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We characterize the local concentration dependence of segregation velocity and segre-
gation flux in both size and density bidisperse gravity-driven free-surface granular flows as
a function of the particle size ratio and density ratio, respectively, using discrete element
method simulations. For a range of particle size ratios and inlet volume flow rates in size-
bidisperse flows, the maximum segregation flux occurs at a small particle concentration
less than 0.5, which decreases with increasing particle size ratio. The segregation flux
increases up to a size ratio of 2.4 but plateaus from there to a size ratio of 3. In density
bidisperse flows, the segregation flux is greatest at a heavy particle concentration less than
0.5, which decreases with increasing particle density ratio. The segregation flux increases
with increasing density ratio for the extent of density ratios studied, up to 10. We further
demonstrate that the simulation results for size-driven segregation are in accord with the
predictions of the kinetic sieving segregation model of Savage and Lun [J. Fluid Mech.
189, 311 (1988)].

DOI: 10.1103/PhysRevFluids.3.094304

I. INTRODUCTION

Flowing mixtures of granular material with differing properties, including size [1–7], density
[8–15], surface roughness [16,17], and shape [18,19], tend to segregate, and they are common in
geophysical flows [20–23] and industrial settings such as during hopper filling and discharging
[12,24,25], in rotating tumblers [8,26–30], and in chute flow [31–33]. The simplest explanation
for segregation relies on the idea, for size-disperse mixtures, that small particles fall through voids
generated between large particles and accumulate in the lower regions of the flowing layer, while
large particles are forced upward by concentrated regions of small particles. Quantitative models of
segregation have been developed and have now reached a state where accurate prediction is possible
for a range of material properties and flow geometries [6,7,30,34–40].

Early experimental research on segregation in granular materials characterized segregation by
tracking the center of mass of one of the species [41–46] or by following tracer particles [46,47]
finding that the effects of size differences on segregation are proportionally stronger than density
differences, though both can result in significant segregation [46]. Of note are observations nearly
50 years ago by Lawrence and Beddow [42,43] that segregation in flowing binary mixtures initially
increases with increasing size ratio, RS = dl/ds , where dl and ds are the large and small particle
diameters, respectively, but plateaus in the interval 2.5 < RS < 5 and then decreases with further
increases in RS . They also observed that segregation is greatest when the volume concentration
of small particles, cs , is between 15% and 30%. In this paper we consider both of these prescient
observations in greater detail.
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To explain the observed segregation behavior in granular mixtures, several models were pro-
posed. The screening mechanism of segregation by Shinohara et al. [48] envisioned that large
particles form a screenlike set of openings through which small particles percolate, a concept now
referred to as “kinetic sieving” [32]. This idea was extended by Williams [46] to include the rate
of local particle rearrangement into configurations in which it is easier for small particles to fall
between shear-generated gaps. Along similar lines, Cooke and Bridgwater [49] proposed a statistical
mechanics model for small particles falling into gaps between large particles. A key aspect of this
model is that the segregation rate depends linearly on the shear rate and exponentially on RS .

The “kinetic sieving” mechanism and statistical mechanics model for dense granular flows of
bidisperse mixtures were combined and expanded by Savage and Lun [32] to include, additionally,
the probability of a particle falling downward under gravity into a shear-generated void and the
probability of “squeeze expulsion” in which large and small particles are equally likely to be
squeezed upward by particles below them. The model expresses the local motion of particles species
i normal to the free surface as a segregation, or percolation, velocity, wp,i :

wp,i = wi − w, (1)

where wi is the species velocity and w is the local bulk velocity averaged over all species, both
normal to the free surface. This model (the “SL” model) is discussed in detail in Sec. III, but here we
note that in the model wp,i depends on the particle size ratio, the volume concentration of particles
of the other species, or “concentration complement” 1 − ci , the local shear rate, γ̇ , local void
properties, the flowing layer thickness, δ, and other parameters [32]. A simplified approximation
of the SL model can be expressed as

wp,i = γ̇ dsf (ci, RS )(1 − ci ), (2)

where f (ci, RS ) incorporates the percolation velocity’s nonlinear dependence on particle concen-
tration and particle size ratio.

Other first order expressions for the segregation velocity have been proposed, though all retain
the linear dependence on the local particle concentration complement, 1 − ci . Gray and Thornton
[3] proposed a segregation velocity with explicit dependence on gravity, g, and the repose angle of
the free surface, α:

wp,i = C0g cos(α)(1 − ci ), (3)

where C0 is a coefficient related to interparticle drag. Hill and Tan [4] proposed a stress-based
segregation velocity model of the form

wp,i = C1
dP

dz
(1 − ci ), (4)

where C1 describes the stress partitioning with a linear drag coefficient and P is the pressure. Fan
et al. [38] simplified the SL model to

wp,i = γ̇ S(1 − ci ), (5)

where, S = dsf (RS ), called the segregation coefficient, is an empirical parameter dependent on the
particle size ratio for size bidisperse flows of spherical, mm-sized particles [6]. Xiao et al. [15]
demonstrated that the same model accurately describes segregation in flows of density bidisperse
spherical particles having the same radius, but where S is now a function of the density ratio, RD =
ρh/ρl , where ρh and ρl are the densities of the heavier and lighter particles, respectively.

For bidisperse granular materials with constant volume fraction segregating normal to the free
surface, mass conservation requires that

�up = −�down, (6)

where �up and �down are the segregation volume fluxes of the upward segregating species and
downward segregating species, respectively. The segregation flux for species i, �i , is

�i = wp,ici . (7)
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Because in binary mixtures with constant volume fraction the species concentration cup = 1 −
cdown, Eq. (7) implies that wp,up = −wp,down only when cup = cdown = 0.5; in general, the segre-
gation velocities are not equal.

