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Membrane filters are in widespread industrial use, and mathematical models to predict
their efficacy are potentially very useful, as such models can suggest design modifications
to improve filter performance and lifetime. Many models have been proposed to describe
particle capture by membrane filters and the associated fluid dynamics, but most such
models are based on a very simple structure in which the pores of the membrane are
assumed to be simple circularly cylindrical tubes spanning the depth of the membrane.
Real membranes used in applications usually have much more complex geometry, with
interconnected pores that may branch and bifurcate. Pores are also typically larger on the
upstream side of the membrane than on the downstream side. We present an idealized
mathematical model, in which a membrane consists of a series of bifurcating pores,
which decrease in size as the membrane is traversed. Feed solution is forced through
the membrane by applied pressure and particles are removed from the feed by adsorption
within pores (which shrinks them). Thus, the membrane’s permeability decreases as the
filtration progresses. We discuss how filtration efficiency depends on the characteristics of
the idealized branching structure.
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I. INTRODUCTION

Membrane filters are microporous films with specific pore size ratings for separating contami-
nants of any given size from a fluid. They are used in many industrial engineering processes. One
of the most important and widespread applications is water purification [1], in which suspended
particles, colloids, and macromolecules are removed from water using microfiltration and/or
ultrafiltration. Membrane filters also service the biotech industry in many ways [2-5]; for example,
they are used in artificial kidneys to remove toxic substances by hemodialysis and as an artificial
lung to provide a bubble-free supply of oxygen in the blood [6]. Further applications include
treatment of radioactive sludge [7], the cleaning of air or other gases [8], the production of osmotic
power [9], and beer clarification [10], among many others.

There are two commonly used modes of filtration, each with advantages and disadvantages:
(1) crossflow or tangential filtration and (ii) dead-end filtration. In the former case the feed flow
is primarily parallel (tangential) to the surface of the membrane, while in the latter flow is
perpendicular to the membrane surface. Membrane fouling inevitably occurs during filtration as
the removed impurities deposit on or within the membrane but the extent and distribution of the
fouling depends on the filtration mode and the membrane structure. In tangential-flow filtration, less
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FIG. 1. Magnified membranes with various pore distributions and sizes from (a) Ref. [13] and (b) and (c)
Ref. [4]. Photographs in (b) and (c) show samples of width 10 pm.

superficial membrane fouling is observed, due to the sweeping effect of the high-shear tangential
flow on the membrane surface, while in dead-end filtration more extensive superficial membrane
fouling occurs, but a higher flux can be achieved. We will focus on dead-end filtration in this paper.
Membrane fouling may arise due to a combination of mechanisms: (i) adsorption, in which smaller
particles are deposited within the membrane pores; (ii) blocking, in which particles larger than the
pore size are sieved out and deposited at the pore entrance; and finally, (iii) once pores are blocked
in this way, larger particles can form a cake on top of the membrane, adding additional resistance via
a secondary porous layer on top. Using primarily empirical fouling laws, numerous investigations
have been carried out of all three mechanisms (see, for example, [2,7,10-12], among many others).

In addition to empirical laws, a range of first-principles models has been proposed to describe
particle capture by membrane filters and the associated fluid dynamics, but most such models are
based on a very simple structure in which the pores of the membrane are assumed to be simple
tubes spanning the depth of the membrane. Real membranes used in applications can have rather
varied internal structure (see, e.g., Fig. 1), with interconnected pores that may branch and bifurcate,
and pore-size variation across the membrane. Pores are typically larger on the upstream side of the
membrane than on the downstream side, giving a porosity gradient in the depth of the membrane.
It has long been known that porosity gradients affect filter performance in terms of both the
filter lifetime and the total filtrate collected over the lifetime (as well as particle retention by the
membrane), with negative porosity gradients (in the direction of flow) giving superior performance.
This is intuitively obvious when considering the adsorptive fouling mechanism: Fouling begins at
the upstream side of the membrane, hence those pores shrink fastest and so should be largest to
maximize pore closure time.

Quantification of the effects of the membrane’s internal morphology (the pores’ shape, size,
connectivity, and distribution within the membrane) on the filtration process, which is the main
focus of this paper, has been considered by several authors, using a variety of modeling avenues
(see, e.g., [14-27]). We highlight just a couple of the approaches most relevant to our work here.
Dalwadi et al. [14] used homogenization theory to model the filter material as a collection of
spherical obstructions, around which the feed solution must flow and whose size slowly varies
across the membrane. This size variation models porosity gradients within the filter and the filter’s
performance can be investigated theoretically as a function of the porosity gradient. Griffiths et al.
[16] made further contributions to quantitative understanding of the effects of pore-size depth
variation, formulating a discrete network model that treats a membrane as a series of interconnected
layers, each of which contains cylindrical channels (whose radius varies from one layer to the next)
that may shrink under the action of adsorption or be blocked from above by deposition of a large
particle. In our previous work [25], we considered perhaps the simplest continuum model of depth
variation, in which the membrane consists of a series of identical axisymmetric pores spanning the
entire membrane, with depth-dependent radius.
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The goal of the present paper is to extend the scope of the work outlined above, deriving a general
pore branching model that accounts for a range of membrane internal geometries and that allows for
fouling by particle adsorption within pores. The paper is laid out as follows. In Sec. II we introduce
a mathematical model for flow through a membrane with internal branching structure and propose
the adsorptive fouling model. In Sec. III we introduce appropriate scalings and nondimensionalize
the model. Sample simulations, which demonstrate the important effects of pore geometry and
branching features, are presented in Sec. IV. We conclude in Sec. V with a discussion of our model
and results in the context of real membrane filters and of future modeling directions. We also include
two Appendixes: Appendix A, which sketches a model to account for fouling at the pore bifurcation
junctions, and Appendix B, which outlines a simplified discrete model to describe the membrane
fouling (which is much faster and cheaper to implement numerically, especially for asymmetric pore
structures).

