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The effects of mechanical generation of turbulent kinetic energy and buoyancy forces
on the statistics of air temperature and velocity increments are experimentally investigated
at the crossover from production to inertial range scales. The ratio of an approximated
mechanical to buoyant production (or destruction) of turbulent kinetic energy can be used
to form a dimensionless stability parameter ζ that classifies the state of the atmosphere as
common in many atmospheric surface layer studies. We assess how ζ affects the scalewise
evolution of the probability of extreme air temperature excursions, their asymmetry, and
time directionality. The analysis makes use of high-frequency turbulent velocity and air
temperature time-series measurements collected at z = 5 m above a grass surface at very
large frictional Reynolds numbers Re∗ = u∗z/ν > 1 × 105 (u∗ is the friction velocity and
ν is the kinematic viscosity of air). A multitime measure of the imbalance between forward
and backward phase-space trajectories is employed to investigate the time-directional
properties of the scalar (temperature) field. Using conventional higher-order structure
functions, we find that temperature exhibits larger intermittency and wider multifractality
when compared to the longitudinal velocity component, consistent with laboratory studies
and simulations conducted at lower Re∗. We find that the magnitude of ζ , rather than the
sign of the heat flux, impacts the distribution of scalar increments at separation scales
well within the inertial subrange. Conversely, the direction of the heat flux fingerprints the
observed time-directionality properties of the scalar field in the first two decades of inertial
subrange scales. These combined findings demonstrate that external boundary conditions,
and in particular the magnitude and sign of the sensible heat flux, have a significant impact
on temperature advection-diffusion dynamics within the inertial range.
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I. INTRODUCTION

Turbulence in fluids is prototypical of spatially extended nonlinear dissipative systems char-
acterized by large fluctuations that are active over wide-ranging scales [1]. The dynamics of a
substance or scalar advected by a turbulent flow (often termed scalar turbulence [2]) is by no means
an exception to this description. Scalar turbulence shares many phenomenological parallels with
the much studied turbulent velocity fluctuations, especially in the inertial subrange. However, scalar
turbulence also exhibits distinctive large- and fine-scaled temporal patterns (e.g., ramp-cliff patterns)
that are usually weak or altogether absent from their componentwise turbulent velocity counterparts
[2–4]. This finding is particularly true in the atmospheric surface layer (ASL) [5,6], a layer within
the atmospheric boundary layer that is sufficiently far above roughness elements but not too far
from the ground to be directly impacted by the Coriolis force. In the ASL, the frictional Reynolds
number Re∗ = u∗z/ν can readily exceed 105, where z is the distance above the ground surface, u∗
is the friction velocity related to the kinematic turbulent stress, and ν is the kinematic viscosity of
air. A direct consequence of this large Re∗ is a wide separation between scales over which turbulent
kinetic energy k is produced and dissipated. In the absence of thermal stratification, k is produced at
scales commensurate with z; however, the action of fluid viscosity responsible for the dissipation of
k occurs at scales commensurate with or smaller than the Kolmogorov microscale ηK = (ν3/〈ε〉)1/4,
where 〈ε〉 is the mean turbulent kinetic energy dissipation rate that is proportional to u3

∗/z for a
neutrally stratified ASL [6]. These estimates of 〈ε〉 and ηK result in z/ηK ∼ Re3/4

∗ > 5000 in the
ASL, which is rarely achieved in direct numerical simulations or laboratory studies. Embedded in
this wide-ranging scale separation is the inertial subrange [7], where self-similar scaling of velocity
and air temperature structure functions is expected to hold for eddy sizes much larger than ηK but
much smaller than z. Integral scales or scales comparable to z are directly influenced by boundary
conditions imposed on the flow including surface heating (or cooling) in the ASL, whereas small
scales (e.g., ηK ) may attain universality and local isotropy after a large number of cascading steps
away from the energy injection scales.

Much attention has been historically dedicated to the inertial subrange and the subsequent
crossover to the viscous or molecular regimes precisely because of the possible universal character
of turbulence at such fine scales [4,8–12]. However, it is now accepted that some coupling between
small and large scales exists, especially for passive scalars [2,4,13], that act to enhance intermittency
buildup across scales and distort any universal behavior by injecting the effects of the boundary
conditions (or the k generation mechanism). Along similar lines of inquiry, it has been conjectured
that the presence of coherent ramp-cliff patterns in concentration (or temperature) time series are
responsible, to some degree, for this coupling [4]. Ramp-cliff structures are characterized by local
intense scalar gradients separated by large quiescent regions. The presence of ramp-cliff structures
in scalar time series has been shown to break locality of eddy interactions and determine some
departures from small-scale isotropy.

Sweep-ejection dynamics connected to the presence of ramps are likely to play a major role in
observed extreme value statistics, as shown, e.g., for Lagrangian velocity sequences in plant canopy
turbulence [14]. Moreover, ramps are asymmetric and produce nonzero odd-ordered structure
functions, sharing a striking resemblance to flight-crash events recently reported for the turbulent
kinetic energy of Lagrangian particles [15]. Even though ramps have been extensively observed
experimentally [3], studied as surface renewal processes [13], and from a Lagrangian perspective
[2,16], a unified picture describing their effects on inertial scales statistics remains lacking and
motivates the work here.

Our main objective is to investigate two questions about scalar turbulence at scales spanning
production to inertial subranges: how ramp-cliff patterns modify (i) the probability of extreme
scalar concentration or air temperature excursions and its corollary intermittency buildup and (ii)
symmetry and time reversibility of scalar turbulence. These two questions are explored for differing
turbulent energy injection mechanisms (mechanical and buoyancy forces) in the ASL. Here we
focus on the production-to-inertial scales instead of the usual inertial to viscous ranges for the
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following reasons. First, any cross-scale coupling with ramp-cliff patterns is likely to be sensed at
large scales commensurate with the ramp durations. Second, these scales are deemed most relevant
when constructing subgrid-scale models for improving large-eddy simulations [17–20]. Third, these
scales encode much of the scalar variance that is needed when deriving phenomenological theories
for the bulk flow properties based on the spectral shapes of the turbulent velocity and air temperature
[21–25], especially for the ASL.

To achieve the study objectives, high-frequency measurements of the three velocity components
and air temperature fluctuations in the ASL are used to explore flow statistics at the transition
from production to inertial scales. In particular, the focus is on the first two decades dominated
by approximate inertial subrange effects, where the transition from the large eddies to the universal
equilibrium or inertial range occurs. The statistical properties of temperature increments within this
range of scales are examined with the goal of addressing to what extent the tail properties (and thus
the probability of extreme events) at fine scales still carry signatures from the production ranges
and in particular of large coherent structures such as ramp-cliff structures. The experiments here
span several atmospheric stability regimes that dictate to what degree turbulent kinetic energy is
mechanically or buoyantly generated (or dissipated) depending on surface heating (or cooling) and
on the turbulent shear stress near the ground [26]. However, due to the large Reynolds number
encountered in the ASL, the stable stratification is not sufficiently severe to allow for a transition
to nonturbulent regimes. Therefore, the turbulence can be studied as three dimensional and fully
developed.