A consequence of assuming a segregation velocity linear in concentration like that in the models
mentioned above [Eqs. (3)–(5)] is that the segregation flux is maximum at and symmetric about ci =
0.5 for bidisperse mixtures. However, recent experiments examining slowly sheared size bidisperse
granular material in a confined annular shear cell with steady shear [50] and in a shear cell with
periodic shear [51] have shown that the maximum segregation flux for a given size ratio occurs at
concentrations of small particles cs < 0.5, confirming Lawrence and Beddow’s 1969 observations
[43]. The annular shear cell experiments [50] also show that the segregation rate does not increase
monotonically with RS , as predicted by the Cooke and Bridgwater model [49].

To address the observed asymmetry of the segregation flux with respect to cs = 0.5, Gajjar and
Gray [53] proposed a two-parameter cubic form of the segregation flux,

�s = βcs (1 − cs )(1 − κcs ), (8)

where β is a magnitude coefficient and κ is an asymmetry coefficient. This expression yields a
quadratic segregation velocity dependence on species concentration rather than the linear depen-
dence in Eqs. (3)–(5).

In this study we characterize concentration-dependent asymmetry in the segregation velocity
in gravity-driven free-surface flows of bidisperse granular material over a range of bidispersities.
The results of this study can be used to improve continuum model predictions of segregation,
which, although not the focus of this paper, is demonstrated in the Supplemental Material [52]. The
remainder of the paper is organized as follows. In Sec. II size-driven segregation is investigated. In
Sec. III predictions of the Savage and Lun model [32] are compared with size segregation results
from discrete element method (DEM) simulations, demonstrating this model’s ability to capture
features observed in DEM results. Section IV demonstrates that density-driven segregation exhibits
asymmetry in the segregation flux with respect to concentration that is nearly identical with that
found for size-driven segregation, which raises interesting questions about the size-based SL model.
Section V presents our conclusions.

II. SEGREGATION IN SIZE BIDISPERSE MIXTURES

Discrete element method (DEM) simulations of granular flows have reached the point where
their results are nearly equivalent to those measured in corresponding experiment [2,6,15], but with
the significant benefit that all the properties of the simulated flow are easily measured. Accordingly,
we use DEM simulation to study segregation in the context of a gravity-driven free surface flow of
granular material in a one-sided quasi-two-dimensional (2D) bounded heap with a sloped lower
boundary (to reduce the number of simulated particles); see Fig. 1. In the one-sided quasi-2D
bounded heap geometry, particles fall onto the left side of the heap and flow down the heap in a
thin flowing layer of thickness, δ, at an angle of repose, α. The origin of the coordinate system, with
streamwise coordinate, x, and surface normal coordinate, z, is coincident with the free surface and
rises at the heap rise velocity, vr .

A. DEM simulation methodology

In all DEM simulations the heap container has a spanwise thickness T/dl = 6 and length W/dl =
200. At the end of a typical simulation, the heap consists of approximately 106 particles. Spherical
particles are fed by gravity at 2D volume flow rates, q = ṁ/ρT , of 20 cm2/s or 40 cm2/s, where ṁ

is the mass flow rate and ρ is the particle density, ρ = 2500 kg/m3. The heap forms with an angle
of repose, α, slightly greater than the slope of the bottom wall. Particles that touch the bottom wall
become stuck to the wall, thus creating a rough bottom boundary. Other boundaries are modeled
as smooth walls. A steady state is reached after the heap becomes sufficiently deep, typically about
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FIG. 1. Schematic of the quasi-2D bounded heap. Particles fall onto the W wide heap at a 2D volume flow
rate, q, resulting in a free surface rise velocity vr . The sloped lower boundary reduces the number of particles
required for the DEM simulations. The flowing layer (above dotted line) has thickness δ and length L. Particles
are continuously deposited from the bottom of the flowing layer onto the heap. The coordinate system is rotated
by the angle of repose, α, and rises at vr . The thickness of the flowing layer is exaggerated and its shape is
idealized.

∼10dl , to minimize kinematic effects from the bottom boundary [2]. For size bidisperse simulations,
particle diameters for each species are uniformly distributed with mean diameter, d, between 0.9d

and 1.1d to reduce ordered packing. Mean particle diameters range from 2 to 6 mm to obtain size
ratios from 1 � RS � 3.

Standard DEM methods [54–57] are used as described in detail previously [2,6,15]. Our in-house
parallelized DEM code runs on an NVIDIA GTX 980 GPU or an NVIDIA GTX Titan X GPU
installed in a workstation computer running Ubuntu 14.04 LTS and has been previously validated
against experimental data for mm-sized glass particles in bounded heap flows of size bidisperse
particles [2] and for mm-sized glass, ceramic, and steel particles in density bidisperse flows [15].
For all simulations a binary collision time of tc = 10−3 s and a restitution coefficient e = 0.8 are
used as in previous simulations [2,6]. Particle-particle and particle-wall contacts both use a friction
coefficient of 0.4. The integration time step of tc/40 = 2.5 × 10−5 s ensures numerical stability
for these flows [57]. Simulation data are collected once the rise velocity is constant and spatially
uniform.

