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The rapid accumulation of small, finite-size rigid particles along closed rotating threads
in high-Prandtl-number thermocapillary liquid bridges is investigated numerically when
the flow arises as a traveling hydrothermal wave. For a dilute suspension, different motion
models are investigated which could provide the dissipation mechanisms leading to the
experimentally observed particle-motion attractors. Making use of a phenomenological
particle-boundary interaction model, it is shown that the particle size effect, which becomes
important when the particle moves near the thermocapillary free surface, provides the
relevant source of dissipation for the remarkably fast particle accumulation. Furthermore,
the accumulation phenomenon is tightly correlated with the Kolmogorov-Arnold-Moser
(KAM) tori of the flow in the absence of particles. Therefore, KAM tori in the rotating
frame of reference, in which the flow field is steady, can be considered templates for the
accumulation structures. The numerical results obtained are compared with experimental
data for the so-called spiral loop 1 and spiral loop 2 particle accumulation structures.
In addition, other accumulation structures are numerically predicted which yet await
experimental confirmation.

DOI: 10.1103/PhysRevFluids.3.094302

I. INTRODUCTION

Particle-laden flows are characterized by the motion of a dispersed phase of rigid particles in a
continuous fluid phase. Such flows are important in many natural phenomena arising on different
length scales ranging from nano- and micrometers (e.g., the transport of red blood cells [1]), over
macroscopic scales (e.g., in debris flows [2]), up to astronomical scales (e.g., in planetary formation
[3]). Furthermore, particle-laden flows play a major role in many industrial applications and in the
environment (e.g., in combustion [4], drug delivery [5], and airborne dust [6]). Particle-laden flows can
be classified depending on the physical parameters of the particulate and the fluid phase. The behavior
is quite distinct, depending on the suspension being dense or dilute, the timescales of the particle and
the flow being disparate or similar, and the particles being active or passive. Starting from an initially
random and dilute distribution of small passive particles, the initial and intermediate evolution of the
system can be treated by neglecting the mutual interaction among particles and the influence of the
particles on the fluid flow. This approach is commonly referred to as one-way coupling.
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In experimental fluid mechanics, small particles are frequently employed to visualize the flow or
to measure its velocity. For that purpose, the particles ought to behave like tracers. However, when
they are dispersed in a thermocapillary liquid bridge [7], small particles were found to cluster in
curious shapes [8] which the authors called particle accumulation structures (PAS). Surprisingly,
the demixing took place over very short timescales (a few seconds), despite of the small Stokes
number of the order of St = O(10−5) and a mass density of the particles comparable to that of the
carrier fluid.

Over the last two decades, PAS has received increasing attention. PAS can be observed in
three-dimensional thermocapillary flows in axisymmetric liquid bridges when the flow arises as
an azimuthally traveling hydrothermal wave. The hydrothermal wave emerges from an instability of
the steady axisymmetric toroidal vortex flow and its temperature field [9,10]. The properties of PAS
and its relation to the underlying traveling hydrothermal wave have been studied by Tanaka et al.
[11] and Schwabe et al. [12]. These authors found that the accumulation structure typically takes the
shape of a closed thread of particles which is spirally wrapped around the core of the basic toroidal
vortex. The spiral shape of the accumulation structure travels azimuthally with exactly the same
angular velocity as the hydrothermal wave, whereas individual particles may even move opposite to
the wave in the mean [11], while they primarily circulate like the fluid about the vortex core.

When the hydrothermal wave arises with an azimuthal wave number m = 3, the spiralling PAS
typically has the same wave number, but it can be three (so-called SL-1 PAS, where SL denotes
spiral loop) or six times wound about the vortex core (SL-2 PAS) before closing on itself. Schwabe
et al. [12] found that the shape of PAS is independent of the particle shape, no matter if spherical
or irregular. Moreover, PAS was found to form most quickly if the particles were density matched
to the fluid and if the particles have an appreciable size. Particles too small would not form PAS.
These observations were the first hints that the particle size was the most important parameter, while
inertial effects were of minor importance in their experiments. Since PAS was also observed under
conditions of weightlessness [13], albeit for somewhat different flow conditions, buoyancy forces
cannot be held responsible for PAS.

Based on the observations of Schwabe et al. [12], Hofmann and Kuhlmann [14] suggested a
mechanism by which PAS can arise. Accordingly, PAS is an attractor for the motion of individual
particles, when particle-particle interactions can be neglected during the initial phase of PAS
formation. In their model, the centroid of the particles cannot approach the free surface arbitrarily
close, due to their finite size. This effect may not be significant in many flows with stationary solid
walls, but in thermocapillary flows with a strong streamline crowding toward the free surface [15],
it can be important. Moreover, Hofmann and Kuhlmann [14] numerically found that the streamlines
of the hydrothermal-wave state consist of regular and chaotic streamlines [16,17]. Assuming perfect
advection, they described PAS as the transfer of particles from chaotic streamlines to regular ones
by way of collision of the finite-size particles with the free surface. Considering the particle orbits
during the collision phase, they suggested PAS arises either as a periodic orbit winding on a KAM
torus and closed near the free surface by the particle-surface interaction process, or as a KAM torus
on which particles cluster and where the torus depends the particle size. The work of Hofmann and
Kuhlmann [14] was continued and confirmed by Mukin and Kuhlmann [18] using a much higher
numerical accuracy. Muldoon and Kuhlmann [19] explored the implications of the particle-surface
interaction (PSI) model of Hofmann and Kuhlmann [14] using a closed-form model flow which
was fitted to a traveling hydrothermal wave. This approach avoids interpolation errors which are
unavoidable in discrete simulations and which impair an accurate computation of the streamlines,
i.e., the trajectories of advected particles [20].

In the past, characteristic patterns due to the depletion of particles near the axis of the liquid
bridge have been utilized to visually identify the azimuthal wave number of the hydrothermal wave.
The reason for the particle depletion patterns, however, remained unknown. Muldoon and Kuhlmann
[19] have explained these patterns as fingerprints of the particle-surface interaction when the particle
size is very small. For subcritical flow, the axial projection of the depletion zone is circular. By
fully resolved two-dimensional simulations of the Navier-Stokes equations, without resorting to any
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particle-motion model, Romanò and Kuhlmann [21] have shown that the one-parameter collision
model of Hofmann and Kuhlmann [14] is indeed a good approximation to the fully resolved particle-
surface interaction, if the interaction parameter �, i.e., the minimum admissible distance of the
particle’s centroid from the free surface, is selected correctly. A good PSI model should take into
account not only the size of the particle but also the lubrication gap δ between the particle and the
free surface [18,21,22], where δ is a function of the flow and particle parameters [21]. Selecting �

correspondingly, Romanò and Kuhlmann [22] obtained a good agreement between the single-particle
motion measured experimentally and the numerical simulation of the particle based on the Maxey-
Riley equation [23] and the PSI model. They have shown that particles are attracted, in axisymmetric
thermocapillary flow in liquid bridges, to a toroidal surface, as predicted qualitatively [19]. These
results provided solid evidence for the existence and significance of the particle-surface interaction,
which was also confirmed recently in a microflow with particles as small as 250 nm in radius [24].

In contrast to the explanation of three-dimensional PAS in terms of particle-surface interaction
and a specific flow topology, Pushkin et al. [25] and Melnikov et al. [26] advocated a mechanism
which is essentially based on particle inertia and does not rely on the particle-surface interaction. This
controversial point of view evoked comments by Kuhlmann and Muldoon [27,28] with corresponding
replies [29,30]. As a matter of fact, however, all authors who numerically investigated PAS in
thermocapillary liquid bridges have included the PSI model of Hofmann and Kuhlmann [14] in
some way or the other, even if not mentioned explicitly [31,32]; see Ref. [33].

In recent years, several investigations have been devoted to establishing the properties of PAS
experimentally or numerically. While Kuhlmann et al. have focused on simulations for Pr = 4
[15,18,21,22,33], Shevtsova et al. have considered Pr = 13 corresponding to n-decane, which was
employed as the working fluid in experiments [26,34–36]. Ueno et al. have carried out experiments
for Pr = 28 using silicone oil [11,37–40].

Despite the solid experimental data basis for PAS in liquid bridges of Pr = 28, numerical results
are lacking. The primary reason is the high grid resolution of the flow required to accurately compute
streamlines and trajectories and to resolve the particle-surface interaction. Therefore, we consider the
flow topology and the motion of particles in thermocapillary liquid bridges of Pr = 28 for selected
cases, for which data are available from experiments with silicone oil under normal gravity conditions.
It will be shown that PAS is tightly related to the flow topology in the absence of particles, confirming
the role of the KAM tori and the closed streamlines for PAS established by Hofmann and Kuhlmann
[14] and Mukin and Kuhlmann [18] for Pr = 4. Furthermore, it will be proven that the relevant
dissipative mechanism for PAS at Pr = 28 is the particle-boundary interaction which relies on the
finite particle size. Since PAS for Pr = 28 is caused by the finite size and not by the inertia of the
particles, this result naturally leads to the notion of finite-size Lagrangian coherent structures.

In Sec. II, the mathematical formulation of the problem will be presented, addressing the
assumptions made to simplify the calculation of the streamline topology and the particle trajectories.
Section III describes the numerical methodologies employed for simulating the flow and the
particulate phase. In Sec. IV, the results are presented. Simulations are carried out for experimental
conditions for which the accumulation of particles is well documented. The finite-size Lagrangian
coherent structures computed and validated by experiments are correlated with the flow topology.
Finally, in Sec. V, the results are summarized and conclusions are drawn.