The paper is organized as follows. In Sec. II the budget for turbulent kinetic energy forced by a
mean velocity gradient and buoyancy is reviewed so as to define the key variables and dimensionless
quantities pertinent to ASL flows. Then the statistical tools used to characterize intermittency and
time directionality of the scalar field are introduced. Section III presents the experimental setup
and data processing and compares the outcome of this experiment with predictions from traditional
turbulence theory in the inertial subrange. The results obtained investigating extreme values and
time-directional properties for velocity and temperature are then presented in Sec. IV. In Sec. V
the main conclusions are featured. The Appendix shows that distortions of the inertial range due to
stable stratification are not relevant for the range of scales studied here.

II. THEORY

A. Overview of ASL similarity at large and small scales

The turbulent kinetic energy budget for a stationary and planar homogeneous flow in the absence
of subsidence is given by

∂k

∂t0
= 0 = −u′w′ dU

dz
+ β0gw′T ′ + PD + TT − ε, (1)

where k = (u′2 + v′2 + w′2)/2 is the turbulent kinetic energy; u′, v′, and w′ are the turbulent
velocity components along the mean wind (x), lateral (y), and vertical (z) directions, respectively;
t0 is time; the five terms on the right-hand side are mechanical production, buoyant production (or
destruction), pressure transport, turbulent transport of k, and viscous dissipation of k, respectively;
β0 is the thermal expansion coefficient for gases (β0 = 1/T , with T the air temperature here); g is
the gravitational acceleration; −u′w′ = u2

∗ is the turbulent kinematic shear stress near the surface;
and w′T ′ is the kinematic sensible heat flux from (or to) the surface. When w′T ′ > 0, buoyancy is
responsible for the generation of k and the ASL is classified as unstable. When w′T ′ < 0, the ASL
is classified as stable and buoyancy acts to diminish the mechanical production of k. The relative
significance of the mechanical production with respect to the buoyancy generation (or destruction)
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may be expressed as

−u′w′ dU

dz
+ β0gw′T ′ = u3

∗
κz

[
φm(ζ ) + κzβ0gw′T ′

u3∗

]
= u3

∗
κz

[φm(ζ ) − ζ ], (2)

where

dU

dz
= u∗

κz
φm(ζ ), ζ = z

L
, L = − u3

∗
κgβ0w′T ′ , (3)

φm(ζ ) is known as a stability correction function reflecting the effects of thermal stratification on
the mean velocity gradient [φm(0) = 1 recovers the von Kármán-Prandtl logarithmic law], κ ≈ 0.4
is the von Kármán constant, and L is known as the Obukhov length as described by the Monin-
Obukhov similarity theory [26]. The physical interpretation of L is that it is the height at which
mechanical production balances the buoyant production or destruction when φm(ζ ) does not deviate
appreciably from unity. For a neutrally stratified ASL flow, |L| → ∞ and |ζ | → 0. The sign of L

reflects the direction of the heat flux, with negative values of L corresponding to upward heat fluxes
(unstable atmospheric conditions) and positive values of L corresponding to downward heat flux
(stable atmosphere).

Several bulk flow statistics in the ASL can be reasonably described by the aforementioned
Monin-Obukhov similarity theory, including the mean air temperature gradient dT /dz and the
air temperature variance T ′2, both varying with ζ when normalized by a temperature scale T∗ =
−w′T ′/u∗. However, the statistics of some large-scale features within the temperature time-series
traces, such as the statistics of ramp-cliff patterns, do not scale with z. For starters, the ramp
characteristic dimension is generally larger than z and its duration exceeds the mean vorticity
timescale [κzφm(ζ )−1]u−1

∗ . Ramps have been observed within canopies, near the canopy atmosphere
interface, and other types of flows as reviewed elsewhere [4,13]. While z/L may not be the proper
scaling parameter for ramps, it does indirectly impact many of their features in air temperature time
traces sampled within the ASL. For example, in stably stratified ASL flows, the temperature ramps
appear inverted when compared to their near-neutral counterparts. The amplitudes and durations of
ramps can increase with increasing instability due to weaker shearing and intense buoyant updrafts
[27,28].

At small scales associated with the inertial subrange, the velocity and temperature second-order
structure functions are commonly described by the Kolmogorov theory [7] given as

S2
u (r ) = [�u(r )]2 = 4C0,u(〈ε〉r )2/3, (4)

S2
w(r ) = [�w(r )]2 = 4C0,w(〈ε〉r )2/3, (5)

S2
T (r ) = [�T (r )]2 = 4C0,T 〈εT 〉〈ε〉−1/3r2/3, (6)

where �u(r ) = u(x + r ) − u(x), �w(r ) = w(x + r ) − w(x), and �T (r ) = T (x + r ) − T (x) are
the velocity and temperature increments at separation distance (or scale) r; 〈ε〉 and 〈εT 〉 are the k and
temperature variance dissipation rates, respectively; C0,u and C0,w are the Kolmogorov constants for
the longitudinal and vertical velocity components; and C0,T is the Kolmogorov-Obukhov-Corrsin
(KOC) constant. These scaling laws, obtained under the assumptions of similarity and local isotropy,
appear to hold reasonably in the ASL for scales smaller than z/2 [29]. Moreover, the normalized
third-order structure functions

S(r ) = S3
u(

S2
u

)3/2 = 〈�u(r )3〉
〈�u(r )2〉3/2

(7)
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and

F (r ) = S3
T T u

S2
T

[
S2

u

]1/2 = 〈�u(r )�T (r )2〉
〈�T (r )2〉〈�u(r )2〉1/2

(8)

must be constant to recover Kolmogorov predictions for S2
u and S2

T in the inertial range [30].
However, relevant deviations from Kolmogorov scaling have been reported for higher-order

structure functions, especially for the scalar fluctuations. These deviations arise as (i) Eqs. (4)–(6)
do not account for intermittency related to spatial variability of the actual ε and εT and (ii) the
hypothesis of local isotropy might not hold for scalars due to nonlocal interactions across scales
[31]. A signature of the latter is the large structure skewness for temperature determined by ramp
structures [4,29]. Many models, starting from Kolmogorov’s log-normal dissipation rate refinement
[32], seek to relax some of the restrictive assumptions of Kolmogorov so as to explain the anomalous
scaling observed in higher-order moments. For scalars, these corrections are commonly expressed as

Sn
T = Cn(εr )n/3(r/LI )ζ

′
n−n/3, (9)

where the exponent ζ ′
n implies a scaling different from Kolmogorov that depends on the moment

order n. The presence of an integral timescale LI suggests an explicit dependence on large-scale
eddy motion within the inertial subrange. One estimate of LI may be derived from the integral
length scale of the flow given by

LI = UIw = U

∫ ∞

0
ρw(τ0)dτ0, (10)

where ρw(τ0) is the vertical velocity autocorrelation function and τ0 is the time lag. Here Iw is
presumed to be the most restrictive scale given that w′ is the flow variable most impacted by the
presence of the boundary.

