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Expansion waves propagating into particle beds are found in many manmade and
natural applications. Rapid decompression of a highly pressurized powder bed or a
volcanic eruption are two such examples. In this investigation, we perform fully resolved
simulations of expansion waves propagating into particle beds of three different volume
fractions using the discontinuous Galerkin spectral element method code, CMT-NEK. We
validate state-of-the-art drag models for a particle in an unsteady compressible flow and
show good agreement, particularly at lower volume fractions. We model the particle bed
as a nozzle or area reduction and, using isentropic flow relations, predict the final pressure,
temperature, and Mach number extremely well in each case.
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I. INTRODUCTION

Many engineering systems and natural phenomena occur in the compressible multiphase flow
regime and therefore there is great value in studying and understanding fundamental properties of
these flows. Red supergiants collapsing to supernovae or volcanic detonations sending out plumes
of dust and debris are two such events observed in nature. The explosive dispersal of particles by the
release of a pressurized multiphase canister is an example one might find in an engineering system.
Nevertheless, whether it be the volcanic detonation or the pressurized canister release, these flows
share several compressible flow features; the initial detonation that follows after the rupture of a
diaphragm or a barrier will send out a shock wave followed by a contact interface, both of which
propagate outward in the normal direction into the initial low-pressure region. Further, an expansion
wave (also known as a rarefaction wave) is created and it propagates in the opposite direction
into the high-pressure region, often interacting with particles. Potential applications of these types
of flows include high-speed flow through porous media [1] and depressurization of fine powder
beds [2].

In the context of multiphase flow, one can identify two different classes of scenarios. When
particles are initially on the low-pressure side, they will be subjected to the outward propagating
shock followed by the contact interface, upon the breaking of the diaphragm. An example of this
type will be a smoke grenade, where a cylindrical explosive charge is surrounded by an annular bed
of fine particles and flakes. Following the detonation of the explosive, an intense shock followed
by a contact rapidly moves out and propels the particles in the radial direction, causing them to
disperse. In contrast, if particles are located initially on the high-pressure side, they will experience
the expansion wave once the diaphragm breaks. In the volcanic eruption case, the expansion wave
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propagates down into bed of debris, particles, and molten lava, causing it to spew back out. In fact,
in any kind of pressurized particle or droplet-laden canister, as the expansion wave moves through
the multiphase media, this behavior can be observed.

The canonical problem of a planar shock wave interacting with particles has been studied quite
extensively. At the level of a single particle, its interaction with a shock wave has been studied
experimentally and computationally by Igra and Takayama [3], Britan et al. [4], Tanno et al. [5],
Sun et al. [6], Martinez et al. [7], and Bordoloi et al. [8]. The primary focus has been to calculate
the complex nonmonotonic time-dependent drag on a single particle under shockwave loading. On
the theoretical front, by solving the linearized compressible Navier-Stokes equations, Parmar et al.
[9] developed an analytical model that predicted the drag on a single particle and compared the
prediction to experimental and computational results to demonstrate its accuracy (Sun et al. [6]).
The problem of shock interaction with an array (or a layer of) particles has also been studied
to some depth. For example, Collins et al. [10] studied shock propagation in deuterium-tritium
saturated foam. Lu et al. [11] simulated a shock interacting with a cloud of two-dimensional
particles using direct numerical simulations along with an artificial neural network model for the
prediction of forces on the particles. Hosseinzadeh-Nik et al. [12] studied shock-particle cloud
interaction using particle-resolved direct numerical simulation, focusing on the flow unsteadiness
and instabilities produced as a result of the shock wave. They showed that the kinetic energy in
the fluctuating field is of the same order as in the mean flow field and therefore the Reynolds stress
terms are too significant to neglect when modeling these types of flows. Regele et al. [13] performed
two-dimensional simulations of shock interacting with cylinders. Sridharan et al. [14] considered
axisymmetric inviscid simulations and Mehta et al. [15–17] considered three-dimensional inviscid
simulations of a planar shock propagation through structured and random arrays of particles.
They observed that although the initial peak force on each particle depended mainly on its
interaction with the primary shock propagating through the array, subsequent force history strongly
depended on the compression and rarefaction waves that diffract off the neighboring particles.
Thus, current theoretical force models, which are based on an isolated particle, are insufficient to
characterize this later time force evolution that is dominated by interaction between the particles.
The effect of shock propagation over a curtain of particles has been studied experimentally and
computationally by Wagner et al. [18,19], Ling et al. [20], Theofanous et al. [21], McFarland
et al. [22], and DeMauro et al. [23], where the focus has been on the downstream spreading of the
curtain.