II. PROBLEM FORMULATION

A liquid bridge of an incompressible Newtonian liquid with density ρf, thermal diffusivity κ , and
kinematic viscosity ν is considered. The fluid properties are assumed to be constant. Two coaxial,
circular cylindrical rods of radius R are kept at a mutual distance d to support the liquid bridge. The
axis of the liquid bridge is oriented parallel to the gravity vector g and the two rods are differentially
heated, keeping the bottom rod at a constant cold temperature Tcold = T0, while the top rod is
maintained at a constant hot temperature Thot = T0 + �T , with �T being the temperature difference.
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FIG. 1. Geometry of the liquid bridge and coordinate system.

To linear order, the surface tension σ between the liquid and the ambient gas is approximated by

σ (T ) = σ0 − γ (T − T0), (1)

where σ0 = σ (T0) and γ = −∂σ/∂T |T =T0
is the negative surface-tension coefficient. We consider

an asymptotically large reference surface tension σ0 such that the capillary pressure dominates and
the shape of the interface is independent of the flow field. If we neglect deformations due to gravity
forces, a liquid bridge with volume V = πR2d takes a cylindrical shape (see Fig. 1), which is a
reasonable approximation to typical experiments on the millimeter scale [41,42].

A. Fluid flow

The flow in the liquid bridge is governed by the nondimensional Navier-Stokes, continuity and
energy equations which are considered in Oberbeck-Boussinesq approximation

(∂t + u · ∇)u = −∇p + ∇2u + Grθez, (2a)

∇ · u = 0, (2b)

Pr(∂t + u · ∇)θ = ∇2θ, (2c)

where u = uer + veϕ + wez is the velocity vector field in cylindrical coordinates (r, ϕ, z) with origin
in the center of the liquid bridge, x = rer + zez is the position vector with unit vectors (er , eϕ, ez), p

is the pressure, and t is the time. The governing equations have been made dimensionless using the
viscous scaling d, ν/d, d2/ν, and ρfν

2/d2 for length, velocity, time and pressure, respectively. The
reduced temperature is defined as θ = (T − T0)/�T . The nondimensional groups arising in (2) are
the Prandtl and the Grashof numbers which are defined, respectively, as

Pr = ν

κ
and Gr = gβ�T d3

ν2
, (3)

where β and g are the thermal expansion coefficient and the acceleration of gravity, respectively.
The mathematical problem given by the bulk equations (2) is closed by enforcing no-slip and

constant-temperature boundary conditions on the differentially heated rods

z = ±1/2 : u = v = w = 0, θ = 1, 0. (4a)
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If we neglect viscous forces of the ambient gas on the liquid-gas interface and modeling the heat
transfer across the free surface by Newton’s law of cooling, with the ambient gas being at the constant
cold-wall reference temperature, the boundary conditions on the free surface can be written as

r = 1/� : u = 0, er · S · ez = −Re ∂zθ, er · S · eϕ = −Re

r
∂ϕθ, ∂rθ = Biθ, (4b)

where S = ∇u + (∇u)T is the viscous stress tensors in the liquid. From (4b), three additional
nondimensional groups arise: the thermocapillary Reynolds number Re, the Biot number Bi, and the
aspect ratio �, defined as

Re = γ�T d

ρfν2
, Bi = hd

k
, and � = d

R
, (5)

respectively, where h is the heat-transfer coefficient and k is the heat conductivity of the liquid. For
comparison with experiments, also the Marangoni number Ma = RePr is introduced.

In view of the large number (five) of nondimensional parameters involved and the computational
cost of highly resolved numerical simulations, we focus on flow conditions for which experimental
results are available. Therefore, we consider � = 0.68, Pr = 28, and select Bi = 0.3. These are
parameters for which different particle accumulation structures have been found experimentally
ranging from SL-1, SL-2 [11,39], and their combinations to the so-called toroidal core [15,39]. In
these experiments, the length scale was d = 1.7 mm.

B. Particle motion

Within the one-way coupling approximation used, the fluid flow can be computed independently
from the particle motion. To model the motion of a spherical particle in the liquid bridge, we employ
the simplified version by Babiano et al. [43] of the Maxey-Riley equation [23]

ÿ =
(

1

 + 1/2

)[
− 

St
( ẏ − u) + 3

2

Du
Dt

− ( − 1)

Fr2 ez

]
, (6)

where we use the same viscous scaling as for the Oberbeck-Boussinesq equations. The position
vector of the particle centroid is denoted y and D/Dt is the Lagrangian derivative with the flow field.
The Basset term, the Saffman and the Faxén corrections are neglected.

Three additional nondimensional groups arise for the particle motion: the particle-to-fluid density
ratio , the Stokes number St, and the Froude number Fr, which are defined, respectively, as

 = ρp

ρf
, St = 

2a2
p

9d2
, and Fr = ν√

gd3
, (7)

where ap is the radius of the spherical particle and ρp is its density.
The one-way coupling approach (6) yields a good approximation to the motion of a particle

far away from the boundaries of the domain when the Stokes number St � 1 is small, the particle
Reynolds number Rep = (ap/d )| ẏ − u| � 1 is small and when the suspension is dilute with a volume
fraction of solid less than O(10−3). All these assumptions hold in the cases of interest for this study,
except when the particle moves close to the domain boundaries or when the local volume fraction of
particles is too high to neglect particle-particle interactions (i.e., when many particles gather close
to each other). The breakdown of (6) is particularly significant near the free surface, because the
streamlines are extremely crowded toward the interface. Therefore, the finite size of the particle
cannot be ignored very near the free surface.

To take into account the finite particle size, we employ the particle-surface interaction (PSI) model
introduced by Hofmann and Kuhlmann [14] and further improved by Romanò and Kuhlmann [21,44]
to account for an estimate of the minimum lubrication gap width δ between the particle and the free
surface. Within the phenomenological lubrication approach adopted by the PSI model, the particle
motion is ruled by (6) until its centroid has approached the free surface up to a minimum allowable
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FIG. 2. Sketch of the PSI model for the motion of a spherical particle (circles) with centroid indicated by a
dot. The dotted curve represents the particle trajectory in the absence of the PSI model. The full line represents
the trajectory when the PSI model is employed. The short-dashed line indicates the axis of the liquid bridge
and the long arrow indicates the direction of the thermocapillary stresses along the interface (long-dashed line).
The particle radius a, lubrication gap width δ, and interaction parameter � are indicated.

distance � = a + δ, comprising the nondimensional particle radius a = ap/d and a nondimensional
characteristic lubrication gap width δ. When a particle approaches the interface from the bulk, the
positive radial velocity component ẏr of the particle is annihilated when it arrives at the distance �

from the free surface. The remaining velocity components ẏϕ �= 0 and ẏz �= 0 make the particle slide
parallel to the free surface until it is transported to a point at which the radial velocity component of the
flow field u turns negative. At that point, the particle is released to the bulk and the PSI model ceases.
Note that the surface of a perfectly wetted particle approaching a smooth, indeformable free surface
(this holds in experiments since σ0 � 1) cannot make contact with the free surface in a finite time due
to the lubrication forces which repel the particle [45]. The existence of a lubrication gap is consistent
with experimental observations [22]. A corresponding interaction model is not implemented near
the solid walls, because it is irrelevant for PAS in the flows considered, as explained later.

The PSI model is conceptually illustrated in Fig. 2 for a steady axisymmetric flow in a liquid
bridge. In considering the lubrication effect between the surface of the completely wetted solid
particle and the nondeformable liquid-gas interface, Romanò and Kuhlmann [21] pointed out that
the larger and the heavier the particle, the more it is capable of squeezing the lubrication film. On the
contrary, for small and lighter (but still  > 1) particles, the lubrication gap thickness can become of
the same order of magnitude as the particle radius, an effect which cannot be neglected. Therefore,
the lubrication gap thickness δ is taken into account using the function �(a, ) proposed by Romanò
and Kuhlmann [21], which accounts for drag, lift, and lubrication forces on the particle derived from
fully resolved numerical simulations. Specifically, we employ the interpolation

� = a

(
1 + δa

a

)(
1 + δ

a

)
, (8)
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FIG. 3. Distribution of finite volumes in the (x, y ) (a) and the (x, z) plane (b). The grid employed for the
simulations is five times finer than the one depicted, consisting of ≈20 million cells. The double lines indicate
the main blocks of the mesher software BLOCKMESH.

where δa and δ are interpolation functions defined in Refs. [21]. We note the interaction parameter
� is solely based on fully resolving numerical simulations [21] and does not involve any fit to
experimental data. The same approach has been used in Romanò and Kuhlmann [22] and verified
by comparison with experimental results for the limit cycle of a single particle moving in the steady
axisymmetric flow in a liquid bridge for subcritical conditions.

The PSI model for the particle motion corresponds to an inelastic collision in direction normal
to the interface of the particle with the free surface. The model adds significant dissipation to
the dynamical system (6), because the kinetic energy of the motion normal to the interface is
impulsively dissipated. Therefore, the particle–free-surface interaction can create attractors for the
particle motion.