The segregation velocity and species concentration are calculated from spatial and temporal
averages of the DEM simulation output. Although other coarse-graining methods exist [58], the
method described below is used similar to previous work [6]. At each output time step, the particle
data are binned into quadrilateral bins oriented along the free surface, with a streamwise length of
3dl , a height (normal to the free surface) of 1.25dl , and a width equal to the spanwise extent of the
heap. The bins move upward with the free surface at vr . For averaging purposes, the partial volumes
of particles overlapping bin boundaries are applied to the appropriate bin. The species concentration
in each bin is defined as

ci =
∑

Vi,j

Vbin
, (9)

where Vi,j is the volume of each particle, j , of species i and Vbin is the total volume of all
particles in the bin. Although the sidewall friction can alter the flowing layer thickness, segregation
is a local quantity driven by the local shear rate and local concentration. Since the spanwise
variation of the velocity and concentration is small in narrow, quasi-2D heaps [2], the spanwise
average is used, consistent with previous studies [7,30,59]. Furthermore, we have confirmed that the
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FIG. 2. Segregation velocity dependence on the local concentration complement, 1 − ci , for RS = 2.2,
ds = 2 mm, and q = 40 cm2/s. Segregation velocity from simulations with particle inlet ratios cs,inlet = 0.2
(blue data points), 0.5 (red data points), and 0.8 (gray data points), and black data points are averaged over
0.02 wide concentration increments; × = large particles and ◦ = small particles. Dashed line is a linear fit as
in previous work [Eq. (5)] [6] using only data from cs,inlet = 0.5; solid curve is a quadratic fit using all data in
the plot [Eq. (12)].

segregation velocity does not depend on the particle location relative to the sidewalls by comparing
the segregation velocity measured near the walls to that measured midway between the sidewalls.
The mean velocity of the ith species in the bin, ui, is based on the volume-weighted velocity as

ui =
∑

ui,jVi,j∑
Vi,j

, (10)

where ui,j is the velocity of each particle, j , of species i. The concentration and velocity values of
each bin are then temporally averaged across the all output time steps, which are separated by 0.05 s
(2000 simulation time steps). The shear rate in a bin,

γ̇ = du

dz
, (11)

is calculated from the averaged bin velocities as a backward finite difference (the change in the
streamwise velocity, u, between the target bin and the bin below it divided by the vertical separation)
but is insensitive to the finite differencing method that is used. The local segregation velocity, wp,i ,
for each particle species in each bin within the flowing layer at each output time step is calculated
using Eq. (1).

B. Segregation velocity and flux

An example of the segregation velocity data for large and small particles is plotted in Fig. 2
for RS = 2.2, ds = 2 mm, and q = 40 cm2/s. Colored data points represent the local segregation
velocity for different inlet concentrations calculated in each bin throughout the entire flowing layer
averaged over the total number of output time steps. Black data points are averaged over 0.02
increments of 1 − ci to minimize the scatter due to collisional diffusion and more clearly show
the data trend. The segregation velocity, wp,i , is nondimensionalized by ds and γ̇ , so the results can
be considered in the context of Eqs. (2) and (5). Note that previous studies evaluating the segregation
velocity in the heap geometry considered 50:50 mixtures of small and large particles, corresponding
to, cs,inlet = 0.5 [6,38]. However, under these conditions the small particle concentration is mostly in
the range 0.3 < cs < 0.7. The full range of concentrations (0 < cs < 1) are not observed because
in the bounded heap small particles quickly percolate to the bottom of the flowing layer and are
deposited onto the upstream portion of the heap while large particles are advected toward the
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FIG. 3. Segregation velocity and flux dependence on local small particle concentration, cs , for RS = 2.2,
ds = 2 mm, and q = 40 cm2/s. (a) Segregation velocity with cs,inlet = 0.2, 0.5, and 0.8 (red × = large particles,
blue ◦ = small particles; black data points are averaged over 0.02 wide increments of 1 − ci). Solid curve is a
quadratic fit using all data in plot [Eq. (12)]. (b) Segregation flux with solid curve from fits in (a). Dashed line
is the measured sum of the upward and downward fluxes, demonstrating conservation of mass. Dotted vertical
reference line at cs = 0.5 highlights the asymmetry of flux with respect to concentration.

downstream end wall. The concentration of small particles in the flowing layer therefore continually
decreases in the streamwise direction until the flow reaches the bounding wall, limiting the lower
limit of the small particle concentration so that data outside the range of concentrations mentioned
above are never obtained. To evaluate the segregation velocity over a wider range of concentrations,
we conduct simulations with cs,inlet = 0.2, 0.5, and 0.8. Note in Fig. 2 that cs,inlet does not affect
the segregation velocity relation, it affects only the range of local concentrations within the flowing
layer in the bounded heap geometry.

Figure 2 shows that large particles have a positive (upward) segregation velocity, and small
particles have a negative (downward) segregation velocity. The segregation velocity for species i

generally increases in magnitude with increasing concentration of the other species, 1 − ci , though
the dependence on 1 − ci is more dramatic for small particles. A small particle among mostly
large particles segregates faster than a small particle among mostly small particles. Note that data
points from different mixture inlet concentrations (different colors) occupy different portions of
the concentration complement data but also overlap, confirming that cs,inlet does not affect wp,i/γ̇ ,
just its range in a bounded heap flow. The data presented in Fig. 2 span a broad range of shear
rates, 0.7 < γ̇ < 23.0 s−1, due to the decreasing 2D volume flow rate, q, with streamwise position
in the bounded heap geometry. The wide range of percolation velocities for small particles as
1 − ci approaches 1 is expected when a very low number of small particles (one or two) are in
a bin otherwise filled with large particles. In this single-particle limit, the percolation velocities are
expected to vary widely due to random particle collisions and the probabilistic mechanics of kinetic
sieving [32]. The segregation velocity does not show a significant dependence on the concentration
gradient. It should be noted that diffusion scales with the shear rate and particle diameter, D ∼ γ̇ d2

[38,60]. The diffusive flux is relatively small compared to the segregation flux, D∂ci/∂z < 0.1�i .
The same data can be plotted versus the concentration of a single species, such as cs in Fig. 3(a).