In comparison, the other canonical limit of an expansion wave interacting with particles has not
been studied to the same length. At the level of a single particle, Annamalai and Balachandar [24]
advanced the theoretical unsteady drag force model in a compressible flow of Parmar et al. [9]
and tested it against direct numerical simulation of an expansion wave propagating over an isolated
particle to demonstrate very good agreement. The problem of a bed of particles being subjected
to an expansion wave is most relevant to volcanic eruption, which can be modeled as a cavity
of gas-particle mixture under very high pressure being suddenly released to the ambient. Cagnoli
et al. [2] performed experiments of depressurization of fine powders and more recently similar
experiments with a bed of particles in the high-pressure region of a shock tube have been considered
by Chojnicki et al. [25] and Cigala et al. [26]. By placing the particles on the high-pressure side of
the shock tube, after the bursting of the diaphragm, an expansion wave sweeps over the particles.
Attention was focused on the propagation of the particle front as well as the nature of instabilities
that led to the formation of void within the expanding bed of particles. An expansion wave provides
an interesting contrast to a shock wave. In a shock wave, the physical quantities themselves jump
across the shock wave, which remains relatively sharp. An expansion wave has an interesting feature
that the physical properties vary continuously across it without any discontinuities. However, there
are two sharp discontinuities in the first derivatives of the physical quantities at the head and the tail
of the wave. Both the head and the tail of the expansion wave move at the local speed of sound in
the frame attached to the local gas. In the case of the head of the expansion wave, since it moves
into the static high-pressure section, the velocity of the head, in the laboratory frame of reference,
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is the local speed of sound, and ahead of the head the gas properties are constant at their prehead
values. The behavior of the tail of the expansion wave depends on the pressure ratio. At small
pressure ratios, the tail also propagates into the initial high-pressure section at a velocity slower
than the head and the gas velocity at the tail of the expansion remains subsonic. For this subcritical
expansion wave, the laboratory frame velocity of the tail will be the local speed of sound minus
the local subsonic gas velocity. At a specific pressure ratio, the gas velocity at the tail will be just
sonic and correspondingly the velocity of the tail of the expansion wave will be identically zero in
the laboratory frame of reference. Thus, in the case of a critical expansion wave, the tail will be
located at the diaphragm. At higher pressure ratios, the tail propagates out into the low-pressure
section and the gas velocity at the tail is supersonic. The region between the head and tail defines
the expansion wave and the gas properties (such as pressure, density, and velocity) monotonically
vary across the expansion wave from their prehead value to their post-tail value, and beyond the tail
the flow remains uniform at the post-tail values. Since the head and tail of the expansion wave move
at different velocities, the expansion wave broadens over time.

In a multiphase shock tube with particles in the high-pressure section, after the rupture of the
diaphragm, the head and tail of the expansion wave begin to travel immediately upstream. Before
the arrival of the head of the expansion wave, the particles in the high-pressure region experience
no flow. As seen by a particle, the gas velocity passing over it increases continuously and reaches a
constant value (uniform flow) after the passage of the tail of the expansion wave. If the particle is
frozen in position as in a porous medium, the final gas velocity will be the post-tail gas velocity in
the case of a subcritical expansion wave, or will approach the sonic velocity in the case of critical
or supercritical expansion. In the case of a particle free to move, the particle will accelerate, enter
into the initial low-pressure section, and eventually propagate out of the expansion into the post-tail
constant region. For a particle initially located close to the diaphragm, the head of the expansion
wave will arrive immediately after the breakage of the diaphragm and the change from pre-head
to post-tail condition happens very rapidly. Deeper inside the particle bed, i.e., away from the
diaphragm, it takes a progressively longer time for the head and tail to arrive and to pass.

