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Turbulent/nonturbulent interfaces (TNTIs) are studied in the direct numerical simulation
of temporally evolving turbulent boundary layers at Mach numbers 0.8 and 1.6 with
Reynolds number based on the momentum thickness of about 2200. The computational
grid size determined based solely on the wall unit results in insufficient resolutions near
the TNTI even though it yields the well-known profiles of global statistics such as mean
velocity and rms velocity fluctuations. The insufficient resolution near the TNTI layer
causes the spiky patterns of the enstrophy isosurface used for detecting the outer edge
of the TNTI layer and the thicker TNTI layer thickness. With the higher-resolution direct
numerical simulation, where the resolution is determined based on both the wall unit and
the smallest length scale of turbulence underneath the TNTI layer, we investigate the
structures of the TNTI layer and the entrainment process in the compressible turbulent
boundary layers. The mean vorticity profile and enstrophy evolutions near the TNTI layer
show that the structure of the TNTI layer is similar to incompressible free shear flows:
The thickness of the layer is about 15 times the Kolmogorov scale ηI in turbulence near
the TNTI layer; the turbulent sublayer (TSL) and viscous superlayer (VSL) are found
based on the analysis of enstrophy transport equation, where the thicknesses of the TSL
and VSL are 11ηI –12ηI and 4ηI , respectively. The entrainment process across the TNTI
layer is also studied based on the propagation velocity of the enstrophy isosurface and the
mass transport equation in the local coordinate moving with the TNTI. The entrainment
mechanism across the TNTI layer in compressible turbulent boundary layers is very similar
to incompressible free shear flows until Mach number 1.6, where the mass transport
within the TNTI layer is well predicted by an entrainment model based on a single vortex
originally developed for incompressible flows. Furthermore, the mass entrainment rate per
unit horizontal area of the temporally evolving turbulent boundary layers is consistent with
the theoretical prediction for spatially evolving compressible turbulent boundary layers for
both Mach numbers.

DOI: 10.1103/PhysRevFluids.3.094605

I. INTRODUCTION

Turbulent boundary layers (TBLs) play an important role in many engineering applications
and geophysical flows. For example, the development and separation of boundary layers can
significantly influence the body force and instability of airfoils or vehicles. Therefore, a large
number of studies have been devoted to understanding TBLs from various points of view. In these
engineering applications, the TBL often develops in a freestream at transonic or supersonic velocity,
where compressibility is significant in the flow evolution [1].
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Prandtl [2] pointed out the existence of a sharp interface between turbulent and nonturbulent
flows, which is called the turbulent/nonturbulent interface (TNTI). After decades, the existence of
the TNTI was examined in a free shear layer by Corrsin and Kistler [3]. Recently, with the increase
of supercomputer resources and the use of laser-based measurement techniques, many studies have
been focusing on this interface [4]. The TNTI appears in many canonical flows such as jets, wakes,
and boundary layers. The flow properties near the TNTI in these flows have been investigated with
the conditional statistics computed as a function of the distance from the TNTI [5]. These recent
studies have revealed that the TNTI is a thin layer with finite thickness. The TNTI layer consists
of two (sub)layers with different dynamical characteristics. The outer part is called the viscous
superlayer (VSL), where viscous effects dominate vorticity evolution, while the region between the
VSL and turbulent core region is called the turbulent sublayer (TSL) [4], where the inviscid effects,
such as vortex stretching, become important.

The turbulent and nonturbulent flow regions are separated by this TNTI layer, where flow
properties such as enstrophy, kinetic energy dissipation, and scalar concentration sharply change so
that they are adjusted between the turbulent and nonturbulent flows [6]. This layer is also important
for the exchanges of substance, energy, and heat between turbulent and nonturbulent flows and is
also related to the spatial development of turbulence [7]. These phenomena are associated with the
turbulent entrainment process [4], in which the fluid in the nonturbulent region is transported to the
turbulent region. The entrainment processes caused by large-scale and small-scale eddies are often
referred to as engulfment and nibbling, respectively. The nibbling-type entrainment is caused by the
viscous diffusion of vorticity in the proximity of the TNTI layer, while the engulfment is described
with the nonturbulent flow that is drawn into the turbulent region by large-scale eddies before
acquiring vorticity. The dominant mechanism for the entrainment process has been argued for many
years. Recent studies have suggested that the nibbling process is responsible for the entrainment
mechanism and large-scale features of turbulence impose the total entrainment rate [7–9]. The
geometry of the TNTI is an important issue for understanding the entrainment process: The large
pocket structure on the TNTI interface can indraft the nonturbulent fluids into the turbulent region
before acquiring vorticity (engulfment) if the TNTI interface is intensely folded [10]. It is doubtless
that the complex geometry of the interface is highly related to the total entrainment rate. Therefore,
it may need more information for the relation between nibbling and engulfment as mentioned by
Borrell and Jiménez [11]. The relative importance of the engulfment can be flow dependent because
large-scale motions depend on flow types. The turbulent flow under the TNTI layer contains eddies
with a wide range of scales, and all length scales can affect the properties and geometry of the TNTI
layer. Therefore, motions from the smallest to the largest scales need to be captured in measurement
or simulations. Especially in the simulations, all scales should be resolved; insufficient resolution
can directly affect computational results. Recently, the TNTI in incompressible TBLs have been
studied in experiments [12–15] and direct numerical simulations [11,15–17]. These recent studies
have revealed the influence of large-scale structures on the geometry of the TNTI in the boundary
layer [15,18], which can make differences in the entrainment process between the TBLs and free
shear flows.

Understanding the characteristics of the TNTI is greatly important in modeling and predicting
the spatial development of turbulence as well as the flow control based on the turbulent structures
near the TNTI. Even though the TNTI has been extensively studied in recent studies on free
shear flows, the conceptual gaps still exist in the modeling issue [19]. Although some similar
characteristics of the TNTI are also found in the TBL [17], the TNTI in TBLs is still lacking
information compared to the free shear flows. So far, most studies on the TNTI have been done in
incompressible flows, although a high-speed regime, where compressibility plays an important role,
is of great importance in realistic full-scale applications. Compressibility effects on the TNTI have
been studied in compressible mixing layers [20–23]. However, the TNTI in compressible turbulence
is still less understood compared with the one in incompressible flows.

In this study, direct numerical simulation (DNS) is performed for temporally developing subsonic
and supersonic TBLs in order to investigate the characteristics of the TNTI in the compressible

094605-2



TURBULENT/NONTURBULENT INTERFACES IN HIGH- …

TBLs. We pay particular attention to the resolution near the TNTI, which is usually ignored in
numerical simulations of boundary layers in the existing literature. We assess the influence of the
spatial resolution near the TNTI on the analysis of the TNTI. This paper is organized as follows.
The details of DNS are presented in Sec. II. In Sec. III, the classical statistics of the boundary layers
are compared with previous studies. Section IV discusses the effects of resolution followed by the
statistical analysis of compressible TBLs. Section V summarizes the work.

II. DIRECT NUMERICAL SIMULATION OF TEMPORALLY
EVOLVING COMPRESSIBLE BOUNDARY LAYERS

A. Temporally evolving compressible boundary layers

The DNS is performed for temporally evolving compressible TBLs. The temporal simulations are
useful because the boundary layer grows so slowly in the streamwise direction that the turbulence
can be treated approximately as homogeneous in this direction. In recent numerical studies, temporal
simulations were successfully applied to TBLs [24,25], where the statistics compare well with
experimental results.

The governing equations are the three-dimensional Navier-Stokes equations for compressible
flows. The conservation equations of mass, momentum, energy, and passive scalar φ are expressed
as [26]
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with the equation of state for the perfect gas P = ρRT , where the viscous stress tensor τij is
represented by
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δij

∂uk
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)
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Here ρ is the density, ui is the velocity, P is the pressure, T is the temperature, μ is the viscosity, k is
the thermal conductivity, Dm is the molecular diffusivity for the passive scalar φ, and γ = Cp/Cv =
1.4 and R = Cp − Cv = 287 [J/(kg K)] are the ratios between specific heats and the gas constant,
respectively. The temperature-dependent viscosity μ is provided by Sutherland’s law

μ = μs

(
T

Ts

)3/2
Ts + S

T + S
, (6)

where μs = 1.742 × 10−5 Pa s, Ts = 273 K, and S = 110.4 K. We assume that the Prandtl number
Pr = μCp/k = 0.71 and the Schmidt number Sc = μ/ρDm = 1.