II. MATHEMATICAL MODELING

The modeling throughout this section assumes that the membrane is flat and lies in the (Y, Z)
plane, with unidirectional incompressible Darcy flow, at superficial velocity U(T), through the
membrane in the positive X direction (that U does not depend on X is immediate from the unidirec-
tionality and incompressibility). The membrane properties and flow are assumed homogeneous in
the (Y, Z) plane, but membrane structure may vary internally in the X direction (depth-dependent
permeability); thus we seek a solution in which properties vary only in X and in time 7". Throughout
this section we use uppercase letters to denote dimensional quantities; lowercase letters, introduced
in Sec. III, will be dimensionless.

Two filtration forcing mechanisms are commonly used in applications: (i) constant pressure drop
across the membrane specified and (ii) constant flux through the membrane specified. In the former
case the flux will decrease in time as the membrane becomes fouled; in the latter, the pressure
drop required to sustain the constant flux will rise as fouling occurs. We will focus on case (i) here
and assume this in the following model description. With constant pressure drop Py, the boundary
conditions on the pressure P (X, T) within the membrane are

PO, Ty=Py, P(D,T)=0, (1)

where D is the membrane thickness.

In this paper, we consider only one of the three fouling mechanisms described in the Introduction:
fouling due to particle adsorption within the membrane pores (also known as standard blocking).
Though pore blocking and cake formation are not difficult to incorporate in our model, including
them here will make it harder to draw firm conclusions about the effects of pore geometry,
particularly in the presence of some parametric uncertainty; hence we leave these effects for a
future study. Furthermore, adsorptive fouling represents the most efficient (and therefore desirable)
filtration in the sense that it is the only fouling mode that utilizes the membrane interior: It allows
for filtration with pores that are much larger than the particles, so filtration can be achieved with
minimal system resistance.

We consider a feed solution containing small particles (much smaller than the pore diameter),
which are transported down pores and may be deposited on the internal pore walls. In the present
work, we assume that all small particles behave identically; an extension of our study to consider
multiple particle populations with different properties is left for future work. For such a feed solution
our assumption of adsorptive fouling only should be a reasonable approximation. In our previous
work [25], we modeled the filter membrane as a periodic lattice of identical axisymmetric pores,
which traverse the membrane from the upstream to the downstream side, with radius varying in the
depth of the membrane. In reality, and as noted in the Introduction, most membranes have a much
more complex structure: Figure 1 shows just three examples of real filter membrane cross sections.
Many membranes have depth structure that varies from large pores on the upstream side to much
smaller pores on the downstream side, and large pores may branch into several smaller pores as the

094305-3



PEJIMAN SANAEI AND LINDA J. CUMMINGS

D, D, A
A [ Py
| ! D A
D 2 21
2
: Py
‘ 1 D :
D; 3 A31 A32
P=0 (a) P=0 (b)

FIG. 2. Schematic of (a) symmetric and (b) asymmetric branching structures with three layers (m = 3),
thicknesses Dy, D,, and D3, and specified pressure drop P = Py. In (b) the radius of the jth pore in layer i

and the pressure at the downstream end of this pore are A;; and P;;, respectively.

membrane is traversed. To begin to address this type of complexity, we will construct a simplified
model in which a membrane consists of units that repeat periodically in the plane of the membrane
in a square lattice pattern, with period 2W. Within each lattice unit we assume that the membrane
has a layered structure, exemplified by the sketch in Fig. 2(a): Here the period unit consists of a
single circularly cylindrical pore on the upstream side which, after a distance D, bifurcates into
smaller tubes (pores). Each of these then undergoes further bifurcation after distance D, and so
on. This sequence of divisions generates a membrane with m layers, each layer containing twice as
many pores as the previous layer. Clearly, many possible variants on this basic scenario could be
imagined, including pores that recombine downstream: Our model will readily generalize to other
cases. We will consider two scenarios in this paper: (i) a symmetric branching model in which
the pores within each layer are identical and (ii) a more general asymmetric branching model [see
Fig. 2(b)]. We will focus primarily on case (i) in this paper and outline the model in detail in Sec. IT A
below; our description for the asymmetric branching model requires minor modifications, described
in Sec. II B.

A. Symmetric branching model

Here we consider all pores within a given membrane layer to be identical, initially circularly
cylindrical, and perpendicular to the plane of the membrane. A simple case with three layers is
schematized in Fig. 2(a): Each branching unit is assumed to stem from a single pore on the upstream
surface. Layer i of the membrane occupies X;_; < X < X;, where X; = Z}:O Dj, with Dy =0
defined for convenience. Assuming that the short pore-connection regions that are not perpendicular
to the membrane have negligible resistance, this layered structure can be described using the Hagen-
Poiseuille model: An individual pore in layer i of radius A; has resistance R; = [ ;( » 8/mAtdX
(even though pore radius does not vary in X initially, spatial variation will develop over time due
to the fouling). Within a branching unit the ith layer contains v; pores and has depth D; (for the
case considered here, with only bifurcations of pores allowed, v; = 2/~!). Under these assumptions
mass conservation shows that the cross-sectionally averaged pore velocity within each pore in
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layer i, U, ;(X), satisfies
(A Uy,)
X -

Note that the superficial Darcy velocity U through the membrane (independent of X as noted earlier)
and averaged pore velocities for each layer are related by

Xian X< X, I<ism. 2)

QW)Y U = nv;A70,,;, 1<i<m, 3)
by a simple flux balance argument. Within each layer U satisfies, approximately,
Vi .
QWU = ——(Pi = Pi1), Xig SX <X, 1<i<m, “)
MG

where P; (1 <i < m — 1) are the unknown interlayer pressures within the membrane (P, is the
specified driving pressure and P,, = 0), providing m equations for U and the unknowns P;. Solving
successively for P; we obtain