Plotted in this way, it is evident that large particles and small particles rise or sink at different
velocities at the same small particle concentration. For instance, at cs = 0.3 the magnitude of wp,s

is about twice the magnitude of wp,l . Thus, a small particle among many large particles sinks
faster than surrounding large particles rise. Likewise, at cs = 0.8, the magnitude of wp,s for the
small particles is small compared to wp,l for the large particles. Thus, a large particle among many
small particles rises faster than the small particles sink. This behavior is expected and is why the
concentration complement, 1 − ci , is used in Eqs. (2)–(5). What is more interesting is that the small
particles can sink at a maximum percolation velocity as much as four times that of the maximum
percolation velocity that a large particle rises. In fact, for cs � 0.5 small particles sink much faster
than large particles rise.
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Despite the large differences in percolation velocity, mass is conserved, as demonstrated by
plotting the fluxes of the two types of particles in Fig. 3(b). At any small particle concentration,
cs , the flux of large particles upward equals the flux of small particles downward. For the volume
flux of small particles sinking downward to match that of large particles moving upward, either
more small particles need to be moving downward than large particles moving upward or the small
particles must sink downward faster than the same number of large particles moving upward. At
low small particle concentrations, the small particles sink much faster than the large particles rise
to conserve mass. The consequence is an asymmetry in the segregation flux, which is maximum
near cs,peak = 0.35 as shown in Fig. 3(b). Thus, the greatest local segregation flux occurs when the
concentration of large particles is greater than the concentration of small particles, consistent with
previous results [43,50,51]. The difference between this study and these previous studies is that here
we quantify this effect for a range of particle size ratios, RS , of particles segregating in a flowing
layer having a wide range of flow conditions along the length and depth of the flowing layer as
well as representing the full range of relative concentrations of small and large particles rather than
under limited flow and concentration conditions. Since segregation is a local effect dependent on
concentration, which varies throughout the flowing layer in the bounded heap flow, the segregation
flux also varies throughout the flowing layer. It is small in regions dominated by large or small
particles (cs near 0 or 1) and largest for cs ≈ 0.35, for the conditions used to generate Fig. 3(b).

Returning to Fig. 2, the data were fit (MATLAB linear least squares function with representative
data weighting and the bisquare outlier weighting) to both Eq. (5) (linear) and a quadratic
polynomial. Only data for cs,inlet = 0.5 were used for the linear fit, consistent with previous work
[6]. Data for cs,inlet = 0.2, 0.5, and 0.8 were used for the quadratic fit. The linear fits (dashed) do not
match the segregation velocity well for 1 − ci > 0.6. Using data for cs,inlet = 0.2, 0.5, and 0.8 alters
the linear fit slightly (not shown) but still does not capture the observed curvature of the segregation
velocity data, evident in the concentration-averaged data (black). Using the simplest nonlinear
curve, a quadratic fit (solid curves) better describes wp,i , especially the downward curvature of
the segregation velocity for both species when 1 − ci > 0.6. Further, to capture the asymmetric
segregation flux a nonlinear segregation velocity is required. Based on these results, we replace the
expression in Eq. (5) for wp,i with

wp,i = dsγ̇ [AR,i + BR,i (1 − ci )](1 − ci ), (12)

where AR,i and BR,i are fit coefficients that depend on the size ratio, RS , and the species, i.
When the segregation velocity relation is quadratic in ci , the segregation flux [Eq. (7)] is cubic

in ci :

�i = dsγ̇ ci[AR,i (1 − ci ) + BR,i (1 − ci )
2]. (13)

This form is identical to that proposed by Gajjar and Gray [53] [Eq. (8)] with the magnitude coef-
ficient β = AR,idSγ̇ and the asymmetry coefficient κ = −BR,i/AR,i . The form for the segregation
flux suggested by Gajjar and Gray [53] was supported by results from experiments in an oscillatory
shear cell for a single size ratio, RS = 2.0 [51].

The segregation flux, shown in Fig. 3(b), demonstrates that even though the values for AR,i and
BR,i are found independently for each species i from the segregation velocity in Fig. 2, the resulting
segregation fluxes (solid curves) match the data very well. Furthermore, the small and large particle
segregation fluxes sum to zero (dashed curve) as they should based on mass concentration in an
incompressible flow. Thus, the fit to the DEM data provides a physical basis for the quadratic form
for the segregation velocity [Eq. (12)] and the cubic form of the segregation flux [Eqs. (8) and (13)].