A three-dimensional computational domain with a size of (Lx × Ly × Lz) is considered, where
the wall is at the bottom of the computational domain. The origin of the coordinate system is located
at the center of the wall, while the streamwise, wall-normal, and spanwise directions are represented
by x, y, and z, respectively. The initial conditions used in the present DNSs are similar to the ones
introduced in Ref. [27]. The initial velocity profile approximates the velocity induced by a trip
wire with a diameter D installed on the wall, which is moving in the x direction at a constant
speed Uw [28] (the subscript w represents a quantity on the wall). We consider the fluid at pressure
Pa = 101.3 kPa, temperature Ta = 300 K, and density ρa = Pa/RTa , where the subscript a refers
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FIG. 1. Initial streamwise velocity profile used in DNS of temporally developing boundary layers.

to the atmospheric parameters. The trip wire is often used in wind tunnel experiments to promote
the transition from the laminar to the turbulent boundary layer [29]. The initial mean streamwise
velocity profile is given by a hyperbolic tangent profile that is equal to the wall velocity Uw at y = 0
and decreases toward 0 as y increases as shown in Fig. 1, where the overbar denotes the averaged
value calculated with the spatial averaging procedure applied in the streamwise and spanwise (x
and z) directions and the subscript 0 refers to an initial value. The initial velocity field consists of
a mean velocity and fluctuating components. Specifically, the initial streamwise velocity u0 can be
written as [27]

u0 = u0(y) + u′
0(x, y, z), (7)

u0(y) = Uw

2
+ Uw

2
tanh

[
D

2θSL

(
1 − y

D

)]
, (8)

where u′
0 is the velocity fluctuation and θSL = 0.1D is the initial shear layer thickness. In order

to trigger a turbulent transition, the velocity fluctuations with the root-mean-square (rms) value
0.05Uw are added to all velocity components in the near-wall region of y < D as shown in Fig. 1.
The velocity fluctuations are generated by a diffusion process that converts the random noise into
fluctuations which possess a prescribed length scale [30]. Mean velocities in the spanwise and wall-
normal directions are zero at the initial state. Initial profiles of temperature and pressure are uniform,
where T0 = Ta and P0 = Pa . The initial condition of φ is given by the profile

φ0 = φw

2
+ φw

2
tanh

[
D

2θSL

(
1 − y

D

)]
. (9)

The Reynolds number based on the trip wire diameter D is ReD ≡ ρaUwD/μ0 = 2000, which
is higher than the critical value for the turbulent transition (ReD = 500) in temporally evolving
incompressible boundary layers [27]. The DNS is performed with two different Mach numbers M =
0.8 and 1.6 defined as M = Uw/c0 (c0 is the speed of sound at the initial state), which correspond to
subsonic and supersonic boundary layers, respectively. We will discuss the TNTI in the TBLs at the
time when the Reynolds number based on the momentum thickness, Reθ = ρ∞Uwθ/μ∞, reaches
about 2200, where the subscript ∞ refers to the properties in the freestream far from the boundary
layer and θ = ∫ ∞

0 (ρu/ρ∞Uw )[1 − (u/Uw )]dy is the momentum thickness.
For temporally developing TBLs, the periodic boundary conditions are applied in the streamwise

(x) and spanwise (z) directions. In the wall-normal direction (y), the no-slip adiabatic condition with
the passive scalar φ = 1 is applied on the wall (y = 0), while at the top of the computational domain
(y = Ly), the nonreflective outflow boundary conditions of three-dimensional (3D) Navier-Stokes
characteristics boundary conditions (NSCBCs) are used with a sponge layer [31] for the fluid field
as well as passive scalar field, to prevent the spurious wave reflections on the boundary. The 3D
NSCBC used in present DNS was proposed by Lodato et al. [31] as a modified version of the
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original NSCBC. In the 3D NSCBC, convection and the pressure gradient on boundary planes
are considered. The sponge layer [32] is located in the region of Ly − 10D < y < Ly , where the
fluctuations induced by pressure waves are damped by a low-pass filter before the waves reach
the top boundary. The mean flow variables in the sponge zone are also adjusted so that they match
the classical laws observed in TBLs [32]. The sponge layer in the present DNS is formed by com-
bining the coarse grid stretched in the boundary normal direction and Laplacian low-pass filtering.

B. Numerical methods used in DNS code

The present DNS code is based on the fully explicit numerical schemes proposed by Wang
et al. [33]. For the spatial discretization, the explicit eighth-order central difference scheme is
used for the interior nodes, while the nodes near the computational boundaries are treated with
internal-biased lower-order finite-difference schemes for stability unless the periodic boundary
conditions are applied [33]. The convective terms in the governing equations are calculated in the
cubic skew symmetric form [34], which can reduce aliasing error caused by the finite-difference
schemes [35]. The time integration of the governing equations is also based on the fully explicit
schemes following [33]. The Euler and viscous terms are handled by different numerical schemes,
where the explicit five-stage fourth-order Runge-Kutta method [36] is used for the Euler terms
while the explicit first-order Euler scheme is used for the viscous terms, which arise from viscous
effects, thermal conductive diffusion, and molecular diffusion of φ. Finally, to remove the spurious
fluctuations induced by the finite-difference schemes, a tenth-order low-pass filter [37] is applied
on the whole computational domain at each time step. The time-step interval is determined by the
Courant-Friedrichs-Lewy (CFL) condition and a CFL condition equal to 0.8 is used in this study.
These numerical schemes were used in the DNS of a subsonic round jet [38] and a diffusion jet
flame [33] and are proven to be able to accurately simulate compressible turbulence.

C. Computational parameters in DNS

The computational domain (Lx,Ly, Lz) should be large enough to contain a large number of
large-scale flow structures to prevent the periodic boundary conditions from affecting the flow
development. In the present DNS, Lx , Ly , and Lz are determined based on the boundary layer
thickness δ in the fully developed region, where δ is defined as the vertical location y at which
the streamwise mean velocity u reaches 1% of the wall velocity Uw [39]. The wall-parallel domain
size is set so that Lx ≈ 6δ in the streamwise direction and Lz ≈ 3δ in the spanwise direction. For
the wall-normal direction, we use Ly ≈ 3δ + 10D (here 10D is the thickness of the sponge layer).
Here the values of δ are taken from the instance at which the detailed analysis is performed in this
study. The size of the computational domain in relation to δ is similar to the one by Kozul et al. [27].

The Cartesian mesh is used in this study, where the grid spacing is uniform in the x and z

directions, while the wall-normal grid spacing obeys a half-tanh mapping, which gives a finer
grid near the wall and a coarser grid away from the wall by stretching the grid as y increases. To
study the TNTI, the resolution near the TNTI should be carefully examined, where the DNS must
resolve the smallest scale of turbulence that appears underneath the TNTI, i.e., the Kolmogorov
scale η = (ν3/ε)1/4 in the turbulent region. [Here ε = τijSij is the kinetic energy dissipation rate,
Sij = (∂ui/∂xj + ∂uj/∂xi )/2 is the rate of strain tensor, and ν = μ/ρ is the kinematic viscosity.]
To investigate the effects of the resolution near the TNTI, we perform the DNS with two different
meshes for each value of the Mach number as summarized in Table I. The DNS with resolution
similar to the DNS of conventional wall turbulence is referred to as group C (cases C001 and C002
for M = 0.8 and 1.6, respectively), where the resolution is determined based on the structures of
the near-wall region [25,40]. The spatial resolution in group C is determined based on the smallest
viscous length scale δν,min during the whole simulation, where the viscous length scale is defined
as δν = νw/uτ with the friction velocity uτ = √

τw/ρw (the viscous velocity scale) and the wall
shear stress τw ≡ μw(−du/dy)w. Following previous studies, we ensure that the mesh sizes satisfy
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TABLE I. Computational parameters and Reynolds numbers obtained in fully developed turbulent states
of boundary layers for which detail analysis is performed in this study.