In this study, we focus on an expansion wave moving into a stationary particle bed. By keeping
the particles stationary, the present study is closer to an expansion wave moving through porous
media. In addition, we will study this problem in the inviscid limit because we want to examine
the unsteady inviscid effects experienced at early times by the particles. We isolate this problem
away from turbulent effects by examining it in the inviscid limit. In this way, we can look at
purely the effects of compressibility before building up to a more physically complex and more
computationally costly problem.

Mehta et al. [16] examined various important timescales in a shock-particle interaction problem
and a similar analysis will be considered for an expansion fan. The inviscid timescale can be defined
as τi = d/ur , where d is the particle diameter and ur is the relative velocity between the particle
and the surrounding flow. As the head of the expansion moves past a stationary particle, initially
the relative velocity starts at small values and correspondingly the inviscid timescale is large. As
the tail of the expansion fan sweeps past the particle, the relative velocity reaches its largest value,
whose magnitude is determined by the strength of the expansion fan. In the present case to be
considered, the Mach number of the post-tail flow is 0.6. The viscous timescale can be defined
as τν = δ2/ν, where ν is the kinematic viscosity of the gas and δ = d/

√
Rep is the estimate of

the viscous boundary layer thickness on the particle. Here the particle Reynolds number is given
in terms of relative velocity as Rep = urd/ν. It can readily be seen that the viscous timescale of
boundary layer development is of the same order as the inviscid timescale. We can also evaluate
the acoustic timescale of the problem as τa = d/c, where c is the speed of sound. The acoustic
timescale is much larger than the viscous and inviscid timescales at the beginning when the head of
the expansion fan crosses the particle, but later when the tail interacts with the particle all the scales
are of the same order. In any case, the viscous effects quickly become important when an expansion
fan interacts with a bed of particles, but we will ignore this effect in this study to better isolate the
effects of compressibility. We now evaluate the importance of particle motion and the assumption
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of stationary particles. The timescale on which the particle accelerates and approaches the ambient
velocity is given by ρd2/(18ν), where ρ is the particle-to-gas density ratio. For a particle located
at a streamwise distance X inside the high-pressure region from the diaphragm, the arrival times
of the expansion fan head and tail are given by X/c and X/(cMt ), respectively, where Mt is the
Mach number of the tail (which in the present simulations has been chosen to be 0.4). Thus, the
time taken for the expansion fan to fully cross the particle depends on its location and is given
by X(1 − Mt )/(cMt ), whose scale can be taken to be O(X/c). This is the timescale on which the
ambient flow velocity changes as the expansion fan sweeps past the particle. The ratio of particle
timescale to this expansion fan timescale can be expressed as ρ(Rep/18)(c/ur )(d/X). We consider
a heavy particle of ρ ∼ O(103). We can also estimate the Reynolds number of a particle of size
of the order of 100 microns to be more than O(102). Also, for a sufficiently strong expansion fan
(c/ur ) ∼ O(1). The value of the timescale ratio is then determined by the particle position. Here
we will consider particles located sufficiently close to the diaphragm [i.e., (d/X) ∼ O(1)] that the
timescale ratio is very large, which indicates that the particle motion during the time of interaction
with the expansion fan is very small. However, in cases when X > d, the passage of the expansion
fan over the particle may be sufficiently slow that particle motion during this interaction cannot be
neglected.

An analytical force model for a particle subjected to unsteady compressible flows [9,24] takes
the form of an integrodifferential equation. The two important features of the model are that
(i) it accounts for the unsteady force contributions that play an important role as the expansion
wave sweeps past the particle and (ii) it accounts for the fact that the flow could vary substantially
on the scale of the particle. For example, when a shock propagates over a particle, since the shock
is often much thinner than the particle, at times when the shock is located on the particle, part of the
particle is in the preshock state while the rest is in the postshock state, making the definition of gas
velocity seen by the particle ambiguous. The above model has been rigorously tested in the context
of shock-particle interaction and shown to perform well. The expansion wave going over a structured
array of particles provides another test because there is a rapid change in the gas velocity, pressure,
and density as the wave is sweeping past. The goal of our work is to compare our fully resolved
simulation results with the inviscid components of the model of Annamalai and Balachandar [24].