III. NUMERICAL METHODS

A. Fluid flow

A collocated finite-volume solver is employed for the numerical simulations of the fluid flow.
The solver has been developed in the framework of the open-source software package OPENFOAM,
extending a pressure-based solver to include the thermocapillary stress conditions along the free
surface. The details of the numerical implementation of the boundary conditions and a comprehensive
code validation can be found in Kuhlmann and Lemée [46].

Figure 3 shows the distribution of the finite volumes which are employed to discretize the
domain. All simulations are carried out with a mesh consisting of about 20 million cells.
The simulations employ second-order discretization schemes, both in space and time. For the
discretization in space, a central scheme is used. Time is advanced implicitly (backward
in OPENFOAM). We employ the pressure-implicit with splitting of operators (PISO) algorithm
with two external correction steps (nCorrectors=2), accounting for the nonorthogonality of
the grid via two internal correction loops (nNonOrthogonalCorrectors=2). Preconditioned
conjugate gradients are used for solving the linear algebraic equation resulting from the
pressure-projection step, whereas preconditioned biconjugate gradients are used for the momentum
and energy equations. The iterative methods employed for solving these linear systems are terminated
when the relative residuals are smaller than 10−7.

To obtain the traveling-wave solution for the selected parameters, a continuation method has been
employed using as initial condition the traveling wave obtained by Mukin and Kuhlmann [18] for
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Pr = 4 and Bi = 0 and stepwise increasing the Prandtl and Biot numbers to Pr = 28 and Bi = 0.3.
For each set of fixed parameters (Pr, Bi) the integration in time is carried out using a time-step size of
�t = 1.4 × 10−4 until a fully developed hydrothermal wave is established. To ensure convergence,
the velocity components and the temperature have been monitored in 16 points distributed in the
domain. When the hydrothermal wave with angular velocity � is fully developed, the signal at each
point will be periodic in time and the flow field is steady in the frame of reference rotating with �.
To establish a convergence criterion, the flow field is transformed into a frame of reference rotating
with �′ = (2π/m)f , where m is the fundamental azimuthal wave number of the flow and f the
current peak-to-peak frequency. The simulations are terminated when the convergence criterion

max
x,i

|ui (x, t ) − ui (x, t − �t )|
Re�t

� 3 × 10−4 (9)

is satisfied in the frame of reference rotating with �′, where x denotes all grid points and i enumerates
the Cartesian components of u. This condition can only be fulfilled if �′ has become nearly stationary.
Once convergence is reached, the corresponding frequency is identified as the frequency of the
traveling wave, � = �′.

B. Streamlines and particle trajectories

A fully developed hydrothermal wave is steady in the reference frame rotating with the angular
velocity � of the wave. Taking advantage of this property, the velocity field in the laboratory frame
u(x, t ) is transformed to obtained the velocity U (x) = u(x, t0) − r�eϕ in the frame of reference
rotating with the azimuthally traveling wave, where u(x, t0) can be any snapshot of u at time t0.

A Lagrangian approach is used for calculating the motion of infinitesimal fluid elements. The
position X (t ) of a fluid element moving along the steady streamline in the rotating frame is governed
by the advection equation

d X

dt
= U[X (t )], (10)

with initial condition X (t = 0) = X0. Equation (10) is solved using the Runge-Kutta Dormand-
Prince method [47]. The results obtained by the standard fourth- and fifth-order Runge-Kutta schemes
are used to estimate the integration error at each time step. The algorithm is then adapting the time
step �t to make sure the absolute and relative numerical errors are always less than 10−7. Since the
flow field is computed in an Eulerian reference frame, it is necessary to interpolate the discrete flow
field data U at the location of the fluid element X . To that end, U is interpolated quadratically on
each finite-volume cell, consistent with the order of accuracy of the finite-volume solver.

The same numerical method is used for calculating particle trajectories. However, (10) is replaced
by the Maxey-Riley equation in the rotating frame of reference [14]

Ẍ = 1

 + 1/2

[
− 

St
(Ẋ − U ) + 3

2
U · ∇U − ( − 1)

Fr2 ez

]
− 2� ×

(
Ẋ − 3

2 + 1
U

)

− � × (� × X )

(
1 − 3

2 + 1

)
. (11)

The equation is solved using velocity-matching initial conditions, X (t = 0) = X0 and Ẋ (t = 0) =
U (X ).

IV. RESULTS

A. General structure of the flow field

When the Reynolds number is increased for large Prandtl number, the basic toroidal vortex flow
becomes unstable via a forward Hopf bifurcation to a traveling wave [9,10,41,48]. For the aspect
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FIG. 4. Isotherms (left) and streamlines (right) of the unstable axisymmetric basic flow for � = 0.68, Re =
1600, Pr = 28, Bi = 0.3, and Gr = 687. The dashed lines and the dash-dotted line indicate the free surface
and the axis of the liquid bridge, respectively.

ratio � = 0.68 considered, the critical Marangoni number is about Mac ≈ 104 [41,49] corresponding
to Rec ≈ 360 and the critical azimuthal wave number is m = 3.

Figure 4 shows the streamlines and isotherms of the unstable basic state at Re = 1600 ≈ 4 × Rec.
The strong convective effect at such a large Marangoni number leads to thermal boundary layers on
the hot and the cold walls which are particularly thin near the contact lines. The associated large
thermocapillary stresses cause a very high surface velocity near the hot wall which is visible by the
strong crowding of streamlines near the liquid-gas interface. The streamline crowding is inherited
by the three-dimensional flow which can be decomposed into the unstable axisymmetric flow plus a
hydrothermal wave with constant amplitude. Since the Grashof number is relatively small, the flow
is dominated by the thermocapillary driving as observed in experiments using millimetric liquid
bridges (see, e.g., Ref. [39]). This flow feature has important implications for the particle motion and
accumulation, because suspended particles can be expected to be frequently transported close to the
free surface in the vicinity of the hot wall due to the high volume flux associated with the streamline
crowding.

To illustrate the fully developed total flow for Re = 1600 for which a hydrothermal wave travels
azimuthally along the basic toroidal vortex, the three-dimensional temperature isosurface θ = 0.5
for Re = 1600 is shown in Fig. 5(a). It separates cold fluid near the bottom wall from hot fluid near
the top wall. The flow field of the hydrothermal wave together with the strong toroidal basic vortex
at such a large Marangoni number causes the transport of cold fluid in form of m = 3 cold filaments
to wrap about the vortex core (not shown) near the hot corner. The first approach of the cold fingers
to the free surface are associated with the well-known cold surface spots [12,39]. Since the cold
fingers become weaker upon their second return to the free surface, they do not create pronounced
secondary cold spots on the free surface. The transport property of the flow field leading to the finger
structure of the temperature field is expected to lead to similar structures of transported quantities
which are dominated by advection like, e.g., suspended particles.

For the high Reynolds number considered, the spatial spectrum of the hydrothermal wave exhibits
the typical harmonics of the fundamental azimuthal wave number m = 3. However, we also find very
small amplitudes of spectral components with other wave numbers including m = 1. The maximum
(with respect to r and z) amplitude of the vertical velocity field w with m = 1 is only about 0.01%
of the maximum amplitude of the fundamental mode with m = 3. Since these perturbations do
not necessarily have the same azimuthal phase velocity as the dominant mode with m = 3 and its
harmonics, the hydrothermal wave is almost periodic with m = 3, but not exactly. The degree of
perturbation of the perfect traveling wave can be estimated from Fig. 5(b). The small perturbations
found could be due to long transients of decaying spectral components from the initial conditions
which also involved grid refinements, or due to physical effects like an instability of the traveling
wave [50].
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FIG. 5. Temperature field for � = 0.68, Re = 1600, Pr = 28, Bi = 0.3, and Gr = 687. (a) Isosurface θ =
0.5. (b) Isotherms in the midplane z = 0. The direction of rotation is clockwise in panels (a) and (b). The gray
scale indicates the velocity magnitude in panel (a) and the temperature field in panel (b).

For a deeper understanding of the transport due to the basic flow and the hydrothermal wave,
the flow field is analyzed in the rotating frame of reference with respect to the key topological
features. Four supercritical Reynolds numbers are considered. The parameter sets are provided in
Table I. All sets correspond to experiments of Ueno [51] for which images of experimental particle
accumulation structures can be found in Kuhlmann and Lemée [46], except for Re = 1750. In
addition, the numerically determined rotation rates � of the hydrothermal waves are compared with
the values obtained by linear interpolation of the experimental data �exp(Ma = 47000) = 4.30 and
�exp(58000) = 4.46 of Toyama et al. [39]. The agreement is very good.

For all cases considered, we find the fully developed supercritical flow to be organized around
three fixed points and three limit cycles. These invariant topological elements in the rotating frame
are sketched in Fig. 6. The figure also sketches the stable and unstable manifolds of the fixed points
and limit cycles. The singular points on the cold and hot walls, denoted s1 and s2, respectively,
are degenerate, since the wall-normal flow field in their vicinity vanishes in linear order. They are
degenerate spiralling-out saddle foci whose unstable manifolds are on the respective solid wall. Up
to computational accuracy, they are located exactly on the axis of symmetry. The limit cycles w1

and w2 at the contact lines in the cold and the hot corner, as well as the line of flow separation wc

on the cold wall, are saddle limit cycles and likewise degenerate. Since the unstable manifolds of
the saddle foci s1 and s2 are located on a solid boundary, the heteroclinic connection of s1 and s2

TABLE I. Parameter sets investigated for Pr = 28, Bi = 0.3, and � = 0.68. In addition, the angular velocity
� of the hydrothermal wave is given and compared with the experimental one �exp.