Case M Reθ Reτ Lx/δ Ly/δ Lz/δ �x+ �y+
w �z+ Nx, Ny, Nz

F001 0.8 2206 639 6.30 5.37 3.15 4.6 0.188 4.6 972, 738, 486
F002 1.6 2174 524 7.23 5.92 3.62 4.9 0.180 4.6 972, 772, 512
C001 0.8 2315 707 5.74 4.89 2.87 9.5 0.188 4.8 486, 628, 486
C002 1.6 2403 554 6.53 5.34 3.27 8.4 0.180 4.7 576, 648, 512

�x+ < 9.7 and �z+ < 4.8 for the streamwise and spanwise directions, respectively [41], and
�y+

w < 0.2 (the quantities with superscript + are normalized by the viscous scale) for wall-normal
direction. The simulations in the group F (cases F001 and F002 for M = 0.8 and 1.6, respectively)
are performed with finer meshes than the group C. The number of grid points in the group F
is determined not only based on the length of the near-wall region δν, min but also based on the
Kolmogorov scale ηc in the turbulent core region away from the wall (y = 0.5δ), where the subscript
c represents a value in the turbulent core region. The difference in the resolution between groups C
and F is discussed in relation to the TNTI in Sec. IV. Thereby, the number of the grid points (Nx ,
Ny , and Nz) is determined from the required resolutions and computational domain size. Finally, the
parameters of the computational domain, grid, and computational parameters are shown in Table I,
which also includes Reθ and friction Reynolds number Reτ = ρwuτ δ/μw in the fully developed
turbulent states of the boundary layers for which detail analysis is performed in this study.

III. COMPUTATIONAL RESULTS AND VALIDATION

The development of the TBLs is well examined by the passive scalar φ, which is equal to φw

on the wall and 0 in the freestream. Figure 2 shows the two-dimensional snapshots of φ at different
times throughout the simulation for case F001 (M = 0.8), which offer a view of the boundary layer
development process in the temporal DNS. We can see that the boundary layer develops from a
laminar flow in Fig. 2(a) to a turbulent flow in Figs. 2(b) and 2(c) and reaches the fully developed
state as in Fig. 2(d). The passive scalar φ can be used as a marker of the turbulent region [42], where
φ/φw > 0. We can also see that the nonturbulent fluids with φ/φw = 0 coexist with the turbulent
fluids in the intermittent region for the TBL.

In order to compare the skin friction coefficient Cf = 2τw/ρwU 2
w at different Mach numbers

M , it is necessary to transform the compressible values to incompressible values [43], where the
incompressible values are denoted by the subscript i:

Cf,i = FcCf , Reθ,i = μ∞
μw

Reθ , (10)

Fc = T w/T∞ − 1

arcsin2α2
, α2 = T w/T∞ − 1√

T w/T∞(T w/T∞ − 1)
. (11)

The variation of the transformed skin friction Cf,i versus Reθ,i for the present DNS is compared in
Fig. 3(a) with a widely used friction law of TBLs [44]: Cf,i = 0.024 Re−1/4

θ,i . It is important to note
that Reθ increases with time t because the boundary layer is also developed with time. We can see
that the skin frictions obtained from the present DNS are in better agreement with the friction law
for higher Reθ . This implies that the boundary layers undergo the transition from the laminar state
to the fully developed turbulent state. The temporal variation in (Cf,i, Reθ,i ) in the present DNS
also agrees well with previous DNSs of temporally developing boundary layers [27].

The mean profiles of the Van Driest transformed streamwise velocity [45] are plotted in Fig. 3(b)
for two Mach numbers, where we use the snapshot at which Reθ ≈ 2200 as summarized in Table I.
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FIG. 2. Visualization of the temporally developing boundary layer with passive scalar φ for case F001.
The wall is moving in the x direction (from left to right). The parameters are (a) t/tr = 8.2, Reθ = 278, and
Reτ = 6; (b) t/tr = 54.1, Reθ = 1336, and Reτ = 327; (c) t/tr = 136.5, Reθ = 1764, and Reτ = 495; and
(d) t/tr = 260.1, Reθ = 2152, and Reτ = 622.

The definitions of the Van Driest transformed [45] streamwise velocity uVD and normalized wall-
normal distance y+ [39] are given by

uVD(y) =
∫ u+

0

√
ρ(y)

ρw

du+, u+(y) = [Uw − u(y)]/uτ , (12)

y+ = y/δν. (13)

The green dotted line indicates uVD = y+, which should hold for the viscous sublayer, and the
red dashed line is the log-law represented as uVD = (1/k)lny+ + A [39]. In the viscous sublayer
(y+ < 5), the Reynolds shear stress is negligible compared to the viscous stress and the DNS data
agree well with the green dotted line; in the log-law region, where the viscous effects on the
mean velocity u are ignored, the present DNS results are in good agreement with the log-law
with the constants k = 0.41 and A = 5.1. The profiles of y+duVD/dy+ are shown in Fig. 4 to
check values of k, where the log-law region satisfies y+duVD/dy+ = 1/k. The curves in the figures
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FIG. 3. (a) Variations of the skin friction coefficient Cf,i versus Reynolds number Reθ,i . (b) Van Driest
transformed streamwise velocity profiles.

represent different time steps in the fully developed TBLs at Reθ ≈ 2200. There is a region where
y+duVD/dy+ is close to 1/k with k = 0.41, although y+duVD/dy+ does not follow the horizontal
line. This is because it is difficult to obtain converged statistics in temporal simulations [27]. The
moderate Reynolds number in the present DNS also causes difficulty in observing a clear log-law
region. We can see that 0.41 is close to the average of k in the possible log-law region in these
figures. It should be noted that k = 0.40–0.41 was widely used in previous studies of compressible
boundary layers [46–48]. Even in these previous studies, the exact location of the beginning of the
log-law region was not thoroughly discussed for compressible TBLs [49].

The second-order statistics are compared with experimental data [50] and other DNS data [51]
of incompressible TBLs in Fig. 5. As described in Morkovin’s hypothesis [52], the compressibility
mainly affects the density and thermodynamic properties across the boundary layer rather than the
turbulence timescale and length scale for moderate Mach numbers (M < 5) [1]. Therefore, DNS of
compressible boundary layers is usually validated in comparison with incompressible flows for a
similar Reθ . The following transformation of second-order statistics of velocity in the compressible

FIG. 4. Compensated mean velocity profiles y+duVD/dy+ in (a) case F001 and (b) case F002. The black
dash-dotted line denotes the reference y+duVD/dy+ = 1/k with k = 0.41.
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FIG. 5. Second-order statistics: (a) rms streamwise velocity fluctuation, (b) rms wall-normal velocity
fluctuation, and (c) Reynolds stress. The present DNS results are compared with incompressible TBLs studied
in experiments at Reθ = 2266 [50] and in DNS at Reθ = 1986 [51].

boundary layers is required for the comparison [53]

uiu
∗
j = ũ′′

i u
′′
j

u2
τ

ρ(y)

ρw

, u′′
i = ui − ũi , u∗

i,rms =
√

uiu
∗
i , (14)

y∗ = y/δ∗
ν , δ∗

ν (y) = ν(y)/uτ

√
ρw/ρ(y), (15)

where f̃ is a density-weighted average (Favre average) f̃ = ρf /ρ. The statistics from incompress-
ible TBLs are nondimensionalized by the viscous scales as follows:

uiu
+
j = u′

iu
′
j

u2
τ

, u′
i = ui − ui, u+

i,rms =
√

uiu
+
i , (16)

y+ = y/δν. (17)

As shown in Fig. 5, we can find excellent agreement for the rms streamwise velocity fluctuation in
Fig. 5(a), the rms wall-normal velocity fluctuation in Fig. 5(b), and the Reynolds stress in Fig. 5(c)
for a comparable value of Reθ . There are scatters in the statistics in the present DNS in the outer
region, which is explained by the limited number of samples in temporal simulations as pointed out
in Ref. [27]. By comparisons of first- and second-order statistics, the results show that the temporal
DNS performed here accurately replicates the compressible TBLs for both computational meshes
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FIG. 6. Vertical profiles of the turbulent Mach number.

of groups F and C. Note that the skin friction, mean velocity, and rms velocity fluctuations in the
compressible boundary layers presented above are consistent with those in incompressible boundary
layers because of the Van Driest transformation.