The theoretical model is for an isolated particle. Its application for the present case of a structured
array of particles will be strictly valid only during the early stages when the head of the expansion
wave moves over the particle. Soon, diffracted waves from neighboring particles will interfere
and change the aerodynamic force on the particles. Researchers have examined and modeled
compressible flows through discontinuous cross-sectional area changes [27–29]. Using a similar
analysis, here we model the particle bed as a flow obstruction and sudden area reduction and
compare our simulation results to the analytical solutions obtained from isentropic flow relations.

We begin Sec. II by describing our numerical technique and discussing other assumptions
made in this study. In Sec. III, we will present our results and compare them to those ex-
pected from the aforementioned theoretical model. The final section, Sec. IV, will discuss the
conclusions.

II. METHODOLOGY

The domain setup is that of a shock tube, shown in Fig. 1, with the area in red representing the
actual computational domain of interest. A shock tube consists of a high-pressure side on the left
and a low-pressure side on the right separated by a diaphragm. In our case, we have a high-pressure,
high-temperature region on the left and a low-pressure, low-temperature region on the right, though
the temperature discontinuity is not necessary in a shock tube. Upon bursting of the diaphragm, a
shock wave forms and immediately propagates to the right side, followed by a contact interface,
which separates the driver gas and driven gas. Immediately propagating to the left is the head of
an expansion wave, followed by the tail, and then uniform flow thereafter. The problem of interest
has an initial pressure ratio of 4.85. We then compute the initial conditions for an expansion wave
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FIG. 1. Shock tube domain set up with the computational area of interest outlined in red. State 4 and state 1
are the driver section and the driven section respectively. When the diaphragm bursts, a shock wave and contact
interface rapidly accelerate to the right while a series of expansion waves propagate toward the left, moving
through a structured array of particles. State 2 represents the postshock state and state 3 represents the state
between the contact interface and the expansion wave.

and simulate only the red area in Fig. 1. This can be done using a Riemann problem solver such as
described by Toro [30]. This pressure ratio results in an expansion wave with a tail Mach number of
0.4 in the laboratory frame. The local gas travels at a subsonic Mach number of 0.6 in the opposite
direction of the tail. The properties of the high-pressure prehead section and those of the post-tail
constant section are shown in Table I.

The computational mesh is shown in Fig. 2, with the entire three-dimensional grid shown
in Fig. 2(a), a face-centered cubic (fcc) unit cell in Fig. 2(b), and an inside view of the unit
cell in Fig. 2(c), where the particles and the spectral element grid around them can be seen.
Shown in Fig. 3 is a two-dimensional slice through the center (top frame) and lateral boundary
(bottom frame) of the mesh for the computational domain, where the 21 layers of particles can be
seen.

Particle layers 1, 2, and 3 represent one unit cell of an fcc arrangement, particle layers 3, 4,
and 5 represent a second unit cell, and so on; hence there are 10 such unit cells with particles.
Note that slip walls and thus geometric symmetry is employed along the two transverse directions.
The unit cell is size 4 × 4 × 4 in nondimensional units based on the particle diameter. The spheres
comprising the FCC arrangements have been sized so as to give a desired average global volume
fraction, φ. Here we consider three different simulations with particle volume fractions of 3.27%,
9.54%, and 15.15%, which correspond to particles of nondimensional sizes d = 1.0, 1.43, and 1.67
respectively. For simplicity, we will round the volume fractions to the nearest integer value and refer
to the cases as V 3, V 10, and V 15. Locally, the area fraction varies along the streamwise direction

TABLE I. Table of initial conditions and other relevant parameters
for this study. P , T , and ρ are the pressure, temperature, and density of
the gas. The ratio P4/P1 is the initial pressure ratio across the diaphragm
of the shock tube used to generate an expansion wave with a tail Mach
number, Matail, of 0.4 in the laboratory reference frame.