Re Ma Gr � |�exp|
1600 44800 687 −4.15 4.27
1750 49000 751 −4.30 4.33
1850 51800 794 −4.36 4.37
1950 54600 837 −4.40 4.41
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s1 wc
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|Ω|

FIG. 6. Sketch of the topological elements of the supercritical flow. The three critical points s1, s2 and s ′ are
indicated by dots. The three limit cycles w1, w2, and wc are represented as dotted and full lines. Arrows show
the flow along the stable and unstable manifolds. The gray arrow indicates the broken connection between s ′

and s1.

with the saddle limit cycles wc and w2, respectively, must be understood in a degenerate sense. The
third singular point s ′ is a free spiralling-in saddle focus located in close proximity of the z axis
(rs ′ < 1%). Within the given numerical accuracy, s ′ is heteroclinically connected with s2 on the hot
wall, but disconnected from s1 on the cold wall, which is shown in Fig. 7(a).

The two saddle limit cycles located in the cold and hot corners w1 and w2 are heteroclinically
connected with each other along the cylindrical liquid-gas interface. While the stable manifold of w2

is connected with the saddle focus s2, the unstable manifold of w1 is connected to the saddle limit
cycle wc on the cold wall [Figs. 6 and 7(b)]. Along wc, the flow separates from the cold wall via

(a)

x

z

y

s2

s1

s

(b)

x

y

w1

s1

wc

|Ω|

FIG. 7. (a) The broken connection between s1 and s ′ for Re = 1600: The two unstable one-dimensional
manifolds of s ′ obtained by integration forward in time are shown in gray. The stable manifold of s1 (black)
obtained by integrating backward in time from s1 does not connect with s ′, but locally approximates the stable
manifold of s ′. (b) Limit cycle wc (separation line) on the cold wall for Re = 1600 (dots) and Re = 1850
(squares). The arrows indicate the attraction to wc (repulsion from w1) along the cold wall.
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a stream surface into the bulk. The line of separation shown in Fig. 7(b) is nearly circular, despite
the nonaxisymmetric flow, and nearly independent of the Reynolds number. By comparison with
Fig. 4, this separation is not inherited from the axisymmetric basic flow and must therefore be due to
the nonlinear interactions among harmonics of the hydrothermal wave which give rise to an m = 0
component in the spectrum of the wave. The separation from the bottom wall seems to promote the
settling of heavy particles at the bottom of the liquid bridge within the recirculation zone as observed
in experiments (see, e.g., Refs. [39,40]).

The broken connection together with the feedback mechanism provided by the axisymmetric
part of the flow suggests that at least part of the streamlines are chaotic. The coexistence of regular
and chaotic streamlines in a thermocapillary liquid bridge with Pr = 4 has been demonstrated in
Ref. [18]. Chaotic and regular flow regions have also been discovered by Refs. [52] and [53] for
topologically similar systems.

B. KAM tori and chaotic sea

The fully developed hydrothermal wave is stationary in the rotating frame of reference in the sense
of the convergence criterion (9). The small residual perturbation with m = 1 has an amplitude which
is about 104 times smaller than the maximum amplitude of |U | and is thus considered negligible.
The incompressible frozen flow in the rotating frame is equivalent to the flux in phase space of a
Hamiltonian system with one and a half degrees of freedom [54]. Therefore, regular and chaotic
streamlines can coexist in this steady three-dimensional incompressible flow [17,55]. Owing to
their relevance for PAS [14,18,19], the analysis of the streamline topology is focused to the regular
streamlines inside of Kolmogorov-Arnold-Moser (KAM) tori in the rotating frame of reference.

Regular and chaotic streamlines are indeed found to coexist in the thermocapillary liquid bridge
for all cases considered. An initial set of 100 streamlines is reconstructed by initializing fluid elements
along four lines near the free surface and parallel to the z axis of the liquid bridge. On each of the lines
at (r, ϕ) = (1/� − 10−3, nπ/2), n ∈ [0, 1, 2, 3], 25 fluid elements are initially evenly distributed
within z ∈ [−0.4, 0.4]. The streamlines are integrated forward in time up to t = 30. The resulting
streamlines are then classified as regular or chaotic depending on their ordered returns to the Poincaré
plane, selected as z = 0. Once regular regions have been identified, corresponding KAM tori are
computed with higher accuracy, setting the absolute and relative tolerances of the Dormand-Prince
method to 10−9 and constraining the maximum time step to �tmax = 10−3. The periodic orbits (closed
streamlines) in the center of each set of nested KAM tori are determined by computing the elliptic
fixed points (Table II) in the Poincaré plane with absolute accuracy of 10−3 in the (r, ϕ) plane using a
Newton-Raphson method. Once the closed streamline is obtained, the largest reconstructible KAM
torus is obtained from the outermost regular streamline found. This is accomplished considering
200 evenly distributed collocation points along the closed streamline and defining 200 Poincaré
planes normal to the closed streamline in these collocation points. The Poincaré points made by the
outermost regular streamline are then interpolated, in each Poincaré plane, by cubic splines. From
the 200 closed interpolation curves, the largest KAM torus is then constructed by cubic Hermitian
interpolation.

Figure 8 shows Poincaré sections at midplane z = 0 for all four Reynolds numbers considered.
Poincaré points of chaotic streamlines are shown in light gray, while Poincaré points of regular
streamlines are indicated by black dots. The projection of the largest reconstructible KAM torus
is shown as gray shading. Each KAM torus is housing a periodic orbit (full line). To distinguish
the different types of KAM tori, we extend the classification proposed by Muldoon and Kuhlmann
[19] and name a KAM torus and the associated closed streamline kT

j

i and kL
j

i , respectively, where
i denotes the azimuthal wave number of the structure and j and k the winding numbers about the
basic-flow vortex core and the z axis, respectively, where the winding number is the number of
revolutions until the structure closes on itself.

Four topologically different KAM tori are found. For Reynolds numbers Re � 1850, we always
find a single KAM torus 1T 3

3 with wave number i = m = 3 which winds j = 3 times about the
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TABLE II. Characteristic data for the closed streamlines L and the largest reconstructible KAM tori T for
different Reynolds numbers. Given are the orbit time τ along the closed streamline in the rotating frame and
the minimum distances �fs and �w from the free surface and the hot wall, respectively. To define the location
of the closed streamline, one of its fixed points in the Poincaré plane z = 0 is specified together with azimuthal
angle ϕθmax at which the free-surface temperature θfs(ϕ, z) reaches a global maximum (hot surface spot).

Re KAM/streamline τ �fs �w Fixed point (r, ϕ) ϕθmax

1600 1T 3
3 0.00565 0.03159

1L3
3 0.821 0.01180 0.04193 (1.4481, 1.7481) 1.6886

5T 15
3 0.00562 0.02071

5L15
3 4.2728 0.00582 0.02078 (0.6334,4.1496) 1.6886

1750 1T 3
3 0.00851 0.03155

1L3
3 0.779 0.01462 0.05101 (0.5331, 3.2479) 1.7526

1850 1T 3
3 0.01041 0.03581

1L3
3 0.681 0.01251 0.05631 (1.4474, 5.2607) 0.4065

1T 6
3 0.00420 0.01467

1L6
3 1.491 0.00422 0.01470 (0.7073, 0.1757) 0.4065

1950 1T 6
3 0.00452 0.02070

1L6
3 1.328 0.00455 0.02072 (1.2050, 3.8304) 0.2596

basic vortex core and once (k = 1) about the z axis. For Re = 1600, an azimuthally subharmonic
KAM torus 5T 15

3 is found in addition (shown later) which winds 15 times about the vortex core and
5 times about the axis. For Re � 1850, another KAM torus 1T 6

3 is detected, which still has wave
number i = m = 3, but which winds six times about the vortex core. The cross section of the largest
reconstructible KAM surface of 1T 6

3 is always very small such that the projection of 1T 6
3 onto the

plane z = 0 appears smaller than the markers used in Fig. 8. We find the cross section of 1T 6
3 is

growing with Reynolds number such that 1T 6
3 is slightly larger for Re = 1950 than for Re = 1850.

The fourth kind of KAM torus, 0T 1
3 , is only found for the highest Reynolds number, Re = 1950. It

is a structure which has an azimuthal wave number i = 3. The leading superscript 0 indicates that
this torus does not wind about the z axis, unlike, e.g., the tori 1T 3

1 of Muldoon and Kuhlmann [19].
A three-dimensional view of the reconstructed KAM tori is presented in Fig. 9. It is remarkable

that the shape and width of the regular regions do not depend much on the Reynolds number in a
wide range of Re but suddenly appear or disappear within the relatively small range. We find all
KAM tori of type 1T 3

3 , 1T 6
3 , and 5T 15

3 to pass very close by the free surface of the liquid bridge,
while the closest approach to the walls is about three to six times larger and always occurs with
respect to the hot wall. Since these geometric parameters are key for explaining the experimentally
reported accumulation of particles, the minimum distances between the outermost KAM surfaces
and the boundaries are provided in Table II, denoted �w and �fs, where the subscripts w and fs refer
to the hot wall and the free surface, respectively. Also given are the distances from the boundaries
of the closed streamlines and their orbit times τ .