The turbulent Mach number MT is shown in Fig. 6, where MT implying the significance of
compressibility effects is defined as

MT = (u′
iu

′
i )

1/2

c
, (18)

where c = √
γRT is the local speed of sound. As shown in Fig. 6, the largest MT is located in

the buffer layer about y+ = 15, which refers to the location where the peak turbulence production
occurs. Since MT is less than 0.3 throughout the boundary layers for M = 0.8 and 1.6, the
compressibility is not strong enough to significantly change turbulence structures and the TBL
develops in the absence of shock waves [1].

IV. TURBULENT/NONTURBULENT INTERFACE AND ENTRAINMENT PROCESS

A. Detection of the turbulent/nonturbulent interface

As in previous studies on the TNTI layer [4,54], an isosurface of vorticity magnitude ω = ωth is
used to detect the outer edge of the TNTI, which is called the irrotational boundary [54]. Since the
location of the isosurface of vorticity magnitude changes with the threshold ωth, it is important to
choose a reasonable value of ωth. In this study, the threshold ωth is determined based on the volume
fraction of the turbulent region VT computed as a function of ωth; this approach was widely used
for detecting turbulent and nonturbulent fluids in previous studies [4,11,54] including compressible
flows [20] and is also related to the method to obtain the threshold based on the probability density
function of vorticity magnitude [17]. These two methods have been shown to yield a similar value
of threshold [17]. The latter method has been used also in the detection of a scalar interface in
experiments [55]. A fluid with ω > ωth is referred to as a turbulent fluid, while a nonturbulent fluid
has ω < ωth. The normalized threshold applied for the vorticity magnitude in the TBL is

ω∗
th = ωth

(δ+)−1/2u2
τ /νw

, (19)

where δ+ is the boundary layer thickness normalized by the viscous length scale, which is also equal
to Reτ . This scaling is linked to the TNTI interface because the TNTI layer appears around the
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FIG. 7. (a) Volume fractions of the turbulent region VT plotted against the threshold ω∗
th used for detecting

turbulent fluids. (b) First derivative of the volume fraction dVT /d log10(ω∗
th ). The several values of vorticity

magnitude in the range of the gray shadow will be used to examine the robustness of irrotational boundary
detection in the next section.

vertical height of δ [11,17], while the conventional scaling with the friction velocity ω+ = ων/u2
τ

is related to the near-wall region. Figure 7(a) shows VT as a function of the threshold ω∗
th. The

turbulent volume largely increases for ω∗
th < 10−4 as ω∗

th decreases because of very small values of
vorticity magnitude in the nonturbulent region. The derivatives of VT , dVT /d log10(ω∗

th), are also
calculated as a function of ω∗

th in Fig. 7(b). We can see that VT hardly changes with ω∗
th for the

range of 10−4 < ω∗
th < 10−1, for which the location of the isosurface of vorticity magnitude hardly

changes with ω∗
th. By comparing the curves for two groups in Fig. 7(a), VT in group F is found

to be flatter than group C in the range of 10−4 < ω∗
th < 10−1, which indicates that the level of the

numerical noise might be higher for group C.
The choice of the threshold is further discussed based on the joint probability density functions

(JPDFs) of normalized vorticity magnitude ω∗ and wall-normal distance y/δ [11], which are shown
in Fig. 8 for the cases F002 and C002. Similar plots are obtained for F001 and C001 (not shown

FIG. 8. JPDFs of normalized vorticity magnitude ω∗ and vertical height y/δ. Contours contain 9%, 40%,
and 50% of the fluid element, which are shown with cyan, green, and red, respectively, for (a) case F002 and
(b) case C002.
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FIG. 9. Visualization of the irrotational boundary forming at the outer edge of the TNTI layer for (a) case
F001, (b) case F002, (c) case C001, and (d) case C002. Color represents dilatation ∇ · u.

here). The JPDFs are also useful to examine the spatial distribution of vorticity. In the figure, the
red, green, and cyan contours contain 50%, 40%, and 9% of the fluid element in the computational
domain, respectively, where the residual 1% fluid element can be ignored. The turbulent core region
corresponds to the bottom right corner (namely, low height and strong vorticity), while the small
vorticity magnitude in the top left corner is the vorticity in the freestream, which could arise by
pressure wave radiations and numerical error. In the case F002, we can see that the distribution of
the JPDF significantly changes around y/δ = 1 in Fig. 8(a), where most fluids appear in the bottom
right corner with large vorticity magnitude or top left corner with very small vorticity magnitude
and a low probability for finding a fluid with intermediate values of vorticity magnitude [the center
of Fig. 8(a)]. This corresponds to a sharp jump in enstrophy found across the TNTI layer in previous
studies [4]. In contrast, the JPDF for the case C002 shown in Fig. 8(b) exhibits a relatively large
probability for a moderate level of vorticity magnitude around y/δ = 1, although this region should
consist of mostly turbulent fluid with large vorticity magnitude and nonturbulent fluid with small
vorticity magnitude, while a very thin TNTI layer with moderate level of vorticity magnitude is
expected to occupy only a small fraction of volume.

We use ω∗
th = 5.012 × 10−2 [log10(ω∗

th) = −1.3] indicated by the dashed lines shown in Fig. 8,
to detect the turbulent region without including the region with small vorticity magnitude, where the
irrotational boundary is represented as the isosurface of ω = ωth. This threshold is on the plateau of
VT in Fig. 7(a), where the turbulent volume is not sensitive to the choice of the threshold.

The top views of the irrotational boundary from the whole DNS data set are visualized in Fig. 9,
where the color shows dilatation ∇ · u = −(Dρ/Dt )/ρ. Positive and negative values of dilatation
indicate the regions with fluid expansion and compression, respectively. We can see that both
compression and expansion regions coexist on the irrotational boundary, where the dilatation at

094605-12



TURBULENT/NONTURBULENT INTERFACES IN HIGH- …

TABLE II. Average resolution at the irrotational boundary.

Case M 〈yI 〉/δ 〈�xI 〉 〈�yI 〉 〈�zI 〉
F001 0.8 0.85 1.36ηc 1.42ηc 1.36ηc

F002 1.6 0.83 1.59ηc 1.36ηc 1.50ηc

C001 0.8 0.87 2.69ηc 1.80ηc 1.39ηc

C002 1.6 0.87 2.57ηc 1.84ηc 1.49ηc

M = 1.6 (cases F002 and C002) is larger in magnitude than at M = 0.8 (cases F001 and C001)
by a factor of ∼101. The irrotational boundary exhibits structures with various length scales, which
are the imprints of turbulent structures underneath the TNTI layer [18,56]. We have computed the
average resolution on the irrotational boundary (�xI ,�yI ,�zI ), which is obtained by taking the
average of the mesh size at the grid points of all irrotational boundary locations. Table II shows �xI ,
�yI , and �zI in comparison with the Kolmogorov length scale in the turbulent core region ηc. Here
we use the value at y = 0.5δ as the reference in the turbulent core region since nonturbulent fluids
hardly reach this height. It should be stressed that although the TNTI appears in the intermittent
region, the Kolmogorov scale ηc should be taken from the turbulent core region without including
any contributions from nonturbulent fluids because the intermittent region contains both turbulent
and nonturbulent fluids [21,57]. When η is computed in the intermittent region without excluding
the contribution from the nonturbulent fluid, the value of η tends to be much larger than ηc since the
nonturbulent flow has very large η [21,57]. In the present DNS, the average grid spacing at the outer
edge of TNTI layer is about 1.5ηc in three directions in group F, which is close to the resolution
in recent DNS of free shear flows used to study the TNTI [42,58]. However, group C, where the
grid size is determined solely from the wall unit, does not have a resolution high enough to study
the small scale near the TNTI especially in the x direction, where group C has the streamwise
grid spacing determined based on the suggestion �x+ < 9.7 by Moser et al. [41]. This is almost
double the grid spacing in the spanwise direction �x+ ≈ 2�z+. This setting is reasonable for the
near-wall region because the flow near the walls was found to be dominated by alternating high- and
low-speed streaks, which is elongated in the streamwise direction [59]. However, the structure near
the TNTI is very different from the near-wall region, resulting in the insufficient resolution near the
TNTI in the streamwise direction for �x+ ≈ 2�z+. It is also important to be careful with the grid
size in the wall-normal direction near the TNTI layer since it is conventional to use finer grids near
the wall and larger grid spacing in the intermittent region.