2 Py
QW)U = R &)
where

R =

m

R; X8
—, R = —4dX. (6)
1 vi Xi-1 NAZ'

l
Equation (6) captures the net resistance R of the microstructured membrane in terms of the resis-
tances of its sublayers. For later use in comparing the performance of different pore structures, we
define the so-called throughput,V (T'), which is the total volume of filtrate processed at time 7" and

is commonly used experimentally to characterize membrane filter performance V = fOT QwW)Y*udT
or, equivalently,

v 2

— =QW)U, V(@©)=0. @)

oT

The model outlined above describes Darcy flow through a membrane with the specified

microstructure. It must now be coupled to a fouling model that describes how the structure changes
over time. Our fouling model is based on some of our earlier work [25], which used careful
averaging of an advection-diffusion equation for the particle concentration over the pore cross
section, in a distinguished Péclet number limit, to derive an equation for the axial advection of
the small particles within the pores (assumed slender). A sink term represents the adsorption of
particles at the pore wall as a flux into the wall, assumed driven by some radial force of attraction
(likely of electrostatic origin in practice). We refer the reader to [25], Appendix A, for full details
of our derivation; but briefly, assuming an asymptotic expansion for particle concentration C in
powers of the pore aspect ratio squared, at leading order radial diffusion dominates the particle
distribution within the pore, giving a particle concentration approximately uniform in the radial
direction. The variation of concentration along the pore axis is determined by examining further
terms (higher order) in the advection-diffusion equation. The direct analog of this model for pores
in each sublayer of the membrane is
,i%Z_AZ_Za Xia < X<X;, 1<i<m, 3
where C; is the cross-sectionally averaged particle concentration in the pores of the ith layer, to be
solved subject to specified particle concentration at the inlet,

C1(0,T) = Co, &)

UP
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and continuity of particle concentration from one layer to the next. The (dimensional) constant A
models the physics of the attraction between particles and pore wall that is causing the deposition.
The pore radius in each layer shrinks in response to the deposition according to
a ) d0A; )

a—T(nAl-) = —Aa(2rA;)C; = 3T - —AaC;, X1 XX, 1<i <m, (10)
for some constant « (the pore shrinkage parameter, on the order of the particle volume), which
simply assumes that the pore cross-sectional volume per unit depth shrinks at a rate given by the total
volume of particles deposited locally. The initial pore radii are specified throughout the membrane

Ai(X,00=A Xia<X<Xi, I<ism, (1)

i9»
where A;, is the (constant, specified) initial radius of the pores in the ith layer.

As noted previously, this model describes the case of fouling by standard blocking (particle
adsorption) only. Inclusion of other fouling modes such as pore blocking and cake formation is
discussed briefly in Sec. V. In addition, we present and briefly discuss a simple model for fouling
at pore junctions in Appendix A. Since trial simulations indicate that inclusion of such effects leads
to only negligible changes to our results, we do not include junction fouling in the simulations and
results of this paper.

B. Asymmetric branching model

The model above has the simplifying feature that all pores in a given layer are identical initially
and thus, given the deterministic nature of our fouling model, remain so at later times. Real
membranes do not possess such symmetry; hence we also formulate a more realistic model in which
pores in the same layer are nonidentical. The same basic m-layered structure is assumed, however,
in which a single pore at the upstream surface bifurcates into two smaller (nonidentical) tubes after
distance D; and so on, again with v; = 2/~! pores in layer i. These pores in general all have different
radii, which we denote by A;;, 1 < j < 2°~! (the radius of the jth pore in layer i). The pressures
at either end of this pore will be P;; at the downstream end and P;_j (j+1y/2) at the upstream end'
[see Fig. 2(b) for a simple schematic in the case of three layers]. In the first layer i = 1, there is
just one pore of radius Ay, with upstream pressure Py, = P, specified. Here U, ;; represents the
cross-sectionally averaged velocity of the fluid in the jth pore in layer i and satisfies, approximately,

_ 1 . o mi
7 A7, Upij =~ r, P~ Piovigeo). 1<iSm 1<) <2 ! (12)
)
where
X; 8
R; =/ -dX (13)
X TAG

is the resistance of the jth pore in layer i. By a simple flux balance argument, the following relations
hold between the superficial Darcy velocity U across the membrane and the pore velocities in each
layer:

QW)U = AL, Up 11,
AL Upi; = AT 0 Upivioj + AT 5 0piiny, 1<i<m—1, 1< <270 (14)

If the pore radii are specified then Egs. (12) and (14) represent 2" + 2’7" — 1 equations with 2™ +
2=1 _ 1 unknowns, consistingof U, U ;; (1 <i <mand1 < j < 21 and Pi(l<i<m—1

'The floor function [x] is the greatest integer less than or equal to x.
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and 1 < j < 2/~"); hence they can be solved uniquely. Consistent with the adsorption fouling model
proposed in (8)—(11), we now have [analogous to (8) and (10)]

— BCU i Cij E)Aij

U,, —L = ,
P X Aij aT

=—AaCj, Xi i <X<X, 1<i<m, 1<j<27", (19)

where C;; is the cross-sectionally averaged particle concentration in the jth pore in layer i. We solve
the model (12)—(15) subject to C1(0, T) = Co, P11(0,T) = Py, and P,,;(D, T) =0for 1 < j <
21 with A;;(X, 0) for X,y < X < X;, 1 <i <m,and 1 < j <27" all specified.

III. SCALING AND NONDIMENSIONALIZATION

To reduce the number of independent parameters, we introduce appropriate scales with which to
nondimensionalize each model.

A. Symmetric branching model

We nondimensionalize (1)—(11) using the scalings

8D
P =Pypi, (X, Xi,Dj)=D(x,x;,d;), Ci=Coci, Ai=Wa;, R =——37,
7 W4
_ aW?Py | . w TW*P, TW3P,
(Us Up.i) = (M, upi)v T = t, Q = 5 ~ 4 = s~ ~ U (16)
32uD ’ AaCy 8uD SuDAaCy

where D = )" | D; is the membrane thickness. This gives the dimensionless model for @(r),
ci(x,t), ﬁp,i(x,t), 7i(t), a;(x,t), q(t), and v(¢) (dimensionless Darcy velocity, averaged particle
concentration, averaged pore velocity, pore resistance, pore radii in the ith layer, flux, and
throughput, respectively),

. 1 . naiz ~ 17
0= , A=vi—u,,,
>oimi Fi/vi 4 P
Yodx
P= —, 18
| "
_ ¢ A Ci -~ 32AuD?
Upim— =—A—, Xl SXSX, A= —_—F—>r, (19
ax a; JTP()W
8a,-
— = —q, 20
5 ¢ (20)
with boundary and initial conditions
c1(0,1)=1, a(0) = a, (21

where 1 <i < m, and a;, € (0, 1) are specified.
Using Eq. (17), one can define a dimensionless membrane resistance 7(¢), consistent with (5), as

=Y - (22)