C. Lagrangian finite-size coherent structures

The KAM tori analyzed above are properties of the flow field alone. The fluid inside of KAM
tori is locked and does not mix with the fluid outside of the KAM tori. Their importance for particle
accumulation has been explained by Hofmann and Kuhlmann [14], who described how particles
moving in the region of chaotic streamlines can be transferred to the region of the KAM tori by
way of the particle-surface interaction caused by, and depending on, the finite size of the particles.
Once moving in the region of the KAM tori of the flow field, the particles are typically prevented to
leave this region by repeated collisions with the interface if the deviation of the particle trajectories
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FIG. 8. Poincaré section on the midplane z = 0 of chaotic streamlines (light gray dots) and of streamlines
on the largest reconstructible KAM tori (black dots) in the rotating frame for (a) Re = 1600 with 1T 3

3 , (b)
Re = 1750 with 1T 3

3 , (c) Re = 1850 with 1T 3
3 and 1T 6

3 , and (d) Re = 1950 with 1T 6
3 and 0T 1

3 . Also shown are
projections of the closed streamlines (lines) and of the largest reconstructible KAM tori (dark gray shading).
The intersections of the closed streamlines with the Poincaré plane are marked by diamonds (	). The arrow
shows the direction of propagation of the hydrothermal wave in the laboratory frame. Fluid elements in the
rotating frame move counterclockwise about the axis in the mean.

from the streamlines is sufficiently small. Exceptions are discussed in Mukin and Kuhlmann [18].
In this respect, the KAM tori are templates for particle motion attractors and the resulting PAS is
a finite-size Lagrangian coherent structure in contrast to an inertial Lagrangian coherent structure
which is caused by particle inertia.

To verify this mechanism in liquid bridges of Pr = 28, we consider the motion of finite-size rigid
spherical particles in the flow fields studied above using the one-way coupling approach, including
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FIG. 9. Three-dimensional view of the largest reconstructible KAM tori 1T 3
3 (dark gray) and 1T 6

3 (light
gray) for different Reynolds numbers in the rotating frame of reference. A black line on a dark gray KAM torus
represents part of the open streamline defining the torus. The arrow shows the direction of propagation of the
hydrothermal wave.

drag, lift, buoyancy, and lubrication forces due to particle–free-surface interactions, as described
in Sec. II B. Interactions of particles with the solid walls are not taken into account, because these
interactions are less frequent and extremely rare or even completely absent during the final stage of
the evolution of the particle accumulation process. As will become clear later, the reason is the much
closer approach to the free surface of the closed streamlines and the KAM tori as compared to the
solid walls (cf. Table II).

The rapid accumulation of particles is a well-established result from experiments for three of
the four Reynolds numbers considered [11,38–40]. However, understanding the origin of these
accumulation structures is challenging, since different dissipation effects could be responsible for
the creation of attractors for the particle motion [14,25,26,31]. While Muldoon and Kuhlmann [33]
have shown that particle-surface interaction is the primary cause for PAS for Pr = 4 when typical
particle parameters are considered, such clear numerical evidence is not available for fluids with
Pr = 28.
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FIG. 10. Top view of finite-size Lagrangian coherent structures of SL-2 type for Re = 1950, a = 0.002941,
and  = 2.52 (corresponding to � = 0.00422), shown in the rotating frame of reference. (a) Experimental
result (courtesy I. Ueno, see Ref. [46]). [(b)–(d)] Particle configuration (light gray dots) at t = 84 resulting from
numerical simulations according to model I (b), II (c), and III (d). The closed full line represents the closed
streamline 1L6

3 [see Fig. 8(d)]. In panel (c), also an enlargement is shown into the region near the free surface
indicated by the dark gray rectangle. The arrow indicates the direction of propagation of the pattern in the
laboratory frame. The light gray full squares denote immobile particles having settled on the cold bottom wall.

1. SL-2 PAS: The role of flow topology, inertia, and particle-surface interaction

To probe PAS, we consider Re = 1950 for which the so-called SL-2 PAS [11] is observed
[Fig. 10(a)]. In the experiments, the SL-2 particle attractor is found only within a very narrow
range of particle parameters. Therefore, only numerical simulations in which the particle scales are
properly taken into account should be able to reproduce the experimental results. Here we use the same
particle size and density as in the experiment of Ref. [39], i.e., particles with nondimensional radius
a = 0.002941 and density ratio  = 2.52. The Stokes and Froude numbers are St = 4.844 × 10−6

and Fr = 9.11 × 10−3, respectively.
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For the numerical simulations, 1000 particles are initially randomly distributed in a subvolume
of the domain V∗ = (r, ϕ, z) ∈ [0, R∗] × [0, 2π ) × [−1/2, 1/2], where R∗ = 1/� − �, and their
trajectories are integrated up to t = 84 in units of the characteristic viscous diffusion time
corresponding to three thermal diffusion times. This timescale is suggested by the experiments
of Gotoda et al. [38], who found fully developed PAS after about approximately d2/κ .

To clarify the relative importance of the different dissipation mechanisms, simulations are carried
out for three different particle-motion models.

Model I: The Maxey-Riley equation (11) is integrated using the PSI model with � = a + δ, where
δ is selected according to Romanò and Kuhlmann [21].

Model II: Particles are simply advected integrating (10) and using the PSI model with � = a + δ,
where δ is selected according to Romanò and Kuhlmann [21].

Model III: The Maxey-Riley equation (11) is integrated using the PSI model, but neglecting the
lubrication gap width δ by setting � = a.

The experimental SL-2 particle accumulation pattern is shown in Fig. 10(a) in which many frames
of a movie have been averaged in the rotating frame of reference [46]. Figures 10(b)–10(d) show
the particle configurations obtained numerically at t = 84 employing models I, II, and III. Except
for small details, model I [Fig. 10(b)] and model II [Fig. 10(c)] closely reproduce the experimental
SL-2 PAS. In both cases, particles accumulate very near (or even on) the closed streamline 1L6

3 of
the KAM torus 1T 6

3 which is a pure property of the flow. Model III [Fig. 10(d)] fails to predict PAS.
The following conclusions can be drawn from the comparison.

(a) Particle buoyancy is insignificant for the parameters of Fig. 10. Merely very few particles
settle on the cold wall [gray squares near the center in Figs. 10(b) and 10(d)]. This is confirmed
by neglecting particle buoyancy in model I: Corresponding simulations yield results (not shown)
qualitatively identical to Figs. 10(b) and 10(c).

(b) Since the results obtained from models I and II are very similar and model II differs from
model I by neglecting the inertia and buoyancy terms, it can be concluded that the inertial and
buoyancy terms retained in the Maxey-Riley equation are not required to form SL-2 PAS. For the
parameters of the experiment considered, PAS is correctly predicted when using the advection model
(II) for the particle motion in the bulk.

(c) The comparison of model III [Fig. 10(d)] with model I [Fig. 10(b)] shows that neglecting the
lubrication film thickness δ in the interaction parameter � leads to the fatally wrong result shown
in Fig. 10(d). This underlines the importance of correctly selecting the interaction parameter �. The
sensitivity of the accumulation pattern with respect to � can be understood in the framework of the
PSI model [14]: Since the KAM tube within which particles accumulate (near the closed streamline)
is very slender, particles moving in the region of the chaotic sea cannot be transferred to the regular
KAM torus by the particle-surface interaction if the value for � is not correct. In that case, the
PSI maps collided particles back to the chaotic sea. For a model flow, this is explained in detail by
Muldoon and Kuhlmann [19] and for Pr = 4 by Mukin and Kuhlmann [18].

(d) If SL-2 PAS could form on the timescale considered solely due to inertia effects modeled by
the Maxey-Riley equation, accumulation should have been visible in Fig. 10(d). Since this is not the
case, with the particle distribution being nearly random at t = 84, it can be concluded that inertia
effects are not the cause of SL-2 PAS in the experiment shown in Fig. 10(a). This conclusion refines
conclusion (b) above.

From these considerations, it is deduced that SL-2 PAS in the experiment is exclusively due to the
particle-surface interaction and that the interaction parameter must be selected correctly. This result
is consistent with earlier results for the smaller Prandtl number Pr = 4 [14,18] in which inertia was
neglected, and with the results of Muldoon and Kuhlmann [33]. These previous results, as well as the
current investigation, show the physical mechanism leading to such Lagrangian coherent structures
is based on the strong correlation between the flow topology and the interaction parameter � which
depends on the particle size (radius a) and the lubrication gap width δ for the given flow conditions.
The present simulations confirm the general mechanism of Hofmann and Kuhlmann [14] according
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to which PAS (here SL-2 PAS) is caused by the transfer of particles moving in the chaotic sea to a
regular region of the flow by means of particle-surface interactions (see also Refs. [18,19]).