From comparisons between groups F and C in Fig. 9, we can clearly see how the resolution
near the TNTI affects the geometry of the TNTI. It should be noted that the DNS of group C has
a mesh size small enough to resolve the near-wall structure and provides global statistics, such as
mean velocity and second-order statistics, similar to those for group F. However, the influence of
insufficient resolution in group C is crucial in the visualization in Figs. 9(c) and 9(d): Many stripy
patterns exist on the enstrophy isosurface, which is hardly seen in the DNS of incompressible free
shear flows [42,57,58]. On the contrary, the enstrophy isosurface visualized in group F [Figs. 9(a)
and 9(b)] is much smoother and is similar to those obtained in previous DNSs [42,57,58] and also
of compressible shear layers [22]. It seems that the stripy patterns orthogonal to the streamwise
direction in group C are caused by the insufficient resolution in the streamwise direction near the
TNTI. The numerical noise, or oscillation in variables solved in the DNS, can produce the vorticity
in the nonturbulent region near the TNTI. This explains different vorticity distributions between
groups C and F in Fig. 8, which result in a difficulty in the detection of irrotational boundary in
group C.

Figure 10 shows the near-wall vortical structures with the irrotational boundary for case F001,
where the semitransparent surface on the upper left side is the irrotational boundary and the near-
wall vortical structures are shown with blue-white color indicating the streamwise velocity u. The
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FIG. 10. Near-wall vortical structures visualized by the isosurface of Q/(Uw/D) = 0.15 colored by the
streamwise velocity u and visualization of the irrotational boundary on the upper side for case F001.

vortical structures are visualized with the isosurface of the second invariant of velocity gradient
tensor Q/(Uw/D) = 0.15, where Q = [2(∇ · u)2 + ωiωi − 2SijSij ]/4. We can see the well-known
hairpinlike structures near the wall, while the irrotational boundary appears above these structures.
The average height of the irrotational boundary 〈yI 〉 is also shown in Table II, where the mean height
is about 0.85 times the boundary layer thickness δ in all cases.

B. Dependence on threshold value for interface detection

For examining the robustness of the irrotational boundary location detected with vorticity
magnitude, the isoline of vorticity magnitude is visualized for different thresholds in Fig. 11 for case
F001. All of the threshold values are taken in the range of gray shadow shown in Fig. 7. We can see
that the irrotational boundary does not change much for these thresholds. For the relatively small
values (green and red lines), some bubbles of turbulent fluids appear surrounded by nonturbulent
fluids. In contrast, small bubbles of nonturbulent fluids appear under the irrotational boundary when

FIG. 11. Visualization of the irrotational boundary detected by different threshold values.
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FIG. 12. (a) Definition of the local coordinate ζI used for computing conditional statistics on the distance
from the irrotational boundary. (b) Conditional profiles of the Kolmogorov length scale defined with conditional
average. Here � shows the location where the Kolmogorov scale is used as the reference length scale of
turbulence near the TNTI. The inset shows the Kolmogorov scale normalized by the viscous unit.

it is detected by a relatively large threshold (yellow line). The black and khaki lines detected by
log10(ω∗) = −1.3 and −1.1 are smoother and cause fewer bubbles, indicating that these are more
appropriate thresholds than the other values in Fig. 11. Figure 11 also shows the size of 10ηC . For
log10(ω∗) = −1.3 and −1.1, the location of the irrotational boundary is different by several times
ηC . Therefore, the range of log10(ω∗) = −1.3 ∼ −1.1 is a reasonable choice for a threshold value,
and log10(ω∗) = −1.3 is used in the present study.

C. Conditional statistics on the distance from the TNTI

Since the irrotational boundary detected as the enstrophy isosurface is located at the outer edge
of the TNTI layer (an isosurface of vorticity magnitude

√
ωiωi = ωth is the same as an isosurface

of enstrophy ωiωi/2 = ω2
th/2), the TNTI layer can be found just inside the irrotational boundary.

The local coordinate ζI as shown in Fig. 12(a) is used to compute the statistics conditioned on the
distance from the irrotational boundary. The location of the irrotational boundary is represented by
ζI = 0 as the origin of the local coordinate system. The direction of ζI is normal to the irrotational
boundary, which is defined with the enstrophy gradient at the irrotational boundary

n = −∇ω2/|∇ω2|. (20)

Positive/negative ζI points in the nonturbulent/turbulent region. Hereafter, the subscript I denotes
the conditional statistic and the conditional average is denoted by 〈 〉I .

Figure 12(b) shows the conditional profiles of the Kolmogorov scale defined as 〈ν〉3/4
I /〈ε〉1/4

I .
The Kolmogorov scale is quite large in the nonturbulent region, decreases rapidly from the
nonturbulent to the turbulent region, and then tends to be uniform in the turbulent core region.
Similar profiles of Kolmogorov scale near the TNTI were also seen in Refs. [21,57]. The kinetic
energy dissipation is non-negligible in the nonturbulent region because of the strain field due
to large-scale motions [60,61]. The geometry and statistical properties of the TNTI layer are
characterized by the properties of turbulence in the turbulent region below the TNTI layer [56,62].
In the present study, the Kolmogorov scale at the location ζI /δ = −0.3 shown by a large triangle in
Fig. 12(b), denoted by ηI , is used as the reference length scale of turbulence near the TNTI, and the
conditional statistics are presented against ζI /ηI . The other reference scales of turbulence near the
TNTI, e.g., the Kolmogorov velocity scale vηI

, are also calculated from the conditional statistics at
this location. The Kolmogorov scale normalized by viscous unit is also shown in the top left corner
of Fig. 12(b); we can see that ηI under the TNTI is around 3 times the viscous length scale.
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FIG. 13. (a) Conditional mean vorticity and its derivative with respective to ζI for case F001. (b)
Conditional averages of enstrophy production Pω, viscous diffusion Dω, and baroclinic torque term Bω for
case F001. The inset shows the results for case F002. These figures also define the TNTI layer, VSL, TSL, and
turbulent core region.

We investigate the structure of the TNTI layer, which is divided into the VSL and TSL. The TNTI
layer can be defined as a region where the vorticity magnitude is adjusted between the turbulent and
nonturbulent regions and is characterized by a large gradient in vorticity magnitude. Therefore, we
can quantify the mean extent of the TNTI layer based on the derivative of 〈ω〉I with respective to
ζI following Ref. [63]. The examples of 〈ω〉I and −〈ω〉′I = −d〈ω〉I /dζI are shown in Fig. 13(a)
for case F001 (M = 0.8). The mean thickness of the TNTI layer δI is defined based on the location
where −〈ω〉′I reaches 15% of its maximum value as in Fig. 13(a). Therefore, the region of −15.4 <

ζI/ηI < 0 can be defined as the TNTI layer for F001.
The inner structures of the TNTI layer are well distinguished by vorticity dynamics, where the

enstrophy evolves according to the transport equation [64,65]

Dω2/2

Dt
= ωiSijωj − ωiωi∇ · u + 1

ρ2
ωiεijk

∂P

∂xj

∂ρ

∂xk

+ ωiεijk

∂

∂xj

(
1

ρ

∂τkl

∂xl

)
. (21)

The terms on the right-hand side are the production term Pω due to vortex stretching and compres-
sion, dilatation term �ω, baroclinic torque term Bω, and viscous term Vω, respectively. The viscous
term can further be divided into four terms: the viscous diffusion term Dω, the viscous dissipation
term εω, the viscous torque term Sω, and the term arising from the temperature dependence of
viscosity μω:

ωiεijk

∂

∂xj

(
1

ρ

∂τkl

∂xl

)
= ν

∂2ω2/2

∂x2
j

− ν

(
∂ωi

∂xj

)2

− 1

ρ2
εijkωi

∂τkn

∂xn

∂ρ

∂xj

+ εijk

1

ρ
ωi

(
∂τkn/μ

∂xn

∂μ

∂xj

+ τkn

μ

∂μ

∂xn

)
. (22)

Previous DNS studies have used the ratio between the production and viscous diffusion terms for
defining the VSL [64]. The conditional averages of Pω, Dω, and Bω are shown in Fig. 13(b) for
the both cases of F001 and F002. At the irrotational boundary (ζI = 0), these terms are very small,
which confirms that the isosurface with ω∗

th = 5.012 × 10−2 is located at the outer edge of the TNTI
layer. We can see that these two terms begin to deviate from 0 from the irrotational boundary (ζI = 0)
toward the turbulent region. The viscous diffusion term is larger than the production term near the
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TABLE III. Mean thicknesses of the TNTI layer, VSL, and TSL normalized by the Kolmogorov scale and
Taylor scale in the turbulent region near the TNTI layer.