To test whether Eqs. (12) and (13) are valid for other particle size ratios, we conducted DEM
simulations for 1.1 � RS � 3.0. Both the quadratic fit for the segregation velocity and the resulting
cubic fit for the segregation flux for large particles (solid curves) are shown for three additional
size ratios, RS = 1.6, 2.4, and 2.8, in Fig. 4. The segregation velocity and segregation flux data
are again averaged in 0.02 concentration increments, and these average data points overlay the raw
data. For all size ratios, the quadratic fit (for segregation velocity) and resulting cubic curve (for
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FIG. 4. (a)–(c) DEM segregation velocity data for large (red ×) and small (blue ◦) particles vs 1 − ci at
various size ratios. Black data symbols show mean segregation velocity in 0.02 wide 1 − ci increments. Solid
curves are the quadratic fit [Eq. (12)] of the segregation velocity; dashed curves are the theoretical predictions of
the SL model for each particle species. (d)–(f) DEM data for large particle segregation flux (red) and averaged
over 0.02 wide concentration increments (black). Solid curves are the segregation flux based on the fit of the
segregation velocity data [Eq. (13)]; dashed curves are the theoretical predictions of the SL model (fit to all
DEM data); dotted curves are the theoretical predictions of the SL model fit to only the DEM data for that
RS . SL model parameters were fit to DEM segregation velocity data for all data for 1.1 � RS � 3.0, resulting
in parameter values Ē = 0.477, M/N = 0.781, kav = 0.466, kLT = 1; SL model parameters were fit to DEM
segregation velocity data for RS = 1.6, 2.4, or 2.8, resulting in parameter values Ē = 0.487, 0.517, and 0.532,
M/N = 0.5, 0.693, and 0.812, kav = 0.466, 0.466, and 0.466, and kLT = 1, 1, and 1, respectively.

flux) match the DEM simulation data well, as highlighted by the concentration-averaged data. The
figure also includes dashed curves demonstrating the fit of the SL model, discussed in more detail
in Sec. III.

Segregation flux curves like the solid curves shown in Figs. 3(b), 4(e), and 4(f) were generated
from fits to the segregation velocity data for simulations for 1.1 � RS � 3, varied in increments of
0.1, with ds = 2 mm, q = 40 cm2/s, and varying dl . For each RS , results from three simulations
with cs,inlet = 0.2, 0.5, and 0.8 were combined to generate segregation velocity data for a wider
range of cs , compared to using only cs,inlet = 0.5. The large particle segregation flux is plotted
versus RS and cs in Fig. 5. The asymmetry of the segregation flux (i.e., that the maximum flux
occurs for 0 < cs < 0.5) is highlighted by the small particle concentration at maximum segregation
flux, cs,peak, (blue curve), and flux at cs = 0.5 (red curve), both of which are projected onto the cs-RS

plane. The maximum segregation flux, �max, is projected onto the �p,l-RS plane and shows that �p,l

grows monotonically with RS for 1.1 � RS � 2.4 and is relatively constant for larger RS . This result
is consistent with previous measurements of S = dsf (Rs ) used in Eq. (5) that show that S is inde-
pendent of RS above similar values of RS [6]. The increase in the segregation flux magnitude with
RS for 1.1 � RS � 2.4 and plateau for 2.4 � RS � 3.0 is also consistent with the observation of a
maximum segregation rate at an intermediate RS in an annular shear cell by Golick and Daniels [50].

The results in Fig. 5 represent 60 DEM simulations for ds = 2 mm and q = 40 cm2/s. However,
to test the effect of changing ds , dl , and q, a total of 240 DEM simulations for size bidisperse flows
were performed. Four sets of simulations were run for each RS with ds = 2 mm, q = 40 cm2/s,
and varying dl ; ds = 4 mm, q = 40 cm2/s, and varying dl ; ds = 2 mm, q = 20 cm2/s, and varying
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FIG. 5. Dependence of scaled large particle segregation flux on small particle concentration, cs , and particle
size ratio, RS ; curves from fits to DEM segregation velocity data. The red curve intersects each flux curve at
cs = 0.5 and the blue curve passes through each flux curve at cs,peak, with both curves projected onto the cs-RS

plane. The maximum flux is projected onto the RS-� plane (ds = 2 mm, q = 40 cm2/s).

dl ; and dl = 6 mm, q = 40 cm2/s, and varying ds . This results in a broad range of shear rates,
0.1 < γ̇ < 29.4 s−1 for q = 20 cm2/s and 0.1 < γ̇ < 45.2 s−1 for q = 40 cm2/s. Segregation flux
results from the 180 simulations not shown in Fig. 5 are included in the Supplemental Material [52]
and are quantitatively similar to the results in Fig. 5.

The quadratic fit coefficients for each RS and the concentration of small particles at which the
maximum segregation flux occurs are shown in Fig. 6, for all 240 DEM simulations performed.
The figure shows that the coefficients and the concentration at peak segregation flux are relatively
independent of absolute particle size and flow rate for the range of particle sizes and flow rates that
were examined. The coefficients AR,l and BR,l grow from near zero at RS = 1.1 to a plateau value
near RS = 2.4, above which they stay relatively constant. The coefficients AR,s and BR,s for small
particles can be calculated from the large particle coefficients as

AR,s = −AR,l − BR,l, BR,s = BR,l. (14)

The small particle concentration corresponding to the maximum segregation flux, cs,peak, shown
in Fig. 6(b) is somewhat variable for small values of RS , but nearly always below 0.5. The value
for cs,peak gradually decreases, reaching a minimum value of 0.35 at RS = 3 for the range of RS

considered.
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FIG. 6. (a) Quadratic segregation velocity coefficients, AR,l (black) and BR,l (blue), from Eq. (12).
(b) Small particle concentration at maximum flux, cs,peak for various operating conditions: � = ds = 2 mm,
q = 40 cm2/s, dl varies; ◦ = ds = 2 mm, q = 20 cm2/s, dl varies; � = ds = 4 mm, q = 40 cm2/s, dl varies;
	 = dl = 6 mm, q = 40 cm2/s, ds varies.
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III. EVALUATION OF SAVAGE AND LUN’S KINETIC SIEVING MODEL

Having confirmed that the empirically determined cubic form of the flux [Eq. (13)] accurately
describes segregation fluxes in DEM simulations of bidisperse flow, we now compare these results
to the kinetic sieving segregation model proposed by Savage and Lun [32], which is nonlinear in
concentration. However, the model is challenging to implement in practice because it is difficult
to unambiguously determine the various coefficients used in the model. As a result, to the authors’
knowledge, its validity has not been previously tested, though it is frequently cited. Below the model
is evaluated and compared to DEM simulation results to evaluate its validity.