The statistics of air temperature increments across scales (τ0/Iw) for different ζ conditions are
explored with a lens on two primary features: buildup of heavy tails and destruction of asymmetry
originating from ramp-cliff structures at the crossover from τ0/Iw > 1 to τ0/Iw ≈ 0.1. Because
changes in ζ do result in changes in Iw, the time (or space) lags are presented in dimensionless
form as τ = τ0/Iw, so the increments of a flow variable �s, with �s = �u,�w,�T at a given
dimensionless scale τ , can be expressed as �s(τ ) = s(t + τ ) − s(t ), where t = t0/Iw.

B. Probabilistic description of intermittency across scales

The intermittent behavior of ASL turbulent flows has been documented by several experiments
[33,34] and a number of models have been proposed to capture the effects of intermittency on the
flow statistics in the inertial range of scales (e.g., log-normal, bifractals, and multifractals to beta
model, logarithmically stable, She-Leveque vortex filaments, etc). Common to all these models is
the hypothesis of local isotropy and the accounting for uneven distribution of eddy activity in the
space-time domain, which explains the anomalous scaling of higher-order even structure functions.

Here a statistical description of scalar increments is used to fingerprint large-scale signatures
across scales τ for different ζ . If such fingerprints exist, the dissipation rates ε and εT need not
be sufficient to describe all aspects of the inertial range statistics. The one-time probability density
function (PDF) of the increments �s(τ ) of the flow variable s = u,w, T at a given dimensionless
scale τ can be expressed as [35]

p(�s) = N

q0(�s)
exp

∫ �s

0

r0(�s ′)
q0(�s ′)

d�s ′. (11)

This expression is exact when �s are realizations of a stationary stochastic process S(t ) under the
condition p(�s) → 0 as �s → ∞. Here q0(�s) = 〈Ṡ2|�s〉/〈Ṡ2〉 and r0(�s) = 〈S̈|�s〉/〈Ṡ2〉 are
the normalized averages of the first- and second-order conditional derivatives of the process S(t )
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and N is a normalization constant. Equation (11) generalizes previous results obtained by Sinai and
Yakhot [36] and Ching [37] for the PDF of temperature fluctuations and their increments, where
the term r0(�s) was linear [r0(�s) = −�s]. Equation (11), while derived for a twice-differentiable
process, can be interpreted as the steady-state solution of a Fokker-Planck equation with p(�s)
vanishing at infinite boundaries, with drift and diffusion coefficient equal to r0 and q0, respectively
[38,39].

Although Eq. (11) can be directly computed from an observed time series, the estimation of
the conditional derivatives in q0(�s) and r0(�s) becomes inevitably uncertain as �s approaches
the tails of the PDF. However, a number of parametric distributions commonly used in statistical
mechanics arise as particular cases of Eq. (11) when r0(�s) = −�s, such as Gaussian (q0 constant),
power laws [q0(�s) ∼ �s2], and stretched exponentials [q0(�s) ∼ �sa , 0 < a < 2]. To facilitate
estimation and comparisons with data, two different parametric models for the tails of Eq. (11) are
here adopted: a stretched exponential (SE) and a q-Gaussian (QG) distribution. The first arises from
multiplicative processes of normal-distributed random variates [40], while the second maximizes a
generalized measure of information entropy proposed by Tsallis [41–43]. While QG does not have
a clear physical basis in the context of turbulent flows [44], it has been widely used in the analysis
of turbulence simulations and data [13,45–47]. We employ these two models to infer tail behavior
as well as to test the independence of our findings from the particular parametric distribution used
to characterize p(�s). The QG and SE PDFs are given as

pQG(�s) = N (q )

(
1 + (q − 1)

�s2

2ψ2

)1/(1−q )

, (12)

pSE(�s) = η

λ

(
�s

λ

)η−1

exp

(
�s

λ

)η

. (13)

Both PDF models have two degrees of freedom corresponding to a scale (ψ and λ) and shape (η
and q) parameter. We adopt the (symmetric) QG model and the SE fitted separately to right and left
tails of p(�T ).

C. Probabilistic description of asymmetry and irreversibility across scales

The presence of ramp-cliff structures has been conjectured to result in nonlocal interactions
of different size eddies within the inertial subrange [4]. This nonlocality affects both even and
odd moments of higher order. A statistical framework to investigate the effects of ramps on the
asymmetric nature of velocity and scalar increments for different atmospheric stability classes is
now discussed. Sharp edges associated with cliffs might directly inject scalar variance at much
smaller scales and thus alter the magnitude and sign of odd-order moments within the inertial range
(depending on z/L). The presence of asymmetry has been investigated based on odd-ordered struc-
ture functions [4] or multipoint correlators [48]. In particular, a simple measure for the persistence
of asymmetry at small scales is the skewness of the scalar increments S3

T = 〈�T (τ )3〉/〈�T (τ )2〉3/2.
The structure skewness of air temperature has been found to scale as Reλ = σuλ/ν (where λ is the
Taylor microscale and σu is the root mean square of the longitudinal velocity fluctuations) and thus
for a boundary layer ST

3 ∼ Re1/2
∗ . However, for large values of Reλ experimental evidence suggests

that ST
3 tends to plateau and become independent of Reλ [4,31].

A further signature of ramp-cliff structures is that increments �T (τ ) may exhibit a time-
directional (or irreversible) behavior. Time reversibility implies that the trajectories of a stationary
process �t exhibit the same statistical properties when considered forward or backward in time.
In particular, for a reversible time series the n-point joint PDF of (�1,�2, . . . ,�n) is equal to
the joint PDF of the reversed sequence (�n,�n−1, . . . ,�1) for every n. While testing this general
definition of reversibility would require perfect knowledge of the phase-space trajectories, a weaker
definition is the so-called lag reversibility. This condition only requires the two-point PDFs to be
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equal: f�t ,�t+τ
(�1,�2) = f�t+τ ,�t

(�2,�1). While this definition is less general, it still provides
a necessary condition for testing time reversibility. Moreover, it is consistent with the traditional
descriptions of turbulence that are primarily based on two-point statistics. Lag reversibility implies
that [49]

Rτ = ρc

(
�2

t ,�t+τ

) − ρc

(
�t ,�

2
t+τ

) = 0, (14)

where ρc denotes a correlation coefficient between two variables. This condition can be directly
tested across different τ and ζ using a conventional correlation analysis.