Case M TNTI layer δI δVSL δTSL

F001 0.8 15.4ηI /0.96λI 4.2ηI 11.2ηI

F002 1.6 16.3ηI /0.97λI 4.2ηI 12.1ηI

C001 0.8 18.7ηI /1.08λI 4.4ηI 14.3ηI

C002 1.6 20.4ηI /1.17λI 4.4ηI 16.0ηI

irrotational boundary as found in many incompressible turbulent flows [64–66] and compressible
shear layers [20]. The conditional average of the baroclinic torque term Bω is almost zero near the
TNTI layer. The results from F002 are shown in the inset of Fig. 13(b): The conditional average
of these terms has a similar profile for both Mach numbers. Even though the baroclinic torque can
generate enstrophy in the nonturbulent region, the conditional average of this term is close to zero
near the TNTI layer in the present DNS. DNS of compressible mixing layers [22] showed that it
becomes more important within the TNTI layer as the convective Mach number increases. However,
the enstrophy in the nonturbulent region is still small enough to detect the turbulent fluid with
enstrophy in their DNS [22]. The baroclinic torque might play an important role in the enstrophy
generation in the nonturbulent region if the Mach number is much higher, such as in hypersonic
flows.

The mean position of the VSL can be identified as the region with 〈Dω〉I > 〈Pω〉I near the
irrotational boundary following Refs. [20,54], where we can obtain the mean thickness of the VSL
as δVSL = 4.2ηI from Fig. 13(b). Thus, the region of −15.4 � ζI /ηI � −4.2 corresponds to the
TSL, where the inviscid process (production term) has a larger contribution to the increase of
the enstrophy. The TSL is also regarded as a buffer region between the VSL and the turbulent
core regions [65]. The conditional statistics of the vorticity and enstrophy budget for case F002
(M = 1.6) are similar to the ones of F001 (M = 0.8), and the mean thicknesses of the TNTI layer
δI , the VSL δVSL, and the TSL δTSL for different Mach number M are shown in Table III, where the
thicknesses are normalized by the Kolmogorov scale ηI or Taylor microscale λI = 10〈ν〉I 〈kt 〉I /〈ε〉I
(2〈kt 〉I = ∑3

i=1[〈u2
i 〉I − 〈ui〉2

I ] is the turbulent kinetic energy defined with conditional average)
near the TNTI (at ζI = −0.3δ). Although the thicknesses of the TNTI layer and TSL slightly
change with Mach number, the mean thickness of the TNTI layer is about 15ηI –16ηI (0.96λI ),
the VSL is about 4ηI , and the TSL is about 11ηI –12ηI for group F. These values normalized by the
Kolmogorov scale in group F are close to previous studies of free shear flows [4,54,67] and shear
free turbulence [67]. However, δI in F001 and F002 exhibits a closer match when it is normalized
by Taylor microscale. The present DNS is not enough to investigate the scaling of the thickness
because the Reynolds-number range is limited.

The study of the TNTI with the large eddy simulation indicates that an insufficient resolution in
simulations causes a thicker TNTI layer [68]. Indeed, the TNTI layer thickness tends to be larger for
group C, which does not have a resolution high enough to resolve the smallest scale in the turbulence
near the TNTI. Hereafter, all the statistical analysis in the following is done for group F.

Figure 14 shows the conditional rms density fluctuation defined as 〈ρ〉I,rms =
√

〈ρ2〉I − 〈ρ〉2
I

divided by the density in freestream ρ∞. Even for M = 1.6, 〈ρ〉I,rms is about 2% of ρ∞ near the
TNTI layer, and the direct influences of compressibility are small near the TNTI layer, as also
expected from small turbulent Mach numbers in the outer region (Fig. 6).

D. Analysis of the entrainment process

The velocity of the irrotational boundary (enstrophy isosurface) movement uI can be written as
a sum of fluid velocity u and the propagation velocity vP (enstrophy isosurface propagation), i.e.,
uI = u + vP, where vP = vnn. By the propagation of the irrotational boundary to the nonturbulent
region, nonturbulent fluids pass through the irrotational boundary to the turbulent region, which is
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FIG. 14. Conditional rms density fluctuation.

also called the local entrainment [7]. The propagation velocity can be derived by considering a local
coordinate which moves with the irrotational boundary [7]:

vn = D(ω2/2)/Dt

|∇(ω2/2)| = Pω + �ω + Bω + Vω

|∇(ω2/2)| . (23)

The probability density functions (PDFs) of the propagation velocity vn are shown in Fig. 15,
where the propagation velocities are normalized by the Kolmogorov velocity vηI

= (〈ε〉I 〈ν〉I )1/4

in the turbulent core region near the TNTI at ζI = −0.3δ. The positive value of vn indicates that
the irrotational boundary propagates into the nonturbulent region. We can see that the irrotational
boundary frequently propagates toward the nonturbulent region and hardly propagates toward the
turbulent region, and the peak of propagation velocity is found to be of the order of the Kolmogorov
velocity vηI

. These results are similar to incompressible flows [7,54]. As described by the enstrophy
transport equation, the terms on the right-hand side in Eq. (23) are the production term Pvn

, dilatation
term �vn

, baroclinic term Bvn
, and viscous term Vvn

, respectively. The conditional PDFs of these
four terms are shown in Figs. 16(a) and 16(b), which reveal that the viscous term has the largest
contribution of all terms, as found in previous studies [7,22,65,69]. As shown in Eq. (22), the

FIG. 15. Conditional PDFs of the propagation velocity vn.
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FIG. 16. Conditional PDFs of the propagation velocity decomposed into different terms as in Eq. (23) for
(a) case F001 and (b) case F002 and conditional PDFs of contributions to Vvn

from different viscous effects
presented in Eq. (22) for (c) case F001 and (d) case F002.

viscous effect on the propagation velocity can further be divided into four terms: the diffusion
term Dvn

, the dissipation term εvn
, the viscous torque term Svn

, and the term related to temperature
dependence of viscosity μvn

, whose PDFs are shown in Figs. 16(c) and 16(d). We can see that a
positive value of local entrainment is mainly contributed by the viscous diffusion, while the terms
related to viscous torque and temperature dependence of viscosity are almost negligible. These
results show that the local entrainment mechanism described as the enstrophy transport is hardly
affected by compressibility for the Mach number considered here. This observation agrees with
previous studies on compressible boundary layers, which have shown that compressibility effects
are stronger in the near-wall region than in the outer region [48,53].

The entrainment is often explained by combination of the local transition from a nonturbulent to
turbulent fluid near the TNTI and the nonturbulent fluid motion drawn toward the turbulent region,
which are often called nibbling and engulfment, respectively [4]. To examine the nonturbulent fluid
motion in the intermittent region, the conditional mean velocity in the wall-normal direction 〈v〉I is
shown in Fig. 17; 〈v〉I has a distinct Z-shaped profile near the TNTI layer, which is consistent with
the experimental results of the spatially developing boundary layer [15,70]. The average of v in the
laboratory coordinate 〈v〉 is close to zero at any location in the temporal simulations of compressible
boundary layers unlike in spatially developing boundary layers. However, the mean fluid motion
in the wall-normal direction described by 〈v〉I is similar for both spatial and temporal boundary
layers. We might observe differences in 〈v〉I between spatial and temporal boundary layers in the
nonturbulent region very far from the TNTI (large ζI /δ that corresponds to the region of large y/δ,
which is not included in the figure). In this region, 〈v〉I should be close to 〈v〉 because turbulent
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FIG. 17. Conditional profiles of the mean velocity in the wall-normal direction.

fluids do not reach this height. Negative 〈v〉I in the nonturbulent region is expected from the large-
scale motion of TBLs, such as sweep motions and valley structures [39], which are expected to be
related to the engulfment. Indeed, the nonturbulent fluid in the intermittent region was shown to
have mean downward velocity in the spatially developing incompressible TBL [18], consistent with
the present results for 〈v〉I . Thus, the temporal simulation also captures well the process by which
the nonturbulent fluids reach the TNTI, at least in the intermittent region.