A. Savage and Lun model

Savage and Lun’s segregation model [32] (hereafter referred to as the SL model) uses a
first-principles approach to predict particle segregation in moderately sheared, gravity-driven free
surface flow, specifically dense size-bidisperse mixtures of spheres flowing down a rough-bottomed
chute. Expanding on the information-entropy approach of Cooke and Bridgwater [49], the SL model
is based on the assumption that the probability for a small particle to fall into a void is larger
than the corresponding probability for a large particle. Consequently, the unequal downward rate of
void filling induces segregation of the small particles relative to large particles, with small particles
segregating below the large ones. In addition to this “random kinetic sieving” mechanism, the SL
model also includes a nonsize-preferential term to allow the upward movement of particles, called
“squeeze expulsion,” which is necessary to balance the net downward flux of both species owing
to kinetic sieving. The mechanisms of random kinetic sieving and squeeze expulsion are additively
combined in the SL model to give the net volume-averaged percolation velocity, which is analogous
to the percolation velocity considered in this paper.

The SL model relates the net volume-averaged percolation velocity, wp,i of species i to the local
number ratio of small to large species, η, the shear rate, γ̇ , and the diameter ratio of small to large
particles, R−1

S :

wp,s = dlγ̇

{
−1[

1 + η
(
R−1

S

)3]
}

(w∗
p,s − w∗

p,l ), wp,l = dlγ̇

{
η
(
R−1

S

)3[
1 + η

(
R−1

S

)3]
}

(w∗
p,s − w∗

p,l ),

(15)
where

w∗
p,s = G

(
η,R−1

S

)[
Ē − Em + 1 + (1 + η)R−1

S(
1 + ηR−1

S

)
]

exp

[
− (1 + η)R−1

S

/(
1 + ηR−1

S

) − Em

Ē − Em

]
,

w∗
p,l = G

(
η,R−1

S

)[
Ē − Em + 1 + (1 + η)(

1 + ηR−1
S

)
]

exp

[
− (1 + η)/

(
1 + ηR−1

S

) − Em

Ē − Em

]
, (16)

and

G
(
η,R−1

S

) = 4k2
LT (M/N )

(
1 + ηR−1

S

)
π (1 + η)

{ (1+η)[1+η(R−1
S )2]

(1+ηR−1
S )2 + Ē2

kav

(
M
N

)} . (17)

It is straightforward to show that the braced terms in Eq. (15) are equivalent to 1 − ci , which means
that Eq. (15) is equivalent to Eq. (2) with f (cs, RS ) = w∗

p,s − w∗
p,l .

B. Fitting the SL Model

The challenge to using the SL model for predicting the percolation velocity is that several
parameters (Ē, Em, kLT , kav , M/N) must be known. Determining these parameters directly from
experiments proves difficult, as they derive from and are based solely on the assumption that distinct
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FIG. 7. Normalized segregation flux from Savage and Lun’s segregation model [32] vs particle size ratio,
RS , and small particle concentration, cs , using parameter values obtained from a fit to DEM segregation velocity
data: Ē = 0.477, M/N = 0.781, kav = 0.466, kLT = 1. The red curve intersects each flux curve at cs = 0.5,
and the blue curve intersects each flux curve at cs,peak, with both curves projected onto the cs-RS plane. The
maximum flux is projected onto the RS-� plane (ds = 2 mm, q = 40 cm2/s).

layers of particles in the flow exist and form a sievelike arrangement, which, does not typically occur.
For this reason, application of the full SL model has been limited, requiring, at best, a heuristic
determination of the parameter values. However, Savage and Lun [32] proposed that Ē, M/N ,
and kav could be calculated for various 2D packings of equal-sized spheres to create a physically
“consistent” set of values. For example, for five equal-sized particles surrounding a void, the SL
model suggests Ē = 0.701,M/N = 0.6, kav = 0.712, kLT = 1

Here the model parameters for Eq. (15) are first found through a simultaneous fit to all of the
DEM segregation velocity data used to create Fig. 5. The fit (MATLAB nonlinear least squares) was
performed over the parameter set {Ē,M/N, kav}, using the lower and upper bounds proposed by
Savage and Lun [32], assuming that kLT = 1, meaning the layer thickness is equal to the mean
local particle diameter. The proposed lower and upper bounds for the parameters {Ē,M/N, kav}
are based on the 2D packing of monodisperse spheres to create a physically “consistent” set of
values [32]. The values of the SL model parameters determined by the fit to the entire set of DEM
data are Ē = 0.477,M/N = 0.781, kav = 0.466, kLT = 1, noting that the value for kav is equal to
the lower limit proposed by Savage and Lun [32].

Figure 7 shows the nondimensional segregation flux from the SL model versus cs and RS for 1 �
R � 3. The similarity between the SL model in Fig. 7 and the DEM data in Fig. 5 is remarkable. The
SL model captures both the asymmetry in the no-dimensional segregation flux about cs = 0.5 with
the maximum segregation flux in the range 0 � cs,peak < 0.5 and the dependence of nondimensional
segregation flux on RS , which first increases with RS and then plateaus for higher values of RS . Note,
however, that the magnitude of the nondimensional flux is higher for the SL model than the DEM
simulation for small RS and lower for large RS due to using fixed parameters over all RS values.