Parameters

P4/P1 4.85
P3/P4 0.651
T3/T4 0.884
ρ3/ρ4 0.68
Matail 0.4
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FIG. 2. Plotted here are (a) a three dimensional view of the simulation grid, (b) a representative face-
centered cubic (FCC) unit cell, and (c) an inside view of the FCC unit cell.

and for the present fcc arrangement, averaged in y and z, can be expressed as⎧⎪⎨
⎪⎩

π
32

[( 96φ

π

)2/3 − 4(x ′ + 2n)2
]

for − 2n − ( 12φ

π

)1/3 � x ′ � −2n + ( 12φ

π

)1/3

where n = 0, 1, 2, 3, . . . ,

0 otherwise.

(1)

The variable x ′ is directed backward from the center of the first layer of particles. At the center
of each layer of particles (i.e., for x ′ + 2n = 0), the local area fraction is a maximum, whose
value is π

32 ( 96φ

π
)2/3. Hence, for mean volume fractions of 3.27%, 9.54%, and 15.15%, local

maximum area fractions are 9.81%, 20.04%, and 27.27%, respectively. Away from the centers,
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FIG. 3. Two-dimensional view of a centerline slice (top) and a wall slice (bottom) of the particle bed mesh.
Each particle layer is labeled, starting with 1 on the far right and proceeding upstream to 21.

the area fraction decreases quadratically and becomes zero at x ′ + 2n = ±( 12φ

π
)1/3. The thickness

of the region between the particles where the cross-sectional area fraction is zero is given by
2[1 − ( 12φ

π
)1/3], whose value for the three volume fractions are 1.0, 0.57, and 0.33, respectively.

Only for φ > 26.18% does the region of zero cross-sectional area fraction disappear. We will see
later that this variation in area fraction will manifest itself as fluctuations in the mean quantities.

A. Euler equations of gas dynamics

In this section, we present the inviscid compressible flow governing equations being solved, with
bold-faced quantities denoting vectors in R3 except for the conserved variables U,

U = [ρ, ρu, ρv, ρw, ρE]�, (2)

which live in R5. The mth component of U is governed by the conservation law

∂Um

∂t
+ ∇ · Hm = 0, m ∈ [1, 5]. (3)

The gas velocity u is

u =
⎡
⎣u

v

w

⎤
⎦ =

⎡
⎣u1

u2

u3

⎤
⎦, (4)

and ρ is the gas density, E is the mass-specific total energy e + 1
2 |u|2 of the gas, e is the gas internal

energy, and p is the thermodynamic gas pressure.
Hm(U) : R5×3 → R3 is the flux vector of equation m. For gas density, H1(U) is

H1 = ρu = [U2, U3, U4]�. (5)

For gas momentum U2−4, the convective fluxes are

H2 =
⎡
⎣(ρu)u+p

(ρu)v
(ρu)w

⎤
⎦, (6)

H3 =
⎡
⎣ (ρv)u

(ρv)v+p

(ρv)w

⎤
⎦, (7)

H4 =
⎡
⎣ (ρw)u

(ρw)v
(ρw)w+p

⎤
⎦, (8)
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and, for total energy ρE,

H5 = u(ρE + p). (9)

The system is closed by an equation of state,

[p, T ] = EOS(ρ, e). (10)

Internal energy per unit mass e = E − 1
2 |u|2 is related to gas temperature T by the intensive

property cv , the constant-volume specific heat, such that

e =
∫

cv (T )dT . (11)

Generally, (11) must be solved for temperature T implicitly, iteratively, or via tabulation. While
the method is only demonstrated for calorically perfect gases, it admits general equations of state
provided the physical entropy is a concave function of the internal energy. For calorically perfect
gases, cv is constant. For both thermally and calorically perfect gases, pressure is obtained last via

p = ρRT, (12)

where the specific gas constant R = (γ − 1)cv requires the specification of γ = cp/cv , the ratio of
constant-pressure specific heat cp to cv . Finally, the sound speed is

c =
√

γp

ρ
=

√
γRT . (13)