Note that, while this definition is in a sense “natural,” typically it leads to very large values for 7
and as a consequence very small values for i = 1/7, specifically for a membrane with many layers.
Our initial choice for the scalings in (16) makes sense based on a single pore (see our previous
work [25]) but is not appropriate for a system with multiple layers and branching. Hence, we make
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a further rescaling based on a typical value 7y of the resistance as defined in (22).> Therefore, we
define

L. _ ST Lo .
(r,ry) = f—(r,”i), (u, ity ;) =ro(ll, up;), A=ror, 1<i<m, (23)
0

where 7, r;, u, iip;, and A are the new dimensionless resistance, pore resistance, Darcy velocity,
averaged pore velocity, and particle-wall attraction coefficient, respectively. Using these new
scalings, (17)—(19) and (22) give

1 T, 24)
U= ———, U= —Vd iy,
Z;n:]ri/vi 4 e
1 /x" dx 25)
ri = — VN
Po )y, ai(x)
dc; ; 32AuD?*#
ﬁp,ii=—)\ﬁ, A:M, (26)
ax a; T PyW3
rn=3 -~ 27)

i=1

for 1 < i < m, while (20) and (21) still hold. Recall that in the case of bifurcating pores, v; = 2/~

B. Asymmetric branching model

We nondimensionalize the model (12)—(15), using the same scalings as in (16) and (23), giving
the dimensionless model for u(z), ¢;;(x, t), it ;;(x, t), r;j(t), pij(x, t), and a;;(x, t) (dimensionless
Darcy velocity, averaged particle concentration, averaged pore velocity, pore resistance, interlayer
pressures, and pore radii within the jth pore in layer i, respectively),

4y = na%lﬁp,”, aizjﬁp.ij = ai2+1,2j—lﬁp-i+l»2j—l + Cliz_‘_l,zjb_tp,,‘_;,_],zj, (28)
> 4
Tagip,i; = _:(pij — Pi—1[(j+1)/21); (29)
ij
1 /)‘l dx (30)
ri=— g
Y ro Xi—1 a?j(x)
¢ Cij 32AuD?#
ook = =39 = 2220 31)
7 ox aij T PyW3
861,']'
T = —Cij, (32)

where 1 <i <mand 1< j <2~ We solve the model (28)-(32) subject to boundary and initial
conditions
en(0,0) =1, a;0)=ay, forl<i<m, 1<j<27
poi) =1, pu=0 forl<j<2"", (33)

where 0 < a;;, < 1 are specified.

%In most cases we take #y= 15000 to be the initial dimensionless resistance given by (22), since we will most
often compare equal resistance systems (see Sec. [V).
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IV. RESULTS

In this section, we present some simulations of the models (20), (21), (24)—(27) (symmetric case),
and (28)—(33) (asymmetric case) described in Sec. III above. We use an implicit finite-difference
method with 100 grid points per pore to solve the equations numerically and we pay particular
attention to how results depend on the branch configuration, as specified by the initial conditions on
the pore radii. Other than parameters related to the initial membrane geometry, our model contains
one dimensionless parameter A, which captures the physics of the attraction between particles and
the pore wall. Its value is unknown and may vary widely between systems depending on the detailed
structure of the filter membrane and on the nature of the feed solution. In the absence of firm
data we take A = 30 for most simulations and briefly investigate the effect of varying A later in
Fig. 5. Methods of determining this parameter (which depends on the characteristics of both feed
and membrane) for a given experimental system are discussed in Sec. V.

A. Symmetric branching model results
1. Equal-thickness layers

We first consider the case in which all layers are equally spaced, with d; =1/m. For the
simple bifurcating pore model, v; = 2/~! for 1 <i < m; therefore, (25) and (27) together give
dimensionless membrane resistance as

1< 1 (%  dx
H=—9Y — S 34
r®) 7o ; 2’—1,/x.] ai(x, 1)} (34

i

In order to make a meaningful comparison, we run simulations for pore structures that have the
same initial membrane resistance ry = r(0). This means that we are comparing membranes that
perform identically when no fouling occurs; they would yield identical (constant) flow rates for a
given transmembrane pressure difference when filtering pure water.

Furthermore, in order to keep the number of variable parameters small, we assume that the initial
pore radius decreases geometrically in the depth of the membrane; that is, we take a;, = a; k' ! to
be the initial radius of the pores in the ith layer, where a;, is the initial radius of the pore in the
first layer and « is the geometric ratio. Therefore, by fixing the initial resistance r( [as defined by
(34) with t = 0] and varying the geometric coefficient «, we can investigate a range of membrane
morphologies. Note that, with ry and « specified, the radius of the pore in the top layer will be
determined; in particular, as k increases, the initial pore radius in the top layer must decrease and
vice versa (in order to keep total membrane resistance fixed). More specifically, setting t = 0 in (34)
and using a;(x, 0) = a; k' ~! gives

Lo | 1/4
o = (mrofo Z K4(i1)2i1> ' (35)

i=1

A selection of results is shown in Fig. 3: We simulate the model (20), (21), and (24)—(27) for five
different values of the geometric coefficient (x = 0.6, 0.65, 0.707, 0.75, and 0.8), with deposition
parameter A = 30, number of layers m = 5, and initial dimensionless membrane resistance ry = 1.
Note that the chosen range of « values includes cases where membrane porosity is increasing
k>1/ \/5), uniform (¢ = 1/ V2 & 0.707), and decreasing (k < 1/ ﬁ) in the direction of flow.

Figures 3(a) and 3(b) show the pore radii at the top (upstream side) of each layer, a; (x;, t), versus
time, for « = 0.6 and 0.8, respectively (results for x = 0.65, 0.707, 0.75 are suppressed here since
the evolution is qualitatively very similar). A notable feature of these plots is that pore closure
occurs first in the upstream membrane surface layer, at least for the model parameters considered
here. This may be understood qualitatively as follows. When the (identical) pores in any layer are
near closure, the fluid velocity everywhere within the membrane tends to zero. In regions of the
membrane where c is not already small, this leads to large spatial gradients in ¢ [see (19)], which
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FIG. 3. Symmetric branching model. (a) and (b) Pore radius evolution at the top of each pore a;(x;, 1)
for equal (initial) resistance membrane structures, where the initial pore radii in subsequent layers are
geometrically decreasing, with geometric coefficient «: (a) x = 0.6 and (b) « = 0.8. Also shown is the
throughput v(#) vs (c) total flux ¢(z) and (d) particle concentration at outlet ¢, (1, ¢), for several different x
values shown in the legend. In all cases ro = 1, A = 30, and the number of layers m = 5.

in turn leads to ¢;—(x;—1, ) > c¢;i(x;, t) (again for i such that ¢; is not already small; recall that
0 < ¢ < 1 is monotonically decreasing in x). It follows [Eq. (20)] that the closure rate of pores
in downstream layers within the membrane drops relative to the rate in upstream layers, with the
closure rate of the pore in the first layer dominating, eventually catching up with other pores, and
closing first.