For the system under investigation, the correction of the purely advective motion of particles
by inertia effects modeled by (6) is small, which is also suggested by the small Stokes number
St = 4.844 × 10−6. Therefore, when a particle moves in a chaotic region of the flow, its motion
is quasiergodic and will tend to explore the chaotic sea without significantly being affected by its
finite size. But when the particle moves close to the free surface, its finite size becomes relevant
and the particle is repelled from the free surface. In the model framework, this interaction transfers
the particle from a chaotic to a regular region of the flow if � ≈ �fs and if the particle-surface
interaction arises upstream of the region of closest approach to the free surface of the KAM torus
(for details, see Refs. [14,18,19]). This first phase of particle accumulation is very rapid due to the
chaotic mixing outside of the KAM tori. In the second phase, the trapped particles become focused
due to repeated encounters with the interface. Theoretically, weak inertia renders closed streamlines
attractive or repulsive with the inertia-induced limit cycle evolving from the closed streamline as
St increases from zero [56]. However, before the inertia-induced limit cycle for small St can attract
particles, these are caught by the limit cycle created by the particle-surface interaction. Both limit
cycles are different, but both are located in the vicinity of the closed streamline.

Since the SL-2 limit cycle caused by the particle-surface interaction is located very near the closed
streamline 1L6

3, particles moving on the limit cycle remain sufficiently distant from the solid walls. If
a particle-wall collision model is implemented by setting � = a or � = a + δ, the evolution of the
particle distribution is essentially the same and leads to the same particle limit cycle. The reason is
the number of particle-wall interactions is far less than 0.1% of the number of particle–free-surface
interactions, since �fs is always three to five times smaller than �w (Table II). Therefore, particle-
wall interactions mainly occur in the initial phase when particles are randomly distributed. In the
final phase of PAS formation, particle-wall interactions do not occur. For this reason, the particle
wall-interaction can be neglected for the parameters investigated. Note that particle attractors can
be caused by particle-wall collisions alone if the particle–free-surface interaction is disregarded (see
Fig. 9 of Melnikov and Shevtsova [36]). However, such a model is expected to yield unphysical
results whenever �fs < �w, which is usually the case.

A second example of SL-2 PAS, now for Re = 1850, is shown in Figs. 11(a) and 11(b), where
a comparison is made between the experimental and the numerical SL-2 PAS. The numerical result
[Fig. 11(b)] is obtained for model II (advection and PSI model). The value for the interaction
length � = 0.00497 was taken from the fit proposed by Romanò and Kuhlmann [21] based on
the experimental parameters [�exp = �(aexp, exp)]. As for Re = 1950, a good agreement between
the experimental and numerical PAS is obtained for Re = 1850. Since the KAM torus 1T 6

3 has a
very small cross section, an accurate estimate of � is, once again, fundamental to numerically find
SL-2 PAS.

2. SL-1 PAS

It was shown that advection in the bulk combined with the PSI model (model II) very well
captures the physics of PAS. Therefore, we shall consider model II in the following, neglecting the
weak dissipation introduced by inertia and buoyancy.

For a given Reynolds number in the range Re ∈ [1825, 1900], particles have been found to
accumulate either on SL-1 PAS (1T 3

3 ) or on SL-2 PAS (1T 6
3 ) [11,39]. Which attractor is realized

depends on the particle size and particle-to-fluid density ratio, which both influence the interaction
length �. This experimental result is confirmed by the present simulations using model II. For
Re = 1850, we find different attractors depending on the interaction parameter �. Apart from the
SL-2 PAS for Re = 1850 discussed above, we also find linelike PAS of type SL-1 and tubular PAS
of type SL-1. While tubular SL-2 PAS can arise in principle, it would hardly be distinguishable
in experiments from linelike PAS, because the cross section of the largest KAM torus is very
small.
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FIG. 11. Top view of finite-size Lagrangian coherent structures for Re = 1850 shown in the rotating frame
of reference. (a) Experimental result for a = 0.00424, and  = 1.77 (courtesy I. Ueno, see Ref. [46]). [(b)–(d)]
Particle configuration (light gray dots) at t = 50 using the advection model II. Closed streamlines of the KAM
tori 1T 6

3 (b) and 1T 3
3 [(c), (d)] from Fig. 8(c) are shown as full lines. The simulations differ by the interaction

parameter: (b) � = �exp = 0.00497, selected according to the experiment (line-like SL-2 PAS), (c) � = 0.011
(tubular SL-1 PAS), and (d) � = �fs(1L3

3) = 0.01251 (line-like SL-1 PAS). The dashed line refers to one of
the three azimuths at which the closed streamline admits its minimum radial coordinate: ϕ = ϕrmin = −0.9460.
The arrow indicates the direction of propagation in the laboratory frame. Using model I instead of model II
yields visually indistinguishable particle attractors (not shown).

Linelike SL-1 PAS for Re = 1850 is shown in Fig. 11(d) for � = 0.01251 = �fs(1L3
3). In this

case, the closed streamline 1L3
3 is tangent to the cylindrical surface r = R∗. The linelike PAS for

purely advected particles coincides with the closed streamline under this tangency condition [14].
According to Hofmann and Kuhlmann [14], tubular PAS arises if �fs(kT

j

i ) < � < �fs(kL
j

i ).
This is confirmed here, as we find tubular SL-1 PAS for Re = 1850 and interaction length
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FIG. 12. Poincaré section at ϕ = ϕrmin = −0.9460 of particle trajectories (gray dots) during the time interval
t ∈ [80, 84] for Re = 1850 and � = 0.011 (tubular SL-1 PAS) corresponding to Fig. 11(c). The black dots
delineate the largest reconstructible KAM torus 1T 3

3 and the diamond marks the closed streamline. The light
gray strip at the right boundary indicates the prohibited region of width � inaccessible by the particle centroid
within the PSI model. The inset shows an enlargement.

� = 0.011 ∈ [�fs(1T 3
3 ),�fs(1L3

3)]. The correlation of this tubular PAS with the KAM torus 1T 3
3

and 1L3
3 is evident from Fig. 11(c), where the particles accumulate about the closed streamline.

The tubular structure is better seen in the Poncaré section for t ∈ [80, 84] shown in Fig. 12. The
section is taken at the azimuth ϕ = ϕrmin at which the closed streamline 1L3

3 attains its smallest radial
coordinate rmin(1L3

3). The particles form tubular SL-1 PAS about 1L3
3, but are fully embedded in 1T 3

3 .
Most of particles accumulated on the KAM surface tangent to the cylinder r = R∗ [Fig. 12(b)]. A
few Poincaré points are seen inside the tubular PAS. These result from particles initiated inside the
KAM torus which do not experience any collisions and remain unaffected by the PSI model. All
other particles initialized outside of the tubular attractor are transferred to the largest KAM surface
which does not intersect with r = R∗, i.e., the tangent one, such that the particle motion on that torus
does not experience any effective dissipation within the PSI model.

For Re < 1825 (Ma � 51 000), only SL-1 PAS is reported [39]. This is confirmed by our numerical
simulations, even though we find a new highly periodic PAS for Re = 1600 (see below) which may
be difficult to distinguish in experiments from SL-1 PAS. The absence of SL-2 in the experiments
(and simulations) underlines the key role of the KAM tori for PAS, because for Reynolds numbers
Re < 1825 only a 1T 3

3 torus exists in the flow—the 1T 6
3 torus is absent [Figs. 8(a), 8(b) 9(a), and

9(b)]. For Re > 1900 (Ma � 53 200), on the other hand, only SL-2 PAS is experimentally reported
[39]. This is fully consistent with the flow topology found [Figs. 8(d) and 9(d)] in which only 1T 6

3
exists with 1T 3

3 being absent for Re > 1900. Therefore, only an SL-2 attractor for the particle motion
exist for the typical experimental particle parameters [interaction parameters �, see Figs. 10(a), 10(b)
and 10(d)].

The orbit time τ = O(2π/�) of the closed streamline 1L6
3 in the rotating frame of reference is of

the same order of magnitude as three periods of oscillation of the traveling wave (fundamental mode
m = 3) corresponding to a full revolution in the laboratory frame. Therefore, a fluid element (a purely
advected particle) on 1L6

3 does not experience a sizable mean azimuthal drift in the laboratory frame.
However, the orbit time of 1L3

3 in the rotating frame is approximately half as large as the one for 1L6
3.

Hence, the mean azimuthal velocity of advected particles on 1L3
3 in the laboratory frame of reference

is 2π/τ + � (� < 0) such that the particle on 1L3
3 moves opposite to the wave with about the same

mean angular velocity as the hydrothermal wave. This result is consistent the experimental result for
slightly different parameters of Tanaka et al. [11] (their Fig. 13 for � = 0.64 and Ma = 4.2 × 104).
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(a) Experiment
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FIG. 13. (a) Experimental observation from the top view of the early phase of formation of SL-1 PAS for
Re = 1600; a = 0.00424,  = 1.77 (courtesy of I. Ueno, see Ref. [46]). The top view of the early phase of a
numerically simulated SL-1 type of particle accumulation for � = 0.00552 at t = 25 (1000 particles initially
randomly distributed) is shown for model II (b) and model I (c). The closed streamline inside the 1T 3

3 torus is
shown as a solid line. The particles are represented as light gray markers and the squares in panel (c) refer to
settled particles.

3. Highly periodic tubular PAS

As the interaction parameter (particle size) is decreased from the tangent case tubular PAS will
arise when the motion is advection dominated [14]. However, if � < �fs(kT

j

i ) particles may be
mapped back by the PSI to the chaotic region. Nevertheless, particle motion attractors can still exist
in the chaotic sea (for an example, see Kuhlmann and Muldoon [57]).