B. Numerical method

The simulations in this study were carried out with the code CMT-NEK. CMT-NEK uses the
discontinuous Galerkin spectral element method (DGSEM) built on top of the NEK5000 [31]
continuous spectral element method to extend it to compressible flows. DGSEM is a variational
method; it is a particular form of the nodal discontinuous Galerkin method [32] using nested tensor
products of Lagrange polynomials to approximate the unknown variables on deformed hexahedral
elements. Discontinuities between the approximations of the unknowns at the shared faces of
neighboring elements are treated as initial states to a Riemann solver which provides a “numerical
flux” between elements in the surface integral that arises from integrating the flux divergence in
the variational inner product by parts. Comprehensive descriptions and analysis of this approach
may be found in textbooks [33, § 5.8] and in descriptions of its application to the compressible
Navier-Stokes equations [34,35].

CMT-NEK solves the Euler equations (3)–(9) for the conserved unknowns in weak form [36]
collocated on the N × N × N Gauss-Lobatto-Legendre (GLL) quadrature nodes [37, appendices]
in the [−1, 1]3 reference element to which each element is isoparametrically mapped [38, § 4.4].
The nonlinear inviscid fluxes are dealiased [39] by interpolating the mesh transformation metrics,
conserved variables, and primitive variables (like pressure and velocity) to M = 3(N−1)/2 Gauss-
Legendre (GL) points in each direction of the reference element, evaluating equations (5)–(9) and
the weak-form derivative operators on this fine grid, and projecting the volumetric fluxes back to the
grid of N3 GLL nodes. The numerical flux comes from the AUSM+ Riemann solver of Liou [40],
and it too is evaluated on an M2 grid on each face for dealiasing. The total-variation-diminishing
third-order Runge-Kutta scheme [41] handles time marching. Further details, description, and
validation are presented by Hackl et al. [42].

C. Grid resolution

We first carry out a grid resolution study for an isolated single particle at four different
polynomial orders of N = 6, 9, 12, and 18 and it is plotted in Fig. 4. A polynomial order of 6
is apparently too coarse and has undershoots in the drag profiles. As the polynomial order was
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FIG. 4. Convergence study showing the drag coefficient for a single particle at four different polynomial
orders.

increased, a converged profile was attained. Polynomial orders of 12 and 18 are nearly identical and
for computational efficiency, 12 was selected for the present simulations.

D. Boundary conditions

Table I summarizes the detailed conditions used for the simulations. Each simulation used
identical initial and boundary conditions with the only difference between the cases being the
volume fraction. Each simulation used 29 568 spectral elements at a polynomial order N = 12
for all three spatial directions, resulting in 64 960 896 grid points. The domain has dimensions
of Lx × Ly × Lz equal to 126 × 4 × 4. The particle bed consists of 95 particles fixed in space,
arranged in a face-centered cubic structure. The particles are assumed to be much more massive than
the surrounding gas and hence held stationary for this study. The following boundary conditions
are employed for the computational domain shown in Fig. 2(a). On the upstream boundary (top
right of image) of the computational domain, the fluid is stationary before the arrival of the head
of the expansion wave and in the present simulations until the end of the computation the fluid
at the upstream boundary remains stationary. Subsonic outflow boundary conditions are used at
the downstream boundary [bottom left of Fig. 2(a)] of the computational domain. Because of
the inviscid nature of the governing equations, no-penetration boundary conditions are adequate
on the surface of the spheres. On the lateral surfaces of the computational domain slip wall
boundary conditions are used (i.e., no penetration and no stress on their lateral boundaries). The
implementation details of these boundary conditions in the context of DGSEM are discussed below.
In the discontinuous Galerkin formalism, the same numerical flux functions used to couple elements
together may be used to weakly enforce boundary conditions in two different ways: one for Dirichlet
boundary conditions and the other for Neumann boundary conditions [43,44]. Dirichlet boundary
conditions, meant to impose the solution directly at points lying on the boundary, appear in the
numerical flux on element faces with Dirichlet boundary conditions done by replacing the state
that would otherwise come from a neighboring element with the Dirichlet boundary condition
UD (U−), which can depend on the flow solution U− at the quadrature nodes lying on the face of a
boundary element ∂�e. Conversely, Neumann boundary conditions may often be imposed directly
by substituting the desired flux for the numerical flux. At outflows, the state