The closure time #¢, which is the time at which the membrane no longer permits flow and filtration
ceases, varies with the geometric coefficient. For the scenarios shown in Fig. 3, our model predicts
that the smaller the geometric coefficient, the larger the closure time; this appears to be primarily
because, with initial total resistance fixed, the initial pore radius in the first layer is wider for a
branching structure with a smaller geometric coefficient and (as discussed above) this is always the
pore that closes first. Though we do not show the results for pore radii @;(¢) in each layer versus
time for the intermediate x values x = 0.65, 0.707, 0.75, those cases also bear out this prediction.
Note that from Egs. (20) and (21) it follows that aa%hzo = —1, hence (since this pore closes first)
the closure time is exactly # = a;,.

Figure 3(c) shows flux-throughput graphs for the membrane structures with the chosen values
of the geometric coefficients «. The flux-throughput graph plots the instantaneous flux through the
membrane at any given time versus the total volume of filtrate processed at that time (throughput)
and is a common experimental characterization of membrane filter performance. Since the flux
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FIG. 4. Symmetric branching model: total throughput v(#) versus geometric coefficient x with 1 = 30 for
(a) several different values of dimensionless initial resistance ry, with number of layers m = 5 and (b) several
different numbers of layers m, with ry = 6.66.

is directly proportional to the superficial Darcy velocity and is depth independent, we define
dimensionless flux for our model by ¢(#) = u(0, ¢); dimensionless throughput is then given by
v(t) = f(; q(t")dt’ [see also (7)]. The graphs in Fig. 3(c) collectively demonstrate that, although all
branch structures give the same initial average membrane resistance (manifested by the same initial
flux), they exhibit significant differences in performance over time. In particular, if performance
is characterized by total throughput over the filter lifetime then (for the chosen model parameters)
branch structures with wider pores in the top layer (upstream side) give notably better performance
overall, with more filtrate processed under the same conditions. The minimum total throughput is
given by the branch structure with the narrowest pore on the upstream side (kx = 0.8 > 1/+/2; here
the porosity is increasing in the depth of the membrane), which exhibits rapid closure.

Another key consideration in evaluating membrane performance is the concentration of particles
remaining in the filtrate as it exits the membrane, c,, (1, t): In general, a lower particle concentration
at the outflow side of the membrane indicates superior separation efficiency. Figure 3(d) plots
cm(1,t) versus throughput for each of the chosen geometric coefficients. The results here are
consistent with those of the flux—throughput graphs of Fig. 3(c); in particular, membranes with
narrow pores in the first layer of the branching network (or with larger geometric coefficients
k) give poorer performance by this measure also, exhibiting inferior particle retention compared
with membranes whose pores are wider on the upstream side. A noteworthy feature here is that in
the “best-performing” case k = 0.6, particle retention actually worsens during filtration initially,
indicated by an increasing value of ¢, (1, 7). This type of behavior may be observed in real
membranes and has been predicted in discrete particle simulations of filtration pore networks (see,
e.g., [28]), though not in continuum-based models such as ours. Though the effect is minor here,
it is important to be aware that particle removal efficiency can be nonmonotonic and to predict
conditions under which such behavior will occur, since a user needs to be able to rely on particle
retention always meeting the desired tolerance.

Figures 4(a) and 4(b) further illustrate the model predictions, plotting throughput versus the
geometric coefficient for several different scenarios. In Fig. 4(a) the number of layers is fixed,
m =135, and total throughput is plotted versus the geometric coefficient for several different values
of the initial membrane resistance r(y. Note that for lower resistance membranes, where pores must
be large (relative to the containing period box), the range of realizable geometric coefficients is
bounded below. Needless to say, as initial membrane resistance increases, the performance of the
filter (as measured by total throughput) decreases. Consistent with our results in Fig. 3, for fixed
initial resistance a larger geometric coefficient always results in less total throughput.
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FIG. 5. Symmetric branching model: (a) total throughput v(¢) and (b) initial particle concentration at the
pore outlet ¢, (1, 0), versus the geometric coefficient « for several different values of A, withm =5 and ry = 1
(orange curves) and m = 10 and ry = 6.66 (black curves).

In Fig. 4(b), the dimensionless initial membrane resistance is fixed and throughput is again
plotted as a function of geometric coefficient for several different values of m (the number of layers
in the structure). Note that, with the assumed form of the branching geometry, a structure with
more layers tends to have a higher resistance (for a given geometric coefficient «, the numerous
pores in the downstream layers become very small). Therefore, in order to access a wide range
of geometric coefficients with a many-layered structure, we choose a sufficiently large value of the
dimensionless initial resistance r [see (34)] to illustrate the effect of changing the number of layers;
here ry = 6.66. Our results indicate that for a fixed geometric coefficient and fixed initial resistance,
better performance is observed for branching configurations with more layers. [Note that in order
to fix both the geometric coefficient and the resistance while increasing the number of layers, as
was done to calculate the points on each curve in Fig. 4(b) for each value on the horizontal axis, the
size of the pore in layer 1 a;, must increase (see 35).] We also carried out simulations (results not
shown here) to generate the equivalent results for throughput versus a;, (with ro held fixed) so that
k must change as the number of layers m is varied for each a;, value: We find that as m increases,
the throughput again increases, but the effect is not as dramatic as in Fig. 4(b).