To compare the mass entrainment between temporal and spatial TBLs, a feasible normalization
method is required for the mass entrainment rate. In Ref. [27], both theoretical and DNS results
confirmed that the momentum transport, which causes the growth of the boundary layer thickness δ,
is dominated by the same term in both temporal and spatial incompressible TBLs at high Reynolds
number (Cf � 0.005 in their simulations), where U+

w dδ/dX in temporal TBLs is close to U+
∞dδ/dx

in spatial TBLs (X = tUw is the temporal counterpart to x in spatial boundary layers). Furthermore,
Chauhan et al. [13] showed that the averaged mass entrainment rate per unit horizontal area, denoted
by fm, can be calculated as fm = ρ∞U∞[dδ/dx − dδ∗/dx] in spatially developing incompressible
TBLs, where δ∗ is the displacement thickness and U∞ is the freestream velocity. It is also shown
that δ/δ∗ is constant in both compressible and incompressible TBLs [1]. These studies indicate
that the mass entrainment rate fm normalized by uτρ∞ is useful for comparison between temporal
and spatial TBLs. Hereafter, fm,t and fm,s represent fm for temporal and spatial boundary layers,
respectively.

First we examine fm,s/uτρ in experiments of spatially developing incompressible turbulent
boundary layers at different Reynolds numbers [70] as shown in Table IV. The normalized mass
flux is fm,s/uτρ ≈ 0.33 for both experiments, which is expected from the above discussion.

In terms of the TNTI, the mass entrainment rate is defined as the mass flux across the irrotational
boundary. Then the mass entrainment rate per unit horizontal area in the temporal boundary layer
is calculated as fm,t ≈ ρ∞〈vn〉IAIB/LxLy from the present DNS, where 〈vn〉I is taken at ζI = 0
and AIB is the surface area of irrotational boundary; the freestream density ρ∞ used here is

TABLE IV. Normalized mean mass entrainment rate
per unit horizontal area in previous experiments of in-
compressible TBLs for Reτ = 7870 and 14 500 [70].

Reτ 7870 14 500

fm,s/uτρ 0.333 0.333
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TABLE V. Normalized mean mass entrainment rate per unit
horizontal area in compressible TBLs. The temporal TBLs in the
present DNS are compared with spatial compressible TBLs, where
the entrainment rate is computed from the theoretical results of
compressible TBLs [1].

M fm,t/uτρ∞ fm,s/uτρ∞

0.8 0.355 0.347
1.6 0.398 0.392

because the compressibility is very weak near the irrotational boundary as shown in Fig. 14. On
the other hand, the averaged mass entrainment rate in spatially developing compressible TBLs
can be calculated by fm,s = ρ∞U∞[dδ/dx − dδ∗/dx] based on the compressible TBL theory [1]:
The theory of boundary layer thickness in incompressible TBLs δ5/4 = 0.289(μ∞/ρ∞U∞)1/4x

is also useful for compressible flow, because the boundary layer thickness δ does not depend
significantly on the Mach number; the displacement thickness δ∗ in compressible TBLs, defined
as δ∗ = ∫ ∞

0 (1 − ρu/ρ∞Uw )dy, can be calculated by the relation of δ∗/δ = 1 − 7F (M )/2β for
compressible TBLs [1], where F (M ) = α3

1 ln[α1/(α1 − 1)] − α2
1 − α1/2 − 1/3, α1 = 1 + 1/β,

β = r (γ − 1)M2/2, and r ≈ 0.9 for zero-pressure-gradient boundary layer. The above equations
with the parameters in the present DNSs give the averaged mass entrainment in spatially developing
compressible TBLs. Table V shows fm,t /uτρ∞ and fm,s/uτρ∞ for M = 0.8 and 1.6. For both Mach
numbers, fm,t/uτρ∞ and fm,s/uτρ∞ have similar values, confirming that the mass entrainment rate
per unit horizontal area is similar in both spatial and temporal TBLs. It is also clear that fm,t /uτρ∞
and fm,s/uτρ∞ are larger for M = 1.6 than for M = 0.8. Values of fm,t/uτρ∞ and fm,s/uτρ∞ for
M = 0.8 are very close to those obtained in incompressible experiments summarized in Table IV.

The propagation velocity (23) shows the speed at which the nonturbulent fluid crosses the outer
edge of the TNTI layer. We consider the mass entrainment across the TNTI layer below, where we
introduce a local coordinate system (xI, t ′) moving with the irrotational boundary. The origin of
the local coordinate system is located on the irrotational boundary, while t ′ represents the time in
this local coordinate. The original coordinate system (x, t ), whose origin is located at the center
of the computational domain, is referred to as a fixed coordinate system hereafter. The location of
x = xI

0 in the fixed coordinate system is assumed to be located on the irrotational boundary (the
origin of the local coordinate system). By considering the coordinate transformation from the fixed
coordinate system (x, t ) to the local coordinate system (xI, t ′), the continuity equation in this local
coordinate system can be derived as [71]

∂ρ

∂t ′
= −∇ · {

ρ
[
u
(
xI

0 + xI) − uI]}, (24)

where uI is the velocity of irrotational boundary movement. A similar equation for the passive scalar
in incompressible flows was also used in previous studies [54,72]. The term on the right-hand side in
Eq. (24) represents the pseudotransport of mass due to the relative velocity �uI ≡ u(xI

0 + xI ) − uI

in the local coordinate system. The relative velocity can be written as

�uI ≡ u
(
xI

0 + xI
) − uI = u

(
xI

0 + xI
) − u

(
xI

0

) − vP, (25)

where u(xI
0 + xI ) − u(xI

0) is the fluid velocity difference and vP is the propagation velocity. The
fluid velocity difference is 0 at the irrotational boundary, which reveals that the mass transport
is provided by the local entrainment at the irrotational boundary. The normalized mass flux f =
ρ�uI/ρ∞Uw in the local coordinate can be divided into two components: an irrotational boundary
normal component fN = f · n/ρ∞Uw and a tangential component fT = | f − f N n|. Because the
tangential component is arbitrarily directed on the plane perpendicular to n, the magnitude of the
tangential flux is considered. It should be noted that the mass flux itself represents the mass transfer
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FIG. 18. Conditional PDFs of mass fluxes across the TNTI layer described by the relative velocity to the
irrotational boundary near the TNTI. The mass fluxes are decomposed in (a) and (b) normal and (c) and (d)
tangential components to the irrotational boundary for (a) and (c) case F001 and (b) and (d) case F002.

rather than the change in ρ at a given point, and a negative value of the normal component of mass
flux f N denotes the mass transfer toward the turbulent region.