A second test for reversibility of scalar trajectories is here performed based on the Kullback-
Leibner measure, a form of relative entropy that determines the average distance between the entire
PDF of forward and backward trajectories [39,50,51]. Again, the analysis here is restricted to the
inspection of lag reversibility (n = 2) across scales τ . In such a restricted form, this measure reduces
to

〈Zτ 〉 =
∫

��

∫
��′

τ

p(�′
τ |�)p(�) ln

p(�′
τ |�)

p(−�′
τ |�)

d�′
τ d�, (15)

where �′
τ = ��(τ )/τ , and the domains of integration �� and ��′

τ
correspond to the populations

of the random variables � and �′
τ , respectively. Equation (15) determines, at each dimensionless

scale τ , the average distance between the probability of the transition ��(τ ) and its inverse, at
every given level �.

A statistical mechanics interpretation of Eq. (15) would imply that for a system in nonequilibrium
steady state, the fluctuation theorem must hold so that

ln
p(−Zτ )

p(Zτ )
= −Zτ (16)

for the variable Zτ computed at some level �,

Zτ (�) = ln
p(�′

τ |�)

p(−�′
τ |�)

. (17)

Note here the usage of conditional probabilities instead of their unconditional forms employed
in recent flight-crash studies of Lagrangian fluid particles [15] that also made use of fluctuation
theorem and time reversibility. Equation (15) has been shown to have general validity [51]
independent of the underlying dynamics or statistical-mechanics interpretations, when considering
conditional statistics.

III. DATA AND METHODS

The three velocity components and air temperature measurements were sampled at 56 Hz using
an ultrasonic anemometer positioned at z = 5.2 m above a grass-covered surface at the Blackwood
Division of the Duke Forest, near Durham, North Carolina, USA. The anemometer samples the
air velocity in three nonorthogonal directions by transmitting sonic waves in opposite directions
and measuring their travel times along a fixed 0.15-m path length. Temperature fluctuations are
then computed from measured fluctuations in the speed of sound, assuming air is an ideal gas. The
nonorthogonal sonic anemometer design used here has proven to be the most effective at reducing
flow distortions induced by the presence of the instrument.

The experiment resulted in 123 time-series records (henceforth termed runs), each having a
duration of 19.5 min (65 536 data points at 56 Hz), covering a range of different atmospheric
stability conditions [29]. Of these, only 34 runs passed a stationarity test and were included in the
analysis (see Table I for a summary of the properties of the flow for these runs). The assumption of
stationarity is necessary so as to (i) decompose the flow variables into a mean and fluctuating part,
(ii) adopt Eqs. (11) and (15) so as to describe intermittency and time irreversibility respectively,
and (iii) compute the integral scales needed in delineating the transition from production to inertial.
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TABLE I. Bulk flow properties for the runs in our data set. The table reports the atmospheric stability
parameter ζ , the Obukhov length L (in m), the sensible heat flux H = ρCpw′T ′ (in W m−2) (where ρ is the
mean air density and Cp is the specific-heat capacity of dry air at constant pressure), the mean air temperature
T (in ◦C), the mean velocity U (in m/s), the integral timescale for w (in s), the turbulent intensity σu/U , the
temperature standard deviation σT (in ◦C), and the vertical velocity standard deviation σw (in m/s).

Run ζ L H T U Iw σu/U u∗ σT σw

1 −11.56 −0.4 93.2 33.9 2.1 2.62 0.44 0.08 0.48 0.40
2 −1.31 −4.0 121.6 26.9 1.0 7.58 0.72 0.17 0.54 0.30
3 −0.89 −5.8 73.1 27.8 0.5 6.62 0.91 0.16 0.37 0.30
4 −0.81 −6.4 79.9 32.7 0.7 5.75 1.05 0.17 0.61 0.29
5 −0.80 −6.5 138.1 27.4 0.8 8.18 0.48 0.21 0.57 0.31
6 −0.67 −7.7 149.8 31.4 0.9 11.64 1.04 0.23 0.63 0.38
7 −0.59 −8.8 118.1 34.8 1.5 3.43 0.71 0.22 0.58 0.34
8 −0.52 −10.0 85.4 32.5 2.1 1.74 0.37 0.21 0.44 0.37
9 −0.45 −11.5 78.6 31.7 1.1 7.44 0.61 0.21 0.43 0.30
10 −0.44 −11.7 110.7 31.9 1.2 5.89 0.65 0.24 0.49 0.37
11 −0.44 −11.8 39.4 34.4 1.3 3.19 0.45 0.17 0.32 0.29
12 −0.40 −13.0 36.6 34.1 1.7 2.30 0.39 0.17 0.37 0.28
13 −0.37 −14.0 65.1 25.2 1.6 2.91 0.39 0.21 0.35 0.27
14 −0.33 −15.6 48.0 28.9 1.4 2.58 0.41 0.20 0.27 0.30
15 −0.33 −15.8 4.8 33.4 1.6 1.59 0.35 0.09 0.09 0.23
16 −0.29 −18.2 115.2 32.1 2.7 2.16 0.37 0.28 0.44 0.47
17 −0.28 −18.5 136.2 29.2 0.9 6.88 1.11 0.30 0.56 0.37
18 −0.27 −19.1 108.6 30.5 1.7 3.56 0.62 0.28 0.54 0.34
19 −0.17 −29.7 70.5 29.5 2.6 2.22 0.29 0.28 0.36 0.42
20 −0.15 −33.8 63.2 32.9 2.2 2.97 0.39 0.28 0.36 0.40
21 −0.14 −37.9 30.9 34.2 1.6 4.17 0.49 0.23 0.34 0.32
22 −0.12 −44.4 118.6 31.0 2.6 3.78 0.42 0.38 0.49 0.42
23 −0.09 −56.5 26.7 33.9 1.9 3.39 0.31 0.25 0.15 0.31
24 −0.08 −61.7 49.7 31.7 2.0 3.50 0.41 0.31 0.27 0.39
25 −0.08 −65.1 17.6 34.0 2.2 3.22 0.29 0.23 0.13 0.31
26 −0.07 −72.5 28.8 31.5 1.8 2.71 0.41 0.28 0.29 0.30
27 −0.04 −126.2 45.1 31.0 4.3 1.21 0.33 0.39 0.35 0.71
28 −0.03 −171.8 3.9 31.3 1.7 3.18 0.39 0.19 0.15 0.30
29 −0.02 −261.4 46.1 31.2 3.8 1.37 0.39 0.50 0.23 0.72
30 −0.02 −304.3 47.1 29.4 5.0 0.84 0.31 0.53 0.21 0.80
31 0.002 2397.4 −0.4 31.2 1.9 1.94 0.44 0.22 0.69 0.32
32 0.01 525.5 −1.3 32.9 0.9 3.00 0.51 0.19 0.18 0.23
33 0.05 93.8 −20.7 29.8 2.6 1.52 0.30 0.27 0.23 0.39
34 0.07 71.4 −14.2 30.4 1.9 2.18 0.37 0.22 0.25 0.28

To test the data set for stationarity, we employ the second-order structure functions of velocity
components (u and w) and air temperature T . Runs were included only if the slope of S2

s =
〈[s(t + τ ) − s(t )]2〉 for time delays larger than about 9 min (30 000 sample points) was smaller than
a fixed value (0.01). For the 34 runs meeting this strict stationarity criterion, second-order structure
functions for w and T are featured in Fig. 1. As expected, structure functions exhibit an approximate
2/3 scaling at fine scales and transition to a constant value as the autocorrelation weakens at large
separation distances.