Uout
D =

⎡
⎢⎢⎢⎢⎣

ρo

ρo uo

ρo vo

ρo wo

ρo

(
po

(γ−1)ρo
+ 1

2 |uo|2
)

⎤
⎥⎥⎥⎥⎦, (14)
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follows the procedure of Belk et al. [45], which states po = p∞, for some freestream pressure p∞,
and

ρo = ρ− − p− − p∞
(a−)2 , (15)

uo = u− + p− − p∞
ρ−a− n̂. (16)

Slip walls are enforced by solving the Riemann problem arising from the jump between the
interior trace of the solution at the wall U− and a “mirrored” state [44, § 8.3.1.2],

Uwall
D =

⎡
⎢⎢⎢⎢⎢⎣

U−
1

ρ−uref

ρ−vref

ρ−wref

U−
5

⎤
⎥⎥⎥⎥⎥⎦

, (17)

which is made up of the interior trace of the density and total energy fields at the boundary and the
reflected velocity field uref

uref = u− − 2(n̂ · u−)u. (18)

III. RESULTS

A. Theoretical force model

Though the spheres in this study are stationary, it is important to obtain the drag forces acting on
the particles from the fully resolved inviscid simulations and compare against the corresponding
predictions from the model in order to evaluate the strengths and limitations of the model in
accurately predicting the actual forces. Following Annamalai and Balachandar [24], the generalized
Faxén (GF) form of the force expression will be used to predict the force on the spherical particle
subjected to a time-dependent compressible flow. Since we are assuming to be in the inviscid limit,
this equation reduces to the following form shown in Eq. (19). Here R = d/2 is the radius of the
particle, and uun and ρun are gas velocity and gas density at the particle location in the undisturbed
state and therefore denoted by the superscript un. The force expression below, and for that matter
all other force expressions, attempt to predict the force on the particle in terms of the undisturbed
flow approaching the particle, where the term “undisturbed” denotes the flow that would exist in
the absence of the particle under question but in the presence of all other particles. In the present
context, the undisturbed ambient flow is the expansion wave, whose solution is known only in the
limit of zero volume fraction. At finite volume fraction, the undisturbed flow approaching a particle
is modified by the presence of all other particles. The theoretical results to be presented below
ignore this effect of particles back on the flow and assume the undisturbed flow to be the planar
expansion wave. As will be seen below, this results in the inability of the model to predict the long
time evolution of the force:

F(t ) = Fpg (t ) + Fiu(t ) = 4

3
πR3ρun

Duun

Dt

V

+ 4πR3
∫ t̃

ξ̃=−∞
Kiu(t̃ − ξ̃ ; M )

[
D

Dt
ρunuun

r

S

]
t̃=ξ̃

dξ̃ .

(19)
The integrodifferential equation given in (19) includes only the two inviscid force contributions: the
undisturbed flow force (or the pressure-gradient force) Fpg and the inviscid unsteady force (also
known as the added-mass force in the incompressible limit) Fiu. The more general force expression
given in Annamalai and Balachandar [24] includes two other viscous contributions, namely the
quasisteady force and the viscous unsteady force, which are ignored in the above expression because
we will compare the theoretical predictions with the present simulations, which are conducted in the
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inviscid limit. In the traditional application of the force formulas, gas properties such as density
(ρun) and velocity (uun) are evaluated at the center of the particle. This simplified approach is
adequate when the particle size is smaller than the scales of ambient flow variation. This is clearly
not the case in the context of a shock or an expansion wave passing over a particle, since the gas
properties vary substantially across the particle and the gas properties cannot be taken to be those at
the particle center. The generalized Faxén form resolves this dilemma by defining the undisturbed
gas properties in terms of averages over the volume and surface of the particle, which are denoted

as (.)
V

and (.)
S
, respectively.

