

(
Pr

1
2 y+

) : Pr < 1

0 = 1[
Reτ Pr

1
3
] U+

U+
b

+ ∂2
(
�+/Pr

2
3
)

∂

(
Pr

1
3 y+

)2 + ∂R+
vθ

∂

(
Pr

1
3 y+

) : Pr > 1

Log layer 0 = 1
[Reτ ] + ∂2U+

∂y+2 + ∂R+
vu

∂y+ 0 = 1
[PrReτ ]

U+
U+

b

+ ∂2�+
∂ (Pry+ )2 + ∂R+

vθ

∂ (Pry+ )

Meso layer 0 = 1 + ∂2U+
∂y�2 + ∂R�

vu

∂y� 0 = U+
U+

b

+ ∂2�+
∂y�θ 2 + ∂R

�θ
vθ

∂y�θ

Outer layer 0 = 1 + 1
[Reτ ]

∂2U+
∂η2 + ∂R+

vu

∂η
0 = U+

U+
b

+ 1
[PrReτ ]

∂2�+
∂η2 + ∂R+

vθ

∂η

IV. SUMMARY AND CONCLUSIONS

A long-standing question in the study of the mean thermal energy balance (MHB) equation is
the role of Prandtl number. One approach in clarifying the Prandtl number effect was developed
in Refs. [15,16]. However, the role of Prandtl number has not yet been settled. An attempt
at incorporating Prandtl number effect in scaling patch analysis is the introduction of scaled
wall-normal distance as yσ = η(Peτ θτ )/(Tw − Tc) = (Pry+)/�+

c [17]. A challenge in applying and
interpreting yσ is that it mixed the scaling of the wall-normal distance, y+, and temperature, �+

c .
Another attempt to address the Prandtl number effect is the introduction of yU∞/ν

√
St by Wang

et al. [24], where U∞ is the free streamwise velocity in turbulent boundary layer flows and St is
the Stanton number. This scaling has also mixed the scaling of the wall-normal distance with the
temperature through the Stanton number.

Another drawback in previous studies of turbulent heat transfer is the number of scaled variables
and notation, which complicates the investigation of the problem. In the present work we minimize
the number of rescaled variables and use simpler and more consistent notation. The multiscaling for
different layers of turbulent channel heat transfer is summarized in Table II.

In the outer layer, mesolayer, and log law, the multiscaling of the MHB equation are analogous
to those for the MMB equation. Peτ = PrReτ in the MHB equation is the counterpart of Reynolds
number Reτ in the MMB equation. For the mean velocity and temperature deficit in the outer layer,
we have shown that Zagarola-Smits-style scaling is a valid alternative to the traditional scaling. An
interpretation of Zagarola-Smits-style scaling is provided. At infinite Reynolds number and Péclet
number, Zagarola-Smits-style scaling is equivalent to the traditional scaling.

In the mesolayer, we have shown that scaling for the peak Rvθ location and value in the MHB
equation exhibit close similarity to those for the Rvu in the MMB equation. The mesoscaled MHB
equation is also analogous to the mesoscaled MMB equation. The effect of Prandtl number on the
Rvθ peak location is the outward shifting due to the molecular thermal diffusion sublayer.

A form of the log law using y+θ = Pry+ is presented, consistent with the scaling of the MHB
equation. The effect of Prandtl number on the log law is the shifting of the additive constant Bθ (Pr),
which in turn is caused by the shifting of the molecular thermal diffusion sublayer and buffer layer
with different Prandtl numbers.

Prandtl number is found to play a fundamental role in the scaling of MHB equation within the
molecular thermal diffusion sublayer and buffer layer. At low Prandtl number Pr < 1, a proper
scaling of the wall-normal distance is Pr1/2y+, the accompanying scaling for the mean temperature
is �+/Pr1/2, and a relevant Péclet number is Reτ Pr1/2. At very small Prandtl number Pr � 1, the
molecular thermal diffusion sublayer is much thicker than the viscous sublayer. At large Prandtl
number Pr > 1, a proper scaling of the wall-normal distance is Pr1/3y+, the accompanying scaling
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for the mean temperature is �+/Pr2/3, and a relevant Péclet number is Reτ Pr1/3. At ultra-high
Prandtl number Pr � 1, the molecular thermal diffusion sublayer is buried deep inside the viscous
sublayer.
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