The presence of a stable stratification is known to produce distortions on the spectral properties
of turbulence at scales commensurate with (and larger than) the Dougherty-Ozmidov length scale
[52]. We investigated this issue (see the Appendix for more details), finding that stable stratification
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FIG. 1. Normalized second-order structure functions for (a) vertical velocity and (b) temperature are shown
for runs that are weakly unstable (blue dashed lines), strongly unstable (red solid lines), and stable (black
dash-dotted lines). Black lines indicate the value 1 and the 2/3 power law for reference; vertical dashed lines
correspond to the dimensionless scales τ = 0.05 (smallest scale not impacted by instrument path length), τ = 1
(integral scale of the flow), and τ = 5 (typical scale larger than Iw , while small enough not to be impacted by
statistical convergence issues in structure functions calculations). (c) Integral scales of the flow for s = T

(circles) and s = w (crosses) as a function of the stability parameter |ζ | and (d) their ratio IT to Iw again as a
function of |ζ |, where stable runs (ζ > 0) are indicated by black squares.

effects are only relevant at scales larger than the integral scale Iw considered here and not in the
inertial range.

As earlier noted, the most restrictive (i.e., smallest) integral timescale is Iw associated with
the vertical velocity w due to ground effects. We assume that this timescale characterizes the
transition from production to inertial ranges for all three flow variables u, w, and T . Equation
(10) is here evaluated by integrating ρw(τ ) up to the first zero crossing so as to avoid the effects
of low-frequency oscillations. Figure 1 illustrates the integral timescales of w and T as a function
of ζ , where the aforementioned integral timescales are normalized by the mean vorticity timescale
dU/dz = φm(ζ )u∗(κvz)−1. It is clear that such normalized Iw is approximately constant across
stability regimes and suggests Iw to be proportional to the duration of vortices most efficient at
transporting momentum to the ground for all ζ . Conversely, the temperature integral timescale
is much longer than Iw for near-neutral conditions and only approaches Iw for strongly unstable
conditions.

A known limitation of sonic anemometry is the presence of distortions at high frequencies due
to instrument path averaging. For this reason, the smallest timescale considered in the analysis is
0.05Iw, which corresponds to a minimum travel path of 30 cm (or twice the sonic anemometer path
length). Taylor’s frozen turbulence hypothesis [53] (r = −Ut) was employed to convert values of
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τ to separation distances r within the inertial subrange even though the turbulent intensity σu/U is
not small as shown in Table I. For this reason, we adopt the dimensionless lag τ for analysis and
presentation. The τ can be interpreted as temporal or spatial, noting that distortions due to the use
of Taylor’s hypothesis impact similarly the numerator and denominator.

For every run, ζ was computed using Eq. (3) and then employed to classify the ASL stability
condition. Most of the runs in the data set are unstable with a wide range of |ζ |, while only four runs
are characterized by ζ > 0. To ensure a balanced statistical design, two stability classes are selected
with the same number of runs (8) in each class: strongly unstable (|ζ | > 0.5) and near-neutral runs
(|ζ | < 0.072). A summary of the bulk flow properties for these runs is featured in Table I.

In the analysis, each flow variable s (s = u,w, T ) is normalized to zero mean and unit variance
(labeled as sn). Then, at scale τ , a time series of �s(τ ) = sn(t + τ ) − sn(t ) is constructed and again
normalized to have unit variance.

For illustration purposes, Fig. 2 shows sequences of fluctuations u′, w′, and T ′ extracted from
runs in unstable and stable atmospheric regimes. In the first case, temperature fluctuations clearly
exhibit ramp-cliff structures occurring with timescales larger than Iw. In the stable or near-neutral
case, large-scale scalar structures are still present even though their structure is qualitatively
different from the unstable case and may include inverted ramp structures as in Fig. 2(b) when
w′T ′ < 0.

To test the effects of these coherent structures on inertial subrange statistics and in particular to
isolate the effect of temperature ramps on intermittency and asymmetry, synthetic time series are
used and are constructed as follows. First, a phase randomization of the original temperature records
[54] is performed by preserving the amplitudes of the Fourier coefficients while destroying coherent
patterns encoded in the phase angle. A synthetic sawtooth time series is then superimposed on the
time series obtained by phase randomization. Here a coefficient α measures the relative weight of
the ramps with respect to the phase-randomized sequence. This combination yields realizations of a
renewal process [see Fig. 2(c) for a representative example with α = 0.5] that is unconnected with
Navier-Stokes scalar turbulence, but mimics sweep-ejection dynamics [13]. Synthetic ramps are
here generated with exponentially distributed durations and with a mean duration set to a multiple
of the integral timescale [2Iw in Fig. 2(c)]. The resulting time series is again normalized to have
zero mean and unit variance.

IV. RESULTS

The main questions to be addressed here require determination of (i) the probability of extreme
scalar concentration excursions and concomitant intermittency and (ii) scalar asymmetry and time
irreversibility across scales. Here tools introduced in Secs. II B and II C are used to investigate how
these two features vary from production to inertial scales for temperature traces and to compare this
behavior with the observed velocity components. Comparison of these quantities for runs recorded
in different atmospheric stability conditions allows us to test whether significant coupling across
scales exists and to what extent velocity and temperature statistics are universal at the smallest scale
examined here.

A. Probabilistic description of intermittency across scales

We first investigate the intermittent behavior of both scalar and velocity components by assessing
to what extent the scaling of even-order structure functions departs from Kolmogorov predictions.
Inspection of scaling exponents ζ ′

n in Eq. (9) for u, w, and T confirms that Kolmogorov predictions
significantly overestimate scaling exponents for structure functions of order higher than 2, as shown
in Fig. 3(a). The scaling exponents obtained for the scalar T show reasonable agreement with
previous experimental results [Fig. 3(b)], with values systematically lower than predicted by the
Kraichnan model in the limiting case of a time-uncorrelated velocity field [58]. The values of ζ ′

n

averaged over the set of runs observed during the experiment are lower for the scalar, especially
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FIG. 2. Sequences of velocity and temperature fluctuations extracted from a strongly unstable run [run 8,
ζ = −0.52, Iw = 1.74s, column (a)] and a stable or near-neutral one [run 34, ζ = 0.07, Iw = 2.18s, column
(b)]. The presence of ramps and inverted-ramplike structures, respectively, is marked by dashed vertical
lines. Column (c) illustrates a phase-randomized sequence obtained from run 34 (top), a series of synthetic
ramps with durations exponentially distributed with mean 2Iw (middle), and the surrogate time series obtained
merging the above sawtooth pattern with the phase-randomized time series (bottom), where the relative weight
of the ramps α was set equal to 0.5.

when compared to the longitudinal velocity components. From this analysis, intermittency effects
appear stronger for the scalar than for the longitudinal velocity.