The qualitative features of the SL model shown in Fig. 7 persist over a relatively wide range
of parameters. We systematically explored this dependence for Ē ∈ {0.1547, 1}, M/N ∈ {0.5, 2},
and kav ∈ {0.466, 0.765}, the parameter ranges suggested by Savage and Lun [32] for four to six
equal-sized particles surrounding a void. The model is relatively insensitive to the parameters in this
range.

While Fig. 7 demonstrates that the SL model can qualitatively capture the features of the
segregation velocity and segregation flux observed in the DEM data, the match is imperfect, even
though the SL model parameters are derived from the DEM simulations. Figures 4(d)–4(f) compare
the DEM data with both the SL model (dashed curves) and the quadratic form for wp,i [Eq. (12),
solid curves] in terms of both the segregation velocity and the segregation flux for three values of
the size ratio, RS = 1.6, 2.4, and 2.8. In all cases, the quadratic form matches the data better than
the SL model. The SL model consistently shows a higher flux at lower values of cs than appears in
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FIG. 8. Density-driven segregation velocity vs 1 − ci and segregation flux vs local heavy particle con-
centration, cH , for RD = 6, ρL = 2500 kg/m3, d = 3 mm, and q = 40 cm2/s. (a) Segregation velocity from
simulations with particle inlet ratios cH,inlet = 0.2, 0.5, and 0.8 for light (red ×) and heavy (blue ◦) particles
and black data points are averaged over 0.02 wide increments of 1 − ci . Solid curve is a quadratic fit using all
data in plot. (b) Segregation flux with solid flux curves from quadratic segregation fit in (a). Dashed line is the
sum of the large and small particle fluxes determined from the segregation velocity fits.

the DEM data as well as higher magnitude of the nondimensional flux for small RS and lower flux
for large RS . To some extent, this is to be expected because the quadratic form (i.e., A and B) is fit
directly to the data for each value of RS , whereas the parameters for the SL model are based on the
data across all RS . Fitting the parameter set of the SL model to the data for a single RS instead of
over all values of RS improves the fit of the SL model to the data, shown as the dash-dot curve in
Figs. 4(d)–4(f), as would be expected. The SL model parameter values are (for RS = 1.6, 2.4, and
2.8, respectively) Ē = 0.487, 0.517, and 0.532, M/N = 0.5, 0.693, and 0.812, kav = 0.466, 0.466,

and 0.466 (lower bound = 0.466), kLT = 1 (fixed for all fits), but the fit is still not as good as the fit
to the quadratic form of Eq. (12). Nevertheless, one can conclude that the SL model, while effective
in predicting the qualitative dependence of the segregation flux on small particle concentration and
size ratio, does not accurately predict the segregation velocity or flux. This suggests that the kinetic
sieving and squeeze expulsion mechanisms incorporated in the SL model are correct to first order,
but oversimplify the actual physics at play in practical segregation situations.

IV. DENSITY SEGREGATION

It is natural to also consider density-driven segregation given that the segregation velocity in
density-driven segregation of particles of the same size can be predicted using Eq. (5), where S

depends on the particle density ratio instead of the particle size ratio [15]. Here we explore how the
segregation flux, �i , varies with the density ratio, RD , and the concentration of heavy particles, cH .

Using the same DEM methodology as with size bidisperse granular flows in the geometry shown
in Fig. 1, density bidisperse flows of d = 3 mm spherical particles were evaluated to characterize
the concentration dependence of the segregation velocity. Results from 30 DEM simulations were
used to evaluate the segregation velocity for 1 � RD � 10 in increments of 1. The density of
light particles, ρL was fixed at 2.5 g/cm3 and the density of heavy particles, ρH , was varied from
2.5 to 25 g/cm3; the feed rate was 40 cm2/s. The particle diameters were uniformly distributed
between 2.7 mm and 3.3 mm to reduce particle ordering. DEM simulation results were processed
in the same manner as for size bidisperse simulations to calculate the segregation velocity, species
concentration, and shear rate data from three simulations with differing values of cH,inlet to calculate
the segregation velocity over the full range of mixture concentrations for each RD value.

An example of the resulting segregation data is shown in Fig. 8 for RD = 6. Figure 8(a) shows the
segregation velocity data versus 1 − ci and the associated quadratic fit. Figure 8(b) shows the same
data along with the segregation flux curves from the fit to the segregation velocity data. Although
there is more scatter in the data than for the case of size-driven segregation, the asymmetry in the
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FIG. 9. Variation of the segregation flux from DEM simulations for density bidisperse flows. Black curves
show heavy particle flux from the fit to segregation velocity for each RD value evaluated; the red curve intersects
each flux curve at cH = 0.5, and the blue curve intersects each flux curve at cH,peak, with both curves projected
onto the cH -RD plane. The maximum flux is projected onto the RD-� plane. d = 3 mm, q = 40 cm2/s, ρL =
2500 kg/m3.

density-driven segregation flux still occurs with cH,peak < 0.5, as highlighted by the concentration-
averaged data.

The segregation flux from the segregation velocity fits to the DEM data for a range of RD

is shown in Fig. 9, and again these data span a wide range of shear rates, 0.1 < γ̇ < 38.7 s−1.
The results for density bidisperse segregation are qualitatively similar to those for size bidisperse
segregation. However, the maximum segregation flux continues to increase with RD for 1 �
RD � 10 rather than plateauing as in the size bidisperse case. The segregation flux magnitude is
significantly smaller for density segregation than for size segregation at equal values of RD and RS ,
consistent with a previous review of segregation [46].