It is also of interest to study the influence of the dimensional deposition or “stickiness” coefficient
A on results. This coefficient appears in our choice of timescale T = W/AaCyt, as well as in the
dimensionless parameter A = 32AuD?*7y/mt PyW? [see (16) and (26)]. When we change A, we
therefore also rescale time in simulations.® Figure 5(a) illustrates the effect of changing A, plotting
throughput versus the geometric coefficient for several different values of the deposition coefficient
A. Two sets of simulations are shown: a five-layer membrane (:m = 5) with initial dimensionless
resistance ro = 1 (orange curves) and a ten-layer membrane (m = 10) with initial dimensionless
resistance ry = 6.66 (black curves). Here again we find that, for all values of A considered, the
maximal total throughput is achieved at the smallest geometric coefficient (the highest permeability
gradient); equivalently, at fixed initial resistance the optimum throughput is obtained for the branch
configuration with pores as wide as possible in the first layer. In all cases, as A increases, total
throughput decreases, as anticipated (improved particle retention leads to faster clogging).

Figure 5(b) shows the initial particle concentration at the membrane outlet ¢,,(1, 0) versus the
geometric coefficient «, for several different values of A with m = 5 and ry = 1 (orange curves)
and m = 10 and ry = 6.66 (black curves). These results indicate that for larger values of XA there
is little variation in ¢, (1, 0), but at smaller values of A the geometric coefficient ¥ can have a
significant effect on the proportion of particles removed (note the logarithmic scale used on the

3Such rescaling of time does not, however, affect the flux-throughput graphs.
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FIG. 6. Symmetric branching model: total throughput v(¢) versus membrane layer thickness geometric
coefficient k4 with A = 30, ry = 1, m = 5 layers, and geometric coefficients k = 0.65, 0.707, 0.75, 0.8.

vertical axis). An observation common to all the graphs in Fig. 5(b) is the existence of a local
maximum in ¢, (1, 0) as « is increased, located somewhere between 0.7 and 0.8. We note that
the value k = 1/+4/2 2 0.707 corresponds to a membrane of uniform porosity in the depth of the
filter, suggesting that filters with either decreasing or increasing porosity in the membrane depth
are preferable to those of uniform porosity as regards particle removal (though not as regards total
throughput). In all cases, as A increases the initial outlet particle concentration decreases as expected.

2. Variable-thickness layers

The assumption of equal-thickness layers made in the preceding section is convenient, but likely
not optimal. Hence here we briefly consider the effect of allowing layers of variable thickness. To
keep the parameter space manageable, we again assume that the layer thickness variation satisfies
a geometric progression d;; = kqd;. We solve the model represented by Egs. (20), (21), and
(24)—(27) and investigate how results depend on k4. Results are summarized in Fig. 6 for the
initial membrane resistance ryp = 1 with the number of layers m = 5. Here the total throughput
is plotted as a function of the layer thickness geometric coefficient «4 for four different values of the
pore-radius geometric coefficient «. As already observed, throughput increases significantly as «
decreases (larger negative porosity gradients in the depth of the filter), but we now also see a strong
dependence on kq. In particular, it is clear that the default value of k4 = 1 considered previously is
never optimal, and indeed, it is far from optimal for the preferred smaller values of «. Interestingly,
in the scenarios explored here, the optimal value of k4 varies little with either ry, m, or «, taking
values in the range (1.25,1.45) for all considered simulations. These results indicate that, for optimal
results, subsequent layers should have pores of smaller radius (k < 1), but greater length (kg > 1).

The existence of an optimal value for k4 may be understood as follows. For a fixed initial
resistance, increasing k4 (i.e., making downstream pores longer) results in increasing a;,, which
has been shown to increase total throughput. However, for fixed m, increasing «4 also reduces the
length of the first layer pore and at some point (once the first pore becomes sufficiently short) many
particles will leak through into lower layers and pollute the downstream pores, which are much
narrower and hence more sensitive to standard blocking. Thus, total throughput will ultimately
decrease once x4 increases beyond a certain value.
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We observe also that the optimal value of k4 described above was found to be an increasing
function of A (results not shown here). To see why this should be, consider an optimal scenario as
explained above and then suppose we increase the value of A so that particles are now more strongly
attracted to the pore wall. Since particle removal now occurs on a shorter length scale along the pore
axis, the first pore will still consume most of the particles even if it is very short; hence to obtain
the optimal scenario we may shrink its length (and increase its radius), corresponding to a larger
value of k4. Similarly, for smaller A the optimum «4 will be smaller. This prediction was explored
numerically and found to hold for XA values between 0.001 and 1000.

B. Asymmetric branching model results: Equal-thickness layers

Since the symmetric branching geometry is highly idealized, we also briefly study asymmetric
branching pore structures in a simple subcase: The same layered structure is assumed, but the pores
in the second layer are nonidentical. Beyond the second layer the whole structure is supposed to
divide into two subbranches, left (L) and right (R), with pores decreasing geometrically in the
depth of the membrane with geometrical coefficients «; and kg, respectively. Consequently, the
total dimensionless membrane resistance is given by

1 1\

r(l)=r1(t)+< + ) ) (36)
rr(t)  rr(t)

where r(t), rr(t), and rp(¢) are resistances of the first layer and the right and left subbranches,

respectively, and can be obtained as

1 (" dx
rl(t):%/O PP rrw)(t) = — 2212/; (37

i 1‘1R (L)(x 1’

with

agi(0) = ajkl ', api(0) =ap;' for2 <i<m, (38)
where a; is the radius of the pore in the first layer [with a;(0) = a;,] and ag,; and a;; are the ith layer
pore radii in the right and left subbranches, respectively. Equation (36) is analogous to Kirchhoff’s
circuit laws and can be easily obtained from our flow model [see (4)].

In Figs. 7(a) and 7(b), we present simulations where the ratio of right and left branch geometric
coefficients is fixed as kg/k; = 0.8, while the initial radius of the inlet pore a;, was chosen to be
the same as in the symmetric branching model results of Figs. 3(a) and 3(b). The dimensionless
deposition coefficient is set to A = 30, the number of layers is fixed at m =5, and the initial
dimensionless membrane resistance [defined in (36)] is r(0) = ro = 1 for direct comparison with
Fig. 3. Similar to the symmetric branching model, pore closure occurs first in the top layer for all
cases shown here. Hence, in all cases shown, the time to total blockage (the duration of the filtration
process) is the same as for the symmetric branching structure.