The empirical PDFs of velocity and air temperature increments (�s = �u,�w,�T ) for runs
in the near-neutral (|ζ | < 0.072) and strongly unstable (ζ < −0.5) classes (Fig. 4) show clear
transitions from a quasi-Gaussian regime at large lags (τ = 2 in the figure) to distributions with
sharper peaks and longer tails at scales well within the inertial subrange (τ = 0.05). This behavior
has been documented for a wide range of turbulent flows [59] and is associated with the buildup of
intermittency [32] due to self-amplification inertial dynamics [60].

The bulk of the PDF of temperature increments at any given scale can also be characterized
by the coefficients of Eq. (11). Results show some differences between runs with differing |ζ |
(Fig. 5). Namely, for runs in the strongly unstable class, q0 exhibits a more pronounced peak
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FIG. 3. (a) Average values of the scaling exponents for longitudinal velocity u (triangles), vertical velocity
w (squares), and temperature T (circles). Black solid lines and dashed lines show, respectively, the Kolmogorov
and the She-Leveque predictions for the longitudinal velocity structure functions. Exponents are computed
from scales ranging between τ = 0.05 and τ = 0.2. (b) Scaling exponents for temperature only; Mean and
standard deviation values are computed over all the runs and are indicated by circles and vertical bars,
respectively. Data from Mydlarsky and Warhaft [61] (squares), Antonia et al. [55] (triangles), Meneveau et al.
[56] (asterisks), and Ruiz-Chavarria et al. (diamonds) [57] are shown for comparison. The KOC scaling (black
line) and results from the Kraichnan model [58] (dashed line) as reported in [4] are also presented for reference.

around the origin and is characterized by larger asymmetry at the crossover scale τ = 1 compared
to their near-neutral counterparts [Fig. 5(a)]. Moreover, the results here confirm that a choice of
linear r0(�T ) and quadratic q0(�T ) appears reasonable for ASL flows. In the case of an unstable

FIG. 4. Normalized probability density functions observed for increments of (a) longitudinal velocity, (b)
vertical velocity, and (c) air temperature at large scales (τ = 2, top panels) and small scales (τ = 0.05, bottom
panels). The figure includes data from runs in the strongly unstable class (ζ < −0.5, shown in red) and near-
neutral class (|ζ | < 0.072, blue). Black lines show the standard Gaussian distribution for reference.
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FIG. 5. Functions q0(�T ) and r0(�T ) estimated from the conditional derivatives of the original temper-
ature time series, for the two classes of strongly unstable (red solid lines) and near-neutral runs (blue dashed
lines). The same quantities are reported for phase-randomized surrogate time series for comparison (gray
circles). Results are shown for the central body of the PDF (within 3σ from the mean) for illustration purposes.
Results are computed for (a) and (b) a lag equal to the integral timescale of the flow τ = 1 and (c) and (d) the
smaller time lag τ = 0.1. Black lines q0 = 1 and r0 = −�T correspond to the standard Gaussian distribution.

ASL, the term r0(�T ) remains linear, while inspection of q0(�T ) suggests that a dependence
on s with an exponent smaller than 2 might be more appropriate, corresponding to stretched
exponential tails for p(�T ) for small lags τ in unstable ASL flows. Comparison with the same data
after run-by-run spectral phase randomization [54] shows that the latter exhibits almost Gaussian
behavior, confirming that the emergence of long tails at inertial scales is primarily a consequence of
nonlinear structures in the original time series.

The variation of the tail parameters η and q with decreasing scale τ (Fig. 6) provides a robust
measure of how the distributional tails of p(�T ) evolve at the onset of the inertial range. For
temperature differences, the rates of change across scales of both η and q appear to be dependent
on the magnitude of the stability parameter ζ . Consequently, while at large scales, where the PDF
closely resembles a Gaussian, neither η nor q exhibits a significant dependence on ζ , for scales well
within the inertial subrange stability is clearly impacting the tail behavior of �T (Fig. 7).

This evidence suggests that the observed intermittency not only is internal (i.e., not only due to
variability in the instantaneous dissipation rate [9]) but is also directly impacted by the larger-scale
eddy motion that senses boundary conditions. In particular, when buoyancy generation is significant,
the heat flux w′T ′ is connected with the sweep and sudden ejection of air parcels, corresponding
to the sharp edges of the temperature ramps [3,13]. The resulting sawtooth behavior could be
responsible for the injection of scalar variance at small scales (instead of a gradual cascade), acting
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FIG. 6. Evolution across scales τ of (a) the q-Gaussian tail parameter q, and of the stretched exponential
shape parameter η obtained from a separate fit to the (b) left and (c) right tails of the distribution of
temperature increments. Data from two stability classes are included: strongly unstable (ζ < −0.5, red circles)
and near-neutral conditions (|ζ | < 0.072, blue triangles). Black lines and shaded areas indicate average values
and standard deviations, respectively, computed over the entire data set.

in particular on the negative tail of the �T PDF, as evident from Fig. 5(a). On the other hand, the
buildup of non-Gaussian statistics for velocity increments is not as impacted by the stability regime
and therefore the dominant effects are in this case primarily an effect of internal intermittency.

FIG. 7. Tail parameters of the PDF of temperature increments across stability conditions ζ . Results include
the q-Gaussian tail parameter q [column (a)] and the stretched exponential shape parameter η, obtained from
fitting the left [column (b)] and right [column (c)] tails of the distribution p(�T ). Values of q and η are
reported for large scales (τ = 5, top panels) and small scales (τ = 0.05, bottom panels). Triangles denote
strongly unstable runs (ζ < −0.5), squares denote stable runs (ζ > 0), and circles refer to slightly unstable
runs (−0.5 < ζ < 0).
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FIG. 8. Normalized third-order structure functions S(τ ) and F (τ ) at the crossover from inertial to
production scales. Vertical dashed lines indicate the integral timescales and horizontal solid lines show the
constant values (a) 0.25 and (b) 0.4. Results are shown for near-neutral runs (|ζ | < 0.072, blue dashed lines),
strongly unstable runs (|ζ | > 0.5, red solid lines), and runs with intermediate values of |ζ | (black dash-dotted
lines).