Figure 18 shows the conditional PDFs of f N and f T , at several distances away from the
irrotational boundary. The PDFs of the tangential component are not shown for the irrotational
boundary because f T = 0 at ζI = 0. From these PDFs we can find that the mass fluxes for the
normal component f N are frequently negative at the irrotational boundary (ζI = 0) and hardly
depend on the location within the VSL, while the tangential component f T has a very small
value in the viscous superlayer. A large probability for negative f N indicates a mass transfer from
the nonturbulent toward the turbulent region in a large part of the VSL. In the TSL and turbulent
core region, the PDFs are very different from the VSL: Both positive and negative values for f N

are observed and the tangential component f T is no longer negligible compared with f N .
To understand the relation between normal and tangential mass transfers, the conditional joint

PDFs of f N and f T are shown in Fig. 19, where the JPDFs are taken from the VSL and TSL.
We can find that the overall profile of the JPDF is very similar for both Mach numbers: |f N | is
larger than f T in most of the VSL [large probability for |f N | > f T in Figs. 19(a) and 19(b)]; a
large value of f T can be found in the TSL. The dependence of the JPDF of the mass flux on the
location within the VSL and TSL agrees well with the results obtained for a flux of passive scalar
in incompressible flows [54]. These features can also be found in the conditional averages of f N

and f T as shown in Table VI. The JPDF within the VSL confirms a continuous mass transfer in
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FIG. 19. Conditional JPDFs of the tangential and normal mass fluxes to the irrotational boundary within
the VSL (at ζI = −2ηI ) and the TSL (at ζI = −8ηI ) for (a) and (c) case F001 and (b) and (d) case F002. The
mass fluxes obtained by a single vortex model for the entrainment [62] at the same location of ζI are shown
with crosses. White dashed lines denote |f N | = f T .

an irrotational boundary normal direction from the nonturbulent toward the TSL across the VSL,
while the deentrainment, defined as the mass transfer from the turbulent to the nonturbulent region
(positive f N ), hardly occurs. The TSL is characterized by a tangential mass transfer (|f N | < f T )
for both Mach numbers. The tangential component f T in the TSL can be larger than |f N | within
the VSL. In the TSL, we can find both positive and negative values of f N . The positive value of
f N within the TSL is related to the mass transfer from the turbulent core region toward the TSL. A
large probability for both signs of f N confirms that there exist fluids within the TSL coming from
both the turbulent and nonturbulent regions. The existence of the fluid coming from the turbulent
core region also explains more turbulentlike features of the TSL, such as strong inviscid effects in
the enstrophy evolutions. The standard deviations defined with conditional average are also shown
for f N and f T in Table VI. We can see that f N has a larger fluctuation for case F002 within both
the VSL and TSL, which implies that a larger magnitude of f N appears for a higher Mach number.

The entrainment process described by f N and f T is compared with the entrainment model based
on a single vortex proposed in Ref. [62]. It should be noted that we apply the model developed
for incompressible flows because density fluctuations in the outer regions are very small even for
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TABLE VI. Conditional averages 〈·〉I and standard deviations σ (·) of the tangential and normal mass fluxes
to the irrotational boundary within the VSL (at ζI = −2ηI ) and the TSL (at ζI = −8ηI ).

Case M 〈f N 〉I 〈f T 〉I σ (f N ) σ (f T )

VSL (at ζI = −2ηI )
F001 0.8 −0.58 × 10−2 0.20 × 10−2 0.47 0.15 × 10−2

F002 1.6 −0.70 × 10−2 0.22 × 10−2 1.11 0.16 × 10−2

TSL (at ζI = −8ηI )

F001 0.8 −0.25 × 10−2 0.14 × 10−1 0.34 0.11 × 10−1

F002 1.6 −0.35 × 10−2 0.15 × 10−1 1.12 0.12 × 10−1

M = 1.6. The model describes f N and f T on ζI as

f N (ζI ) = −1

2
ρ∞α2(L + ζI ), (26)

f T (ζI ) = ρ∞�0

2π

∣∣∣∣ 1

L + ζI

[
1 − exp

(
− (L + ζI )2

R2
V

)]
− 1

L

[
1 − exp

(
− L2

R2
V

)]∣∣∣∣, (27)

with the model parameters of L = δVSL + RV , the constant radius of the vortex RV , the strain
rate for the steady Burgers vortex given by α2 = 4ν/R2

V , and the circulation �0, which defines
the circulation Reynolds number Re� = �0/ν. The relation of these quantities to the turbulence
characteristics has been studied in the boundary layers [73], from which we take values of RV = 5ηI

and Re�/Re1/2
λI = 13.7, where ηI , ktI , and ReλI = λI (2ktI /3)1/2/ν are taken in the turbulent region

near the TNTI layer (ζI = −0.3δ). Here ReλI is 70 for M = 0.8 and 72 for M = 1.6. The thickness
of the VSL, δVSL, is taken from Table III. From the turbulence characteristics at ζI = −0.3δ, we
can obtain f N (ζI ) and f T (ζI ) by Eqs. (26) and (27), which are shown with crosses in Fig 19.
For both Mach numbers, the model estimates (f N, f T ) fairly well, where (f N, f T ) obtained by
the model is located near the values with the largest probability in the plots. The mass transfer
across the TNTI layer is well represented by the flow related to a single vortex, which describes
the entrainment across the TNTI layer as a two-stage process: (i) The nonturbulent fluid is drawn
toward the vortex core region within the VSL with the velocity related to the strain imposed on the
vortex and (ii) the circular motion caused by the vortex transfers the fluid being entrained toward
the turbulent core region.

V. CONCLUSION

We performed the DNS of subsonic and supersonic temporally evolving turbulent boundary
layers to study the TNTI. We considered two different setups of the DNS, where in one case the
grid spacing is determined solely based on the wall unit, while the other case uses a computational
grid small enough to resolve the turbulent structures both underneath the TNTI and near the wall. We
compared the global statistics between the present DNS and previous studies, showing that the DNSs
with both grids reproduce well the first- and second-order statistics of the fully developed turbulent
boundary layers. However, we have found that the spatial distribution of vorticity in the outer region
is very sensitive to the spatial resolution near the TNTI. At the present Reynolds number Reθ ≈
2200, the DNS based on the grid size determined by the wall unit does not have sufficient resolution
near the TNTI. The lack of resolution results in the spiky patterns of the enstrophy isosurface used
to detect the outer edge of the TNTI layer and the thicker TNTI layer thickness. This problem can
be solved by increasing the number of grid points, where a smoother enstrophy isosurface, similar
to the previous studies of incompressible free shear flows, is obtained in the DNS with a grid small
enough to resolve the Kolmogorov scale in the turbulent core region below the TNTI.
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Based on the high-resolution DNS, we investigated the structure of the TNTI layer in com-
pressible turbulent boundary layers. The present results show that the thickness of the TNTI
layer, defined with a large gradient of conditional mean vorticity magnitude, is about 15 times the
Kolmogorov scale ηI in turbulence near the TNTI layer. The inner (sub)layers of the TNTI layer are
detected based on the vorticity dynamics, where the TSL and VSL are found to have thicknesses of
11ηI –12ηI and 4ηI , respectively. These structures of the TNTI layer and their thicknesses divided
by the Kolmogorov scale are very similar to those found in incompressible free shear flows. The
compressibility effects at the Mach numbers M = 0.8 and 1.6 are very small within the TNTI layer,
which appears in the outer intermittent region.

The local entrainment process was studied with the propagation velocity of the enstrophy
isosurface, which represents the speed at which nonturbulent fluid crosses the outer edge of the
TNTI layer. We showed that the compressibility effects are almost negligible for the propagation
velocity, which is dominated by the viscous effects rather than a dilatational effect or baroclinic
torque. The mean downward velocity is found in the nonturbulent region in the intermittent region,
which is consistent with spatially evolving boundary layers [18,70]. The mass entrainment rate
per unit horizontal area of the temporal TBLs is also consistent with the theoretical prediction [1]
for the spatial compressible TBLs. This confirms that the dominant mechanism for the momentum
transport, which is related to the TBL thickness growth, is not different between spatial and temporal
compressible TBLs, as also found in incompressible TBLs [28]. Furthermore, the mass entrainment
rate normalized by uτρ∞ at M = 0.8 also agrees well with experiments of spatially developing
incompressible TBLs at various Reynolds numbers. The entrainment process across the TNTI layer
was studied with the mass transport equation in the local coordinate system moving with the outer
edge of the TNTI layer. The statistics of the mass flux show that the mass within the VSL is
transferred toward the TSL in the direction normal to the TNTI, while the TSL is dominated by a
tangential transfer. These mass fluxes within the VSL and TSL are compared with the single-vortex
model for the entrainment within the TNTI layer, which was proposed for incompressible flows [62].
Because of very small effects of the compressibility in the outer region of the turbulent boundary
layer, the entrainment model given by a single vortex predicts the mass flux within the TNTI layer
fairly well, which strongly suggests the connection between the entrainment process within the
TNTI layer and the small-scale vortical structures found underneath the TNTI layer of the turbulent
boundary layers.
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