Here we consider Re = 1600 and � = �exp = 0.00552 < �fs(1T 3
3 ) = 0.00565 (Table II), moti-

vated by experimental data for PAS shown in Fig. 13(a). Since the experimental image is not sharp the
PAS may be interpreted as a usual SL-1 PAS. However, within our model tubular PAS of SL-1 (1T 3

3 )
does not exist any longer for such a small interaction parameter. We rather find another coherent
structure for both models I and II. The early phase of this type of PAS is shown in Figs. 13(b)
and 13(c) for t = 25. The final stage of PAS is depicted in Fig. 14 for t = 84, integrating 1000
particles initially randomly distributed using model II. We find that particles cluster on a structure
which tightly wraps around the maximum reconstructible KAM torus 1T 3

3 . On a first inspection
[Figs. 14(a) and (b)], the accumulation structure appears as a line which closes on itself after five
revolutions about the axis; therefore, k = 5 and j = 15. The azimuthal wave number is m = 3,
slightly perturbed by the small-amplitude contaminations in the spectrum of the velocity field. The
Poincaré section at ϕ = ϕrmin = −1.7293 during t ∈ [80, 84] shown in Fig. 14(c) reveals that a closed
streamline 5L15

3 exists (diamond in the inset), surrounded by very thin KAM tori 5T 15
3 (black dots),

which winds about the primary 1T 3
3 torus. This secondary structure, called resonance, is well known

[58]. From Fig. 14(c), the particles form tubular PAS of type 5T 15
3 (gray dots) just outside of the

KAM torus shown as black dots in the inset. Within our advection model, the tubular accumulation
structure also marks the KAM torus of type 5T 15

3 which is tangent to r = R∗ for � = 0.00552. This
is consistent with �fs(5T 15

3 ) = 0.00562 and �fs(5L15
3 ) = 0.00582.

Unfortunately, the experimental image [Fig. 13(a)] does not allow us to make a distinction between
linelike SL-1 PAS of type 1T 3

3 and the present tubular PAS of type 5T 15
3 [Fig. 14(b)]. In this regard,

a clarification would be of interest by, e.g., experimental Poincaré sections of long-time trajectories
of individual particles.

The correlation between Eulerian and Lagrangian topological features is evident from Fig. 14(a)
showing the isosurface θ = 0.5 (light gray and transparent), the largest reconstructible KAM torus
1T 3

3 (dark gray), and particles forming tubular PAS of type 5T 15
3 (dark spheres), clearly outside of

1T 3
3 . The correlation between the convection of temperature and the advection of particles has already

094302-21



FRANCESCO ROMANÒ AND HENDRIK C. KUHLMANN

(a)

xy

z

|Ω|

(b)

x

y
|Ω|

ϕ = ϕrmin = −1.7293

(c) Poincaré section
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FIG. 14. Particle accumulation structure for Re = 1600 and � = �exp = 0.00552 at t = 84 from an initially
random distribution of 1000 particles using model II. (a) Three-dimensional view in the rotating frame showing
the outermost KAM torus (dark gray), the temperature isosurface θ = 0.5 (light gray transparent surface), and
particles (dark spherical markers). (b) Axial projection of panel (a) without the temperature field. The solid line
indicates 1L3

3 and the dashed line denotes 5L15
3 . The arrow indicates the direction of propagation of the pattern in

the laboratory frame. (c) Poincaré section (gray dots) at ϕ = ϕrmin = −1.7293 during t ∈ [80, 84] of the closed
streamline 1L3

3 (diamond) and of 1T 3
3 (black dots). The thin gray strip of thickness � adjacent to the free surface

indicates the prohibited region for the particle centroids. The enlargement shows the Poincaré section of 5L15
3

(diamond), 5T 15
3 (black dots), and PAS (gray dots).

been observed by Schwabe et al. [12] for fluids with Prandtl numbers in the range from 8 to 15. They
found particles on PAS to approach the free surface closest in regions where the surface temperature
has its local minima (cold surface spots). For Pr = 28 and SL-1 PAS, on the other hand, Toyama
et al. [39] found the closest approach of the particles to the free surface to arise in a region between
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FIG. 15. Correlation between the free surface temperature θ (a) (grayscale), the free surface temperature
deviation θ ′ (b) (grayscale), and the closed streamline 1L3

3 in radial projection (solid line) for Re = 1600. The
hydrothermal wave (HTW) wave travels from right to left (arrow).

the two surface temperature extrema (between the cold and the hot spot), even closer to the hot than
to the cold spot. To clarify this discrepancy, we show in Fig. 15 the surface temperature (grayscale)
together with the radial projection of the closed streamline 1L3

3 (solid line) for Re = 1600. Shown
in Fig. 15(a) is the surface temperature θ , while Fig. 15(b) shows the temperature deviation θ ′ from
the azimuthal mean θ ′ = θ − (2π )−1

∫ π

−π
θdϕ. A particle on a limit cycle near 1L3

3 would move
near the full line from left to right in the figure. The sharp peak of 1L3

3 indicates the beginning of
the close approach to the free surface with the particle remaining close to it about halfway along
the steep part of the projection of 1L3

3. In agreement with Toyama et al. [39], the steep part of the
closed streamline close to the interface is located just between the global maximum (bright) and
the global minimum (dark) of the surface temperature fluctuation θ ′ [Fig. 15(b)]. As can be seen,
the global minimum of the surface temperature fluctuation arises very close to the hot wall at about
ϕ = −0.241, quite distant from the closest approach of 1L3

3 to the free surface (steep part of the full
line). The fluctuation of the free surface temperature distribution is caused by conduction from the
bulk surface temperature and can be explained by the cold fingers [temperature isosurface shown
in Figs. 5(a) and 14(a)]. On the first approach of a cold finger to the free surface, it leaves a weak
cold spot on the free surface (local minimum of θ ′) just in the region where 1L3

3 approaches the free
surface closest [see Fig. 14(a)]. Upon the second return to the free surface of the cold finger, it leaves
a second cold spot on the free surface (global minimum of θ ′). This second surface spot is stronger
than the first one, even though the cold finger has become weaker. However, since the cold finger
approaches the free surface more closely during the second approach than during the first approach
to the free surface, the stronger temperature conduction leads to the global minimum of θ ′. We
conclude that the closest approach of 1L3

3 (and thus SL-1 PAS) to the free surface is associated with
the cold surface temperature spot caused by the first approach of the cold finger to the free surface.
For Prandtl numbers investigated by Schwabe et al. [12], this first cold spot is a global minimum of
the free surface temperature fluctuation. For Prandtl number Pr = 28, however, due to the reduced
thermal diffusion, the cold finger becomes much longer and approaches the free surface for a second
time, leaving an even stronger cold spot which is not correlated with the closest approach of 1L3

3 and
SL-1 PAS to the free surface.

Apparently, the first (weak) cold spot associated with SL-1 PAS has not been detected in the
experiments of Toyama et al. [39] in their Fig. 11 for Re = 1679. Possible reasons for the different
surface temperature distributions obtained numerically by us and experimentally by Toyama et al. [39]
may be related to (a) the Newton’s cooling law and Biot number used to model the heat transfer across
the free surface, (b) the free surface assumed cylindrical in our simulations, and/or (c) experimental
errors committed in measuring the subtle details of the free surface temperature fluctuations.
Nevertheless, the good agreement between numerical and experimental particle structures confirms
advection in the bulk being the determining property for the bulk temperature and for PAS alike.
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4. Toroidal core of particles

Another particle accumulation structure frequently observed together with the SL-1 and SL-
2 shapes of PAS is the so-called toroidal core of particles (COP) [11,15]. The COP arises as a
simple thick nonwinding toroidal structure of particles near the apparent vortex core of the basic
flow.

Within the advection model (II) the COP arises, because the particle boundary interaction removes
particles from streamlines which intersect with r = R∗. For hydrothermal waves, we always find a
thin layer of chaotic streamlines just below the free surface. Therefore, particles are removed from
those chaotic streamlines within the turnover time of the basic vortex flow such that the region near
the z axis becomes rapidly depleted of particles [19,59]. The particles removed by the PSI are injected
into the flow along the release line on r = R∗ (see Fig. 2) [14,18,19]. If a KAM torus exists which
intersects with the release line, particles can be transferred to this KAM torus along the intersection,
creating a periodic (linelike) or quasiperiodic (tubular) attractor.

The COP in the experiment shown in Fig. 13(a) has some fine structure. In previous numerical
investigations of the topology of a model flow [19] and of the Navier-Stokes flow in liquid bridges
with Pr = 4 [18], a nonwinding KAM torus was found to exist denoted Tcore. Kuhlmann et al. [15]
attributed the structures of the core found in experiments to other slender KAM tori (Fig. 7 of Mukin
and Kuhlmann [18]) tightly winding about Tcore which, like Tcore, do not intersect with r = R∗ and
thus can keep particles for a long time. For all cases investigated here (Pr = 28), we did not find
a KAM torus representing Tcore. However, the streamlines in the region of the vortex core are only
weakly chaotic. This suggests that Tcore may exist at lower Reynolds numbers.

For the conditions of Fig. 13 (� = 0.00552) tubular PAS of type 5T 15
3 forms rapidly, while at

the intermediate time t = 25 other particles are still moving in the core region [Fig. 13(b)]. This is
even more evident using model I and disregarding particles settled on the cold wall [gray squares
in Fig. 13(c)]. Since the flow in the core region is weakly chaotic, the COP is transient. On a
longer timescale, it loses particles, by PSI, to the tubular 5T 15

3 PAS, which is a global attractor.
This numerical observation suggests the COP seen in the experiment in Fig. 13(a) is transient as
well.