The overall similarity between the dependence of segregation flux on cs and RS for size
bidisperse mixtures and on cH and RD for density bidisperse mixtures is striking. The dependence
of density segregation on concentration is the same as for size segregation [Eq. (12)] and has a
qualitatively similar dependence for the flux on concentration and density ratio. Thus the mobility
of heavy particles in density bidisperse flows appears to be similar to that of small particles in size
bidisperse flows, although the mechanism of size-driven preferential kinetic sieving [32] should not
occur in density-driven segregation of equal diameter particles.

A possible explanation for the similarity between size- and density-driven segregation is that the
mechanisms in both cases are consistent with kinetic sieving and squeeze expulsion [32]. Regardless
of the size or density of a particle, the only way for it to move upward is by direct contact with
particles below applying contact forces to push it upward into a void above (squeeze expulsion).
However, falling downward requires only a void below the particle. In size bidisperse systems,
small particles can fall by gravity into a smaller void than large particles. Since larger voids occur
less frequently, downward motion of small particles is preferred. For density-bidisperse systems,
a particle needs only gravity to fall into a void below it, regardless of its density. However, to
move upward, it needs both a void above it and, simultaneously, particles below providing adequate
contact forces to push it upward. We speculate that because a lighter particle is easier to push upward
than a heavy particle there is a preference for upward motion of light particles, while there is an equal
probability of downward motion for both light and heavy particles into a void below [8]. In density
bidisperse systems the preference for light particles to be forced upward is similar to that suggested
by Savage and Lun [32] for size bidisperse systems where small particles preferentially fall into
voids, while both large and small particles are equally likely to be pushed upward by “squeeze
expulsion.” Unfortunately, the segregation velocity results do not provide direct insight into the
mechanism for density-driven segregation, so the above explanation is speculative. Nonetheless,
the similarities between density-driven segregation and size-driven segregation are remarkable and
worthy of further investigation.
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V. CONCLUSION

Evaluating the dependence of the segregation velocity, wp,i , on local mixture concentration for a
range of size and density ratios in flowing granular material leads to several conclusions. First, our
results confirm that like size-bidisperse granular materials in a quasistatic shear cell [51] or in an
annular shear cell [50], dense surface flows of particles segregate more quickly at low concentrations
of small particles in gravity-driven free surface flows. In other words, small particles among many
large particles segregate more quickly than large particles among many small particles, as evidenced
by the maximum segregation flux occurring for 0.35 � cs � 0.5 over a wide range of size ratios (see
Fig. 5).

In a size bidisperse flow, the segregation flux increases with RS up to RS ≈ 2.4, above which
it plateaus for 2.4 � RS � 3. Using parameters extracted from DEM simulations, we implemented
the SL model, which, to our knowledge, is the first time this has been done, in order to validate
it against segregation data. The model [32] is qualitatively similar to the DEM simulation data
(compare Figs. 5 and 7), supporting the plausibility of the kinetic sieving mechanism and the SL
model. The SL model also predicts the decrease in small particle concentration at which the peak
flux occurs with increasing size ratio. However, the SL model matches the DEM simulation results
only qualitatively.

Surprisingly, density bidisperse flows have a similar dependence on local mixture concentration
and density ratio to that predicted by the SL model and observed in size-driven segregation. It is
clear that the kinetic sieving and squeeze expulsion mechanisms must be different for density-driven
segregation than for size-driven segregation, though it might be better to think in terms of a more
simplistic explanation: small particles fall downward into voids more easily than large particles
simply because smaller voids are more common; similarly, lighter particles are more likely to be
pushed up into voids above them than heavy particles, possibly because less force is required.

In past work an advection-diffusion-segregation continuum approach [35–37,39,40,61–63] has
been proposed to model segregation in dense surface flows of granular materials. Along these
lines, we have used Eq. (5) with a linear dependence of the segregation on concentration to model
segregation for a range of size bi-, multi-, and polydisperse flows and density bidisperse flows
[6,7,15,30,38,40] and shown that the results match DEM results quite well. However, in this paper
we have demonstrated that wp,i is better fit by a quadratic dependence on concentration than a linear
fit, resulting in a dependence for the segregation flux [Eq. (13)] identical to that proposed previously
by Gajjar and Gray [53]. Hence, one might question if using a concentration asymmetric model
[Eq. (12)] in the advection-diffusion-segregation model would work better. To address this question
we compared results of our advection-diffusion-segregation model using both Eq. (5) and Eq. (12) to
DEM simulation results. Using Eq. (12) in the model matches DEM simulation results only slightly
better than using Eq. (5). The differences, although relatively small, are most prominent as the con-
centration deviates from cs = 0.5. Further details are provided in the Supplemental Material [52].

While several questions regarding the segregation velocity and flux have been answered in this
study, further research is needed. The reason for the loss of dependence of segregation on the
particle size ratio for RS > 2.4 is unclear. Also of interest is an explanation for why both size- and
density-driven segregation produce similar segregation velocity and segregation flux relations even
through the mechanisms would seemingly be quite different. An additional challenge is to connect
the segregation velocity with the driving forces on the segregating particle for a particle at the
dilute concentration limit [64]. Additional work is also necessary to consider segregation outside the
range of bidisperse mm-sized particles with small size ratios considered here. Of particular interest
in industrial and geophysical flows is segregation of polydisperse particles having a continuously
varying range of size ratios that can exceed two orders of magnitude or more [65].
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