Figure 7(c) illustrates the flux-throughput characteristics for this asymmetric case (red curves)
and provides an explicit comparison to the corresponding symmetric case [black curves; where line
styles match those of the red curves, the same initial values for the inlet pore radius are used; see
the original results in Fig. 3(c)]. Note that in all cases shown, both symmetric and asymmetric, the
initial net membrane resistance is the same: ro = 1. Our results here indicate that breaking symmetry
reduces filtration efficiency: All asymmetric cases considered lead to less total throughput than the
corresponding symmetric case. Figure 7(d) shows particle concentration at the outlet, ¢,,;(1, t) for
j=1,...,2"! versus instantaneous throughput for the left (black curves) and right (red curves)
subbranches, for the above given parameters. Note that, due to the symmetry of each subbranch, the
particle concentration at outlet in all pores of the left subbranch will be the same, as will that for
all pores in the right subbranch; hence for each simulation we see just two distinct concentration
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FIG. 7. Asymmetric branching model: results for membranes with initial dimensionless resistance ry = 1
and ratio of right and left branch geometric coefficients «z/«; = 0.8. (a) and (b) Inlet pore radius evolution
in each layer [left L (black) and right R (red)]ag,.i(x;, t) for different values of the top layer initial pore
radius a;(0): (a) a;(0) = 0.2512 and (b) a;(0) = 0.1008. (c) Total flux g(¢) vs throughput v(z) for a,(0) =
0.2512,0.1887,0.1472,0.1194, 0.1008 (red curves) and also for the corresponding symmetric cases of Fig. 3
(black curves). (d) Particle concentration at outlet ¢,,;(1,¢) for j =1,..., 21 versus throughput for the left
(black curves) and right (red curves) subbranches, with A = 30 and m = 5.

curves. As shown here, the particle concentration downstream in the narrower (right) subbranch is
much less than that in the left subbranch.

To characterize further the effect of breaking symmetry on filtration performance, we plot total
throughput versus the geometric coefficient ratio « g /k in Fig. 8 for branching structures with m =
5 layers, again with deposition coefficient A = 30 and total initial resistance ro = 1. The geometric
coefficient ratio kg /x; € (0, 1] (with no loss of generality, kg < k) characterizes the degree of
asymmetry, with a value of 1 being the symmetric case and asymmetry increasing as the ratio
approaches zero. For each of the graphs in Fig. 8, we fixed the first layer initial pore radius (as
presented in the legend) and then varied the value of kg /x; while keeping initial total resistance
fixed at ryp = 1. The results confirm the hypothesis suggested by the previous simulations: As the
degree of asymmetry increases, filtration efficiency (as measured by total throughput over the filter
lifetime) decreases. This effect is more prominent for those branching structures with larger pores
in the top layer. Breaking the symmetry for those structures with smaller pores on top does not
affect the performance significantly. Note that since the initial radius of the top pore a;, is held fixed
as the asymmetry increases in Fig. 8, the observed variation in throughput must be due to other
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FIG. 8. Asymmetric branching model: total throughput v(#) versus geometric coefficient ratio «z /k,, for
several branching structures with different initial top pore radii a;(0), but the same initial resistance ry = 1. In
all cases A =30 and m = 5.

effects (but note that the throughput variation seen here is much smaller than in Fig. 7, indicating
that a;, has the dominant effect).

V. CONCLUSION

We have presented a simple model to quantify the effects of a bifurcating-pore membrane
morphology on separation efficiency and fouling of a membrane filter. Our model accounts for
Darcy flow through a simple bifurcating pore structure within the membrane and for fouling by
particle adsorption within pores. Our model contains an important dimensionless parameter that
must be measured for a given system: A, the dimensionless attraction coefficient between the
membrane pore wall and the particles carried by the feed solution. In principle, this parameter
A could be estimated by fitting our model results to a reliable data set, but since A depends on
properties of both membrane and feed solution, it will vary from one membrane-feed system to
another and so will need to be determined for each system considered.

The focus in this paper is on development of a model that can be used to quantify the performance
of a membrane filter in terms of its pore-branching characteristics. The internal morphology of
real membranes is undoubtedly highly complex: Here we focus mainly on a simple symmetric
layered branching pore structure characterized by two geometric coefficients: k¥ (which quantifies
how pore size changes in the depth of the membrane) and «4 (which quantifies how the layer
thickness changes). In general, we compare performance of membrane filters with equal initial total
membrane resistance ry (once the values of «, kg, 7o, and the number of layers m are fixed for a
symmetric bifurcating pore structure, the membrane structure is determined). We briefly consider
the effect of introducing a restricted type of asymmetry in Secs. III B and IV B, where the same
basic layered branching structure is assumed but the pores in the second layer are nonidentical, and
in subsequent layers the whole structure divides into two subbranches, left and right, with pores
decreasing geometrically in the depth of membrane in each subbranch. All simulations presented
in this paper are for the case of flow perpendicular to the membrane surface, driven by a constant
pressure drop. Although the simulations presented in the main body of the paper are for the partial
differential equation-based model presented in Sec. III, in Appendix B we outline a simplified

094305-16



MEMBRANE FILTRATION WITH COMPLEX BRANCHING ...

discrete model, which provides approximate quasianalytical solutions for averaged pore radii and
particle concentrations within layers and which can be useful to provide a quick guide as to the
most useful regimes to explore. This discrete model was tested and found to provide reasonable
approximations for systems with m > 5 layers, with the accuracy of predictions increasing with the
number of layers.

The results of Fig. 3 for the symmetric branching case with equal-thickness layers (kg = 1)
indicate that variations in branching structure lead to different fouling patterns within the membrane
depending on the value of the geometric coefficient «. Importantly, though the initial resistance
of all membranes simulated in this figure is the same, if the value of the pore-radius geometric
coefficient « is small (meaning, with the fixed resistance constraint, that the initial pore radius at
the top of membrane is large and the membrane has significant negative porosity gradients in its
depth), the membrane exhibits markedly better filtration performance, as quantified by the total
amount of filtrate processed under the same operating conditions (as seen earlier in [16,25]), while
simultaneously offering improved particle retention. Figure 3(d) also demonstrates the important
point that, for microstructured membranes, one cannot safely use the initial particle retention as a
predictor of particle retention over the membrane lifetime: Particle retention may deteriorate over
time.