In the presence of attractors due to KAM tori, the transient COP has vanished after three thermal
diffusion times (t = 84) for the flows investigated. For particle parameters � for which no line- or
tubelike KAM-induced attractor exists, the weakly chaotic COP can arise for even longer times. This
is demonstrated in Fig. 16 considering Re = 1750 and � = 0.01, 0.02, and 0.03. For � = 0.01,
we find tubular PAS inside the KAM torus 1T 3

3 [Fig. 16(a)], because � ∈ [�fs(1T 3
3 ),�fs(1L3

3)].
Increasing the interaction parameter to � = 0.02, beyond the minimum distance of the closed
streamline from the free surface [� = 0.02 > �fs(1L3

3) = 0.01462], period doubling [18] of SL-1
PAS is found [Fig. 16(b)]. The period-doubled structure resides outside of the KAM torus 1T 3

3 .
Within model II, the particles move on chaotic streamlines and the fuzziness of the structure could
indicate a chaotic attractor. A similar period doubling was also found in experiments [40]. Finally, for
� = 0.03 periodic and period-doubled attractors are absent and the particle structure at t = 84 can be
interpreted as a COP [Fig. 16(c)]. This long-lived COP, however, is still transient. Since all particles
are advected on weakly chaotic streamlines they will suffer repeated free-surface interactions. For
long times, they thus move on the release surface, defined as the stream surface evolving forward in
time from the union of all release points and subject to the PSI model [19]. At large time t = 280, we
find all particles moving on the release surface to be attracted to a limit cycle shown in Figs. 16(d)
and 16(e). Its period is τ = 1.652 such that the particles in the laboratory frame of reference move
with the mean angular velocity 2π/τ + � = −0.497 in the same direction as the hydrothermal wave,
similar to that observed by Tanaka et al. [11] for particles belonging to the COP. The limit cycle is
made from segments of chaotic streamlines, connected by small trajectory segments on R∗ along
which the PSI is active [bold in Fig. 16(e)]. The nonsmooth character of the limit cycle (in the
framework of the PSI model) is similar as for linelike PAS in the regular region of the flow when
� > �fs(T ).
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FIG. 16. PAS for Re = 1750 and � = 0.01 (a), 0.02 (b), and 0.03 [(c)–(e)] using model II and 1000 initially
randomly distributed particles. Shown at time t = 84 are tubular PAS for � = 0.01 (a), fuzzy period-doubled
PAS for � = 0.02 (b), and the toroidal core for � = 0.03 (c). Panel (d) shows a three-dimensional view of the
particle configuration together with the attractor (line) at t = 280 and panel (e) shows the radial projection of
the attractor. The bold segments in panel (e) indicate the PSI.

V. DISCUSSION AND CONCLUSIONS

The flow structure of traveling hydrothermal waves in a cylindrical thermocapillary liquid bridge
and the motion of suspended particles has been computed for aspect ratio � = 0.68 and Prandtl
number Pr = 28. The Reynolds and Grashof numbers were selected according to experimental
conditions for which PAS has been reported. For conditions of the experiments with St = O(10−5)
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and a moderate density mismatch  = O(1), PAS can be accurately modeled using particle advection
and the PSI model [14], provided the interaction length � is properly taken into account. The
numerically computed PAS are in good agreement with the experimental results for SL-1 and SL-2.

By considering different particle motion models, it was shown that the dissipation necessary for the
existence of an attractor in the dynamical system governing the particle motion in the experiments
is due to the particle-surface interaction with particles essentially being advected in the bulk, as
proposed by Hofmann and Kuhlmann [14] (PSI model). The PSI model considered is an example for
a dynamical Filippov system [60] in which the dissipation originates solely from the normal-velocity
discontinuity of the slip boundary at r = R∗ [61]. Since the particle repulsion from the free surface
is caused by its finite size, the dissipative structure PAS is a finite-size Lagrangian coherent structure.
It is not an inertial Lagrangian coherent structure, because inertia effects are insignificant for the
cases considered.

As a key result, we find an extremely slender KAM torus in the rotating frame of reference with
the shape of the well-known SL-2 type of PAS [11]. The KAM torus 1T 6

3 is a sole property of the
flow. Its significance originates from material fluid elements being locked inside of the torus. This
locking applies not only in the rotating frame of reference, where the KAM torus is stationary, but
also in the laboratory frame of reference, because marking material elements is a scalar function. In
the laboratory frame, the spiral nonmixing region 1T 6

3 , as well as advected particles caught inside,
are both wrapping about the basic vortex core such that the fluid and the PAS inside 1T 6

3 appear to
rotate azimuthally. We also find SL-1 PAS to be associated with the somewhat thicker KAM torus
1T 3

3 . Besides SL-1 and SL-2 types of PAS, a new and more subtle PAS was discovered which is
associated with the very slender KAM torus 5T 15

3 . The closed streamline 5L15
3 winds 15 times about

the vortex core and closes after five revolutions about the axis. Because of its fine structure 5T 15
3 ,

PAS may easily be confused with 1T 3
3 PAS in experiments. These types of PAS are strictly related

to KAM tori of the flow which, therefore, act as templates for PAS.
If we increase the Reynolds number, 1T 3

3 recedes from the free surface while remaining the same
size up to Re = 1750. For Re = 1850, the cross section of 1T 3

3 is much smaller than for Re =
1600 (and Re = 1750); i.e., �fs(1L3

3) − �fs(1T 3
3 ) passes from ≈0.006 for Re = 1600 to ≈0.002 for

Re = 1850. This strong decrease of the cross-sectional area of the KAM torus in a narrow range
of Reynolds numbers explains why 1T 3

3 has not been found for Re = 1950. On the other hand, 1T 6
3

is found at Re = 1850. It seems to be a robust feature of the flow topology for moderately high
Reynolds numbers and is preserved for Re = 1950. The KAM torus 1T 6

3 is characterized by a very
small cross section and it is located closer to the free surface than 1T 3

3 (�fs(1T 3
3 ) > �fs(1T 6

3 )).
For each KAM torus, there exists a specific window of particle parameters for which the

accumulation is observed [11,33,36,39]. If the interaction length � is too small or too large, such
that the particle-surface interaction cannot transfer the particles from the chaotic to the regular region
of the flow, the typical linelike PAS is not observed [Fig. 10(d)]. When the KAM torus involved is
very slender near the free surface, e.g., 1T 3

6 or 5T 15
3 , the window of particle parameters for which the

accumulation arises is very narrow. Under these conditions, an accurate estimate of the minimum
lubrication gap between particle surface and the boundary [21] is mandatory to numerically reproduce
the phenomenon.

When the interaction length � is increased, SL-1 and SL-2 linelike PAS cease to exist due to
the incompatibility of the interaction parameter with the location of the KAM tori. Nevertheless,
particles are repelled from the free surface and they can form accumulation structures outside of the
KAM tori in the region of chaotic streamlines. One example for Re = 1750 is the linelike periodic
PAS for � = 0.03 which forms well inside the chaotic sea. On quite a long timescale, this PAS
emerges from a transient core of particles in which particles move on weakly chaotic streamlines.

The advection and PSI model used represents the limit St → 0 and a particle-surface interaction
sharply localized at r = R∗. Since this limit is nonsingular, small deviations (St � 1, continuous PSI)
will change the attractor continuously. This is confirmed by the good agreement with experiments in
which the particle advection is slightly perturbed by inertial and buoyancy forces and in which the
PSI is smooth. Therefore, model II is robust with respect to these small perturbations. The limitation
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of the discontinuous PSI model mainly concerns the temporal evolution of PAS, which is expected
to be slightly less rapid for a continuous PSI.

Gotoda et al. [38] and Toyama et al. [39] found the formation time for both SL-1 and of SL-2
PAS to be of the order of magnitude of the thermal diffusion time d2/κ . It is clear that thermal
diffusion is irrelevant for the particle motion and that Brownian motion can be neglected on the
length and timescales of the particles used. However, the experiments are typically initiated from an
undefined flow state and the subsequent evolution of the flow into a hydrothermal wave hosting PAS
is influenced by the thermal diffusion, because the hydrothermal wave at large Pr is characterized
by strong internal temperature extrema and a weak velocity field [9,62]. Therefore, the temporal
evolution of PAS in the experiments is governed by different timescales: (a) The thermal diffusion
timescale of the flow on which the fine KAM tori necessary for SL-1 and SL-2 PAS become steady
in the rotating frame of reference, (b) the rate by which particles are transferred from the region
of chaotic streamlines to the region of regular ones, and (c) the time required to focus the particles
once they have entered the KAM torus [14]. It is a priori unclear which of the three processes is
the limiting one. The present numerical evidence, however, suggests that the timescale on which
particles are transferred from the chaotic to the regular region when the flow is fully developed is of
the same order of magnitude as the thermal diffusion time.

These considerations indicate some open problems for future investigations, related to quantitative
studies of particle inertia, particle buoyancy, particle-surface interaction, and the timescales of PAS
formation. Another open problem relates to particle-particle interactions, which have been neglected
here and which may become important during the final stage of PAS when the local particle density
along the PAS becomes large.
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