B. Probabilistic description of asymmetry across scales

To compare the data sets used here with laboratory studies, we first test the validity of
Obukhov’s constant skewness hypothesis, which would require the third-order structure function
of the longitudinal velocity component being constant within the inertial range. Figure 8 reports
the values of the third-order structure functions (7) and (8) evaluated at the onset of the inertial
subrange as delineated by the w time series. Both are approximately constant for scales smaller
than Iw. While comparison with experiments shows good agreement for S(τ ) � −0.25, F (τ ) is
systematically smaller than its anticipated value [29] (−0.4) for all ζ .

For the scalar T , the presence of a finite third-order temperature structure function signifies that
local isotropy is not fully attained in the range of scales explored here. The temperature skewness S3

T

exhibits a plateau for scales smaller than Iw [Fig. 9(a)] similar to previous measurements reported

FIG. 9. Measures of (a) asymmetry S3
T and (b) time irreversibility Rτ computed for temperature increments

for scales varying from τ = 0.05 to τ = 5. The plots include stable runs (black dashed lines), weakly unstable
runs (blue dash-dotted lines), and strongly unstable runs (red solid lines). For reference, the same quantities are
computed for phase-randomized time series (cyan) and synthetic time series with sawtooth positive (blue) and
inverted (black) ramps. Shaded regions correspond to the 1σ -confidence intervals over 34 realizations of the
surrogate time series. The relative weight and mean duration of the synthetic ramps were set to α = 0.4 and
2Iw , respectively.
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in grid turbulence forced by a mean temperature gradient [61]. Moreover, S3
T levels off to positive

values for ζ > 0, while it becomes negative for ζ < 0. This finding is consistent with the presence
of ramplike structures when ζ > 0 (mildly stable conditions) that are inverted when compared to
their unstable counterparts.

The findings here confirm that at the crossover from production to inertial, imprints of ramp
structures persist well into the inertial subrange. The consequence of these imprints on time
reversibility is now considered for temperature sequences. The irreversibility analysis detects strong
irreversibility at large scales that slowly decreases at the onset of the inertial range (Fig. 9). This
finding is consistent with the idea that atmospheric stability determines a preferential direction for
the large-scale scalar structures, which becomes progressively weaker at scales smaller than τ = 1.
Here the sign of the heat flux has a primary effect on the orientation of the ramps, as captured by Rτ .
Furthermore, phase randomization is shown to destroy much of this time irreversibility [Fig. 9(b)],
while the addition of synthetic ramps, either with positive or negative orientation, produces values
of Rτ that closely resemble observations of stable and unstable ASL, respectively. These synthetic
experiments also recover the sign of the third-order moment S3

T [Fig. 9(a)], but not its magnitude at
smaller scales. As one would expect, a sawtooth time series does not fully reproduce inertial scale
scalar dynamics, even though it does clearly capture the qualitative effect of boundary conditions
on scalar ramp-cliff structures.

Additional insight can be obtained by the relative entropy measure defined in Eq. (15), which was
here evaluated by integrating the relative entropy over the joint frequency distribution of normalized
temperature fluctuations and their increments at each scale τ . We used a coarse binning for
estimating the joint PDF p(T ′(τ ), T ) and assumed [51] that only finite probability ratios contribute
to 〈Zτ 〉. To check the consistency of this approach, calculations of Eq. (15) were repeated using a
phase-space reconstruction technique based on embedding sequences (Tt , Tt+τ ) with delay time τ

and embedding dimension 2, which confirmed the validity of this approach (results not shown).
The averaged relative entropy 〈Zτ 〉, while insensitive to the ramp orientation, at every given

level T quantifies the imbalance between forward and backward probability fluxes of temperature
trajectories [Fig. 10(a)]. Again, irreversibility of scalar records increases with the lag τ and here
tends to plateau at larger scales (τ > 1).

Phase-randomized time series, by comparison, exhibit smaller values of 〈Zτ 〉 in the inertial range.
As one would expect, the excess is thus likely a direct result of the presence of scalar ramps. The
presence of asymmetric patterns in temperature time traces further suggests that in the inertial range
scalar turbulence is more time irreversible than velocity, as confirmed by the larger values of 〈Zτ 〉
at inertial scales [Fig. 10(b)].

Time irreversibility of phase-space trajectories was further investigated by testing if a significant
difference exists between the probability distributions p(T ′

τ |T ) and p(−T ′
τ |T ). To this end, a

Kolmogorov-Smirnov (KS) test was performed at the significance level 0.05. At every scale τ ,
results were averaged over different values of T and across runs within the same stability class.
The results from the KS test confirm the picture obtained from the relative entropy measure 〈Zτ 〉:
The PDF of forward and backward temperature diverges significantly as the scale τ increases as
shown in Figs. 10(c) and 10(d). While this test does not capture the sign of the ramps, the behavior
of near-neutral runs exhibits some difference from the case of relevant heat flux: Near-neutral runs
appear on average more reversible than unstable runs at the same dimensionless scale τ .

V. DISCUSSION AND CONCLUSION

In this work, statistical measures for the frequency of extreme fluctuations and the time-
directional behavior of observed time series were applied to scalar turbulence in the ASL. It was
demonstrated that (i) the extreme value properties of the scalar markedly depend on the external
forcing and (ii) scalar dynamics is characterized by time-irreversible behavior at the scales of
injection of scalar variance in the turbulent flow. This time irreversibility propagates down to the
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FIG. 10. (a) Mean and standard deviation over 34 time series of 〈Zτ 〉 computed for scales varying from
τ = 0.05 to τ = 20. Values of 〈Zτ 〉 are shown for original temperature records (red) and surrogate time
series obtained by phase randomization (green). For comparison, the same analysis is reported for fractional
Brownian motion with Hurst exponent H = 1/3 (blue). (b) Comparison of 〈Zτ 〉 for temperature (red),
longitudinal velocity (yellow), and vertical velocity (green). Also shown are the (c) Kolmogorov-Smirnov
test average rejection rate and (d) average P value computed for all the temperature time series (cyan for mean
value and 1σ -confidence interval) and for different stability classes: strongly unstable runs (ζ < −0.5, red),
near-neutral runs (|ζ | < 0.072, blue), and intermediate values (0.072 < |ζ | < 0.5, black). The KS test was
performed at the 0.05 significance level, corresponding to the horizontal line in (d). The vertical dashed line
marks the integral timescale Iw .

smaller scales of the flow examined here, thus carrying the fingerprint of the energy injection
mechanism.

It is well known that the PDFs of scalar increments develop heavier tails with decreasing scales
in the inertial range when compared to their velocity counterparts. The analysis here shows that
within the first two decades of the inertial subrange, this buildup of tails also carries the signature of
turbulent kinetic energy generation. The direct injection of scalar variance from large scales seems
to hinder any universal description of �T statistics within this range of scales. Instead, the PDF of
�T (r ) for ASL flows appears to be conditional on the value of ζ at scale r . This finding reinforces
previous experimental results [62] obtained for a different type of flow (turbulent wake). In this
case, the scalar injection mechanism was shown to impact higher-order scaling exponents of the
temperature structure functions.