Another important prediction of our model, borne out by Fig. 4(b), is that a membrane with
more layers exhibits greater total throughput over its lifetime for the same initial resistance. This
conclusion holds independently of the value of the geometric coefficient ratio, indicating that
superior performance can be obtained by using microstructured membranes with small values of
the geometric coefficient ratio and a large number of layers. Figure 5(b) further emphasizes the
potential importance of porosity gradients, particularly in cases where the value of the dimensionless
attraction coefficient A may be small. For A = 7.5 a branched-pore filter with initial dimensionless
membrane resistance ro = 1, number of layers m = 5, and porosity gradients (¢ ~ 0.42) can remove
99% of particles, while one that is uniformly porous removes less than 90% of particles [see orange
curves in Fig. 5(b)]. At larger values of A particle retention is much less sensitive to the value of «.
(Such considerations also reveal the importance of accurately estimating the value of the attraction
coefficient A for the system.)

In addition to the conclusions discussed above, Fig. 6 illustrates the important role that
varying the layer thickness can play. This figure shows that, for all scenarios considered, optimal
performance is achieved with a value of kg4 in the range (1.15,1.45), indicating that as the pores
shrink in the membrane depth, the layers containing these pores should become thicker as dictated
by the maximizing value of k4. While our simulations are not calibrated to describe a particular
experimental data set, we note that for a membrane of the approximate structure considered here,
it should be possible to use an experimental data set to determine the important parameter A
for a given feed solution and thence to use our results to predict the optimal structure of this
type.

While in this paper we do not investigate asymmetric branching structures in detail, the results
of Sec. IV B indicate the importance of such asymmetry considerations. Within the limitations of
the simple asymmetry considered there, while the same general conclusions hold true regarding
the favorability of negative porosity gradients in the depth of the membrane, asymmetries in the
branching structure can lead to a significant drop in performance [more than 10% drop in the total
throughput over the filter lifetime in some cases; see Figs. 7(c) and 8].

Though our model represents an important first step in systematically accounting for internal
membrane complexity, it must be emphasized that real membranes have much more complex
structure than that considered here and that in reality multiple fouling modes are operating
simultaneously (our model neglects blocking of pores by particles larger than them and the caking
that occurs in the late stages of filtration). Future work should address more complicated pore
morphologies, scenarios with multiple fouling modes operating simultaneously, and filtration of
feed solutions containing multiple particle populations.
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APPENDIX A: FOULING AT THE BIFURCATIONS

The models outlined in Sec. II, for both symmetric and asymmetric branching configurations,
both neglect any additional fouling that may occur at the junctions where pores bifurcate. Since it
is known that in analogous physiological systems such as the cardiovascular system such junctions
may be prone to deposition and formation of arterial plaques,* we here briefly consider how to
model the effect that fouling at the junctions might have on overall system performance.

The details of the flow at a T-junction-type bifurcation will be complicated; but broadly speaking,
for the model geometry we consider here, a well-developed Poiseuille flow upstream impacts a wall
at the junction, where it transitions to a stagnation-point flow. The flow separates into two streams,
which will enter the two pores in the downstream layer. In the spirit of developing the simplest
reasonable model that captures the key physics, we assume that the rate of deposition of particulate
material at the junction is proportional to the instantaneous flux of fluid and particle concentration
into the junction. As deposited material accumulates, it will create some degree of blockage and
increase system resistance. We assume that this additional resistance appears in series with the
resistance of the pore upstream. For the symmetric branching model this translates to

X; 8 T
R; :/ —dX + B/ C{(THQ:(THdT', 1<i<m—1, (Al)
Xio A, 0

replacing the expression in (6), where B > 0 is a constant and Q; = JTA%UP.,' is the flux through
each pore in the ith layer. The resistance of the pores in the mth layer remains unchanged from the
previous model: R,, = f;il 8/mALdX.

For the asymmetric branching model the analogous expression for the resistance of the jth pore
in layer i is

X; T
Rij = /x | ngj‘jdx_i_ B/O Cii(THYOi(THdT', 1<i<m—1,1<;j<27, (A2)
where Q;; = nAizj U,.ij is the flux through the jth pore in the ith layer. Again, the resistance of the
pores in the mth layer and the remainder of the model are as in Sec. I B.

This modified fouling model should be solved alongside an analogously modified particle
concentration equation that accounts for this additional mechanism of particle removal. Preliminary
simulations however suggest that the effect of such junction fouling is negligible; hence we omit it
from our presented results.

APPENDIX B: SIMPLIFIED DISCRETE MODEL

In a membrane with many layers, the system in Sec. II can be time consuming to solve
numerically. However, in such situations we anticipate that the length of pores between successive
bifurcations is short relative to the typical length scale of gradients in C [estimated from (8)],

“In the case of arterial plaque formation, however, the chief complication arises when the plaques break off
from the wall and cause blockage further downstream; we do not consider such effects here.
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corresponding to an assumption that 32AuD?/m PyW? « 1. For situations where a fast approx-
imate solution is required, we thus propose a simplified model, based on (8), in which we take
C; to represent the approximate particle concentration at the downstream end of pores in layer i.
Using A; (independent of X) to then represent the average pore radius within layer i, the resistance
of an individual pore in layer i [see (6)] simplifies to R; = 8D;/ nA?. A simple finite-difference
approximation of (8) then gives

b CGi=Cia _ Ci

"D __AA_i’ I<i<m, (BI)

where the averaged axial velocity within each pore in layer i, U, ;, is given by (5)—(3) as

_ Py
Upi=——F=, 1<i<m B2
p.i JTMU,'A?R XX ( )
This allows the particle concentration C; to be expressed in terms of C;_ as

Up,iCi-i

[=m, 1<i<m. (B3)
In addition, we approximate (10) by

94 =—AaCi_;, 1<i<m,

oT

which means that the pore radius in the layer i shrinks proportionally to the particle concentration at
the pore inlet upstream. (This is necessary since pore closure is dominated by the upstream particle
concentration.) This simple model has been tested and found to provide reasonable agreement with
the full partial differential equation model presented here, over a range of model parameters.
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