This dependence on atmospheric stability regime for p(�T ) further suggests that the topology
of large eddies, and in particular the presence of ramp-cliff scalar structures, may be responsible
for the scalewise evolution of intermittency and the persistent time directionality at fine scales. This
intermittency excess observed in the transition from production to inertial scales is consistent with
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self-amplification dynamics taking place that further excites the excess of scalar variance injected
by the ramps.

However, while measures of intermittency appear to be dependent on the absolute value of ζ ,
i.e., on the relative magnitude of shear and buoyancy production terms (regardless of the sign of
the heat flux), the analysis of asymmetry and time reversibility clearly senses the sign of the heat
flux H more than the magnitude of ζ itself. This effect is arguably a product of the preferential
orientation that the external temperature gradient imposes on the scalar ramp-cliff structures, as
explained by sweep-ejection dynamics. This hypothesis was here further tested by comparisons
with synthetic time series that mimic ramp-cliff patterns observed in the scalar time series. The
analysis confirmed that much of the observed time irreversibility, as well as its dependence on the
sign of H , is recovered by these surrogate time series (Fig. 9).

The analysis of time-directional properties showed that time-irreversible behavior for the scalar
is stronger at the large scales of the flow where boundary conditions, and in particular the sign of H ,
determine the orientation and structure of the eddies. At finer scales, time irreversibility as quantified
by both 〈Zτ 〉 and Rτ progressively decreases as advection destroys the preferential eddy orientation
imposed by boundary conditions. Note that this behavior is not captured by a simple measure of
skewness such as S3

T [Fig. 9(a)], which is small at large scales and plateaus in the inertial range
consistent with previous experiments [4] and numerical simulations [63], thus showing that local
isotropy is not fully attained at the finer scales examined here.

Turbulent flows exist in a state far from thermodynamic equilibrium, with the flow statistics
exhibiting irreversibility. This irreversibility is typically described in terms of fluxes of energy or
asymmetries in the PDFs of the fluid velocity increments [64]. Similar methods could be used to
describe irreversibility in the scalar field, e.g., using S3

T , and this would imply that the irreversibility
of the scalar field is stronger at smaller scales than it is at larger scales. However, in this paper we
have used alternative measures to quantify the irreversibility, namely, 〈Zτ 〉 and Rτ . These quantities
paint a different picture, namely, that it is the largest scales, not the smallest (inertial) scales in the
scalar field, that exhibit the strongest irreversibility. A potential cause for these differing behaviors
is that, whereas fluxes and quantities such as S3

T are multipoint single-time quantities, 〈Zτ 〉 and
Rτ are single-point multitime quantities. Thus, these two ways of describing irreversibility provide
different perspectives about the nature of irreversibility in turbulence, which involves fields that
evolve in both space and time. This difference in perspectives is a topic for future inquiry.

Collectively, the results presented in this paper suggest the following picture for ASL turbulence
at the crossover from production to inertial. Increasing instability in the ASL leads to increases
in the mean turbulent kinetic energy dissipation rate [as evidenced by Eq. (1)] and its spatial
autocorrelation function and PDF. The consequences of this increased dissipation with increased
instability have different outcomes for velocity and scalar turbulence. For velocity, refinements
to Kolmogorov appear sufficient to explain the observed scaling in the inertial subrange. For
scalar turbulence, the picture appears more complicated. Intermittency buildup with decreasing
(inertial) scales is more rapid when compared to their velocity counterparts, and the signa-
ture of the temperature variance injection mechanism persists at even the finer scales explored
here.

Turbulence and scalar turbulence are characterized by a constant flux of energy and scalar
variance from the scales of production down to dissipation. While early theories hypothesized
a cascade only depending on these quantities, experimental evidence to date supports a more
complicated picture. The multitime information encoded in 〈Zτ 〉 reveals that time reversibility
is not constant across scales, as are the fluxes of information entropy. Probability fluxes forward
and backward in time are not balanced in general for air temperature increments, especially at the
crossover from production to inertial. Furthermore, these fluxes carry the signature of the external
boundary conditions (i.e., H ) and show that dissipation rates themselves are not independent of
the large-scale dynamics. Although a formal analogy between Eq. (15) and the thermodynamics
of microscopic nonequilibrium steady-state systems exists, we stress that in the present application
turbulent fluctuations are macroscopic and are the result of nonlinear and nonlocal interactions.
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APPENDIX: STABLE STRATIFICATION AND DISTORTIONS OF THE INERTIAL SUBRANGE

In general, stable stratification limits the onset and extent of the inertial subrange given its
damping effect in the vertical direction [52]. Here we show that the scales for which these effects
are relevant occur at scales larger than the inertial range examined here. The Ozmidov length scale
[65] (originally suggested by Dougherty [66]) is defined as the scale above which buoyancy forces
significantly distort the spectrum of turbulence.

This length scale, sometimes labeled the Dougherty-Ozmidov scale, can be expressed as

L0 =
√

ε

N3
, (A1)

where ε is, as before, the mean turbulent kinetic energy dissipation rate and N is the Brunt-Väisälä
frequency, defined as

N =
√

g

T

dT

dz
. (A2)

In the study used here, no information was provided about the actual mean potential temperature
gradient dT /dz. However, an approximated estimate of L0 for the runs collected in the case of
stable atmospheric stratification may be conducted. Note that only four runs follow this stability
class as runs not meeting strict stationarity requirements were excluded from the analysis (and they
were mainly collected in unstable atmospheric conditions). The mean dT /dz was computed using
Monin-Obukhov similarity theory as

dT

dz
= −

(
T ∗

Kvz

)
φT

( z

L

)
, (A3)

where kv = 0.41 is the von Kármán constant, z = 5.1 m is the distance from the ground, T ∗ =
〈w′T ′〉

u∗ , and for mildly stable stratification

φT = φm = 1 + 4.7
( z

L

)
. (A4)

The mean turbulent kinetic energy dissipation rate was computed as

ε = u∗3

kvz

(
φm − z

L

)
. (A5)

Figure 11(a) shows that the quantity

Is = Iwu∗φm

kvz
= const � 0.4 (A6)

is almost constant across runs and exhibits a value slightly lower than the expected 0.4.
The estimated values of the dimensionless Ozmidov number L0/Iwu∗φm are reported in

Fig. 11(b). Here L0 decreases with increasing stability ζ as the effect of buoyancy is experienced
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FIG. 11. (a) Quantity Is and its expected value 0.4 (black horizontal line) for the four stable runs in the
data set. (b) Normalized Ozmidov length for the same runs.

by eddies of sizes progressively smaller. However, the values of the Ozmidov scale are consistently
larger than the integral scale of the flow Iw for the four stable runs here. Hence, ignoring distortions
caused by stable stratification on inertial subrange scales for the aforementioned four runs may be
deemed plausible.
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