The pressure gradient force [the first term on the right of Eq. (19)] is simply the force that
an equivalent volume of fluid would experience in the absence of the particle, and in the present
Euler flow it is strictly due to the pressure gradient (viscous stresses are zero). In this term, D/Dt

represents the total derivative following the fluid and thus the first term corresponds to mass times
acceleration of the undisturbed fluid that would occupy the particle volume. The inviscid unsteady
force (the second term on the right) is the additional force required by the perturbation flow created
due to the presence of the particle. In an inviscid flow, the perturbation flow must be such that,
on the surface of the particle, the total flow must satisfy the no-penetration boundary condition. In
other words, the perturbation flow on the surface of the particle must cancel the normal component
of the undisturbed flow. This is the reason the second term depends only on the density-weighted
radial component of the undisturbed flow velocity ρun

0 uun
r averaged over the surface of the particle.

Note that uun
r = (uun · en)en, where en is the unit vector along the outward normal direction to the

particle.
The following alternate form of the inviscid unsteady force can be obtained by exploiting an

analytic relation between the surface and volume averages (see Appendix C of Ref. [24]),

Fiu(t ) = 4

3
πR3

∫ t̃

ξ̃=−∞
Kiu(t̃ − ξ̃ ; M )

[
D

Dt
ρunuunV + D

Dt
r∇ · (ρunuun)

V
]

t̃=ξ̃

dξ̃ , (20)

where r is the radial vector from the center of the particle. In the limit of nearly incompressible
flow, ρun equals the constant fluid density and ∇ · uun → 0. In this limit, thus, the second term is
negligible, while the first term becomes

mf

∫ t̃

ξ̃=−∞
Kiu(t̃ − ξ̃ ; M )

[
D

Dt
uunV

]
t̃=ξ̃

dξ̃ , (21)

where we have used the fact that the mass of the displaced fluid is given by mf = 4πR3ρ/3.
Therefore, this term can be directly related to the added-mass force and the complete form given
in Eq. (19) or (20) accounts for flow compressibility and density variation across the particle. Also
Annamalai and Balachandar [24] used the definition D/Dt = ∂/∂t + uunV · ∇, where the second
term on the right was added to account for the nonlinear effect due to convective acceleration. The
rigorous derivation in the linear limit only yielded the temporal acceleration and Annamalai and
Balachandar [24] showed that the inclusion of the empirical second term improved the predictive
capability. The term within the square brackets of (21) is thus the effective acceleration of the
undisturbed flow as seen by the finite-sized particle. In an incompressible flow, the added-mass
force at any time t̃ depends only on the undisturbed flow acceleration at that time. In a compressible
flow, due to the finite propagation speed of the disturbance waves, inviscid-unsteady force at any
time t̃ depends on the past history of undisturbed flow acceleration seen by the particle, and thus
represented by the convolution integral [46,47]. The undisturbed flow acceleration seen by the
particle at a previous time instant ξ̃ is weighted by the inviscid kernel Kiu(t̃ − ξ̃ ). The inviscid
kernel has an exact analytic expression in the zero Mach number limit

Kiu(t̃ − ξ̃ ) = e(t̃−ξ̃ ) cos(t̃ − ξ̃ ). (22)
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FIG. 5. Volume-averaged density, velocity, and streamwise momentum in panel (a) and surface-averaged
radial momentum in panel (b) plotted as a function of acoustic time for a particle located in the first layer, sixth
layer, and eleventh layer.

Here and in (19), the tilde represents time nondimensionalized with the acoustic timescale as
follows: t̃ = t/τ , where τ = R/c and c is the speed of sound. It was observed that the above kernel
is adequate for low Mach numbers (based on relative velocity between the particle and the ambient
flow). So here we will simply use the above kernel without any Mach number correction.

This model, which is derived for a single particle in a compressible flow, has been rigorously
tested for shock-particle interaction. The most important feature of this model is its ability to better
capture the unsteady force effect. Mehta et al. [16] showed that in the early times of interest, the
inviscid forces contributed the most to particle drag.

In the present case of an expansion wave sweeping over a particle, the various flow related
quantities in (19) can be precisely calculated from the analytical solution of density and fluid
velocity within the expansion wave. In Fig. 5(a), we present ρunV

, uunV
, and ρunuunV

, and in
Fig. 5(b), we present ρunuun

r

S
plotted as a function of acoustic time, t/τ , for a particle located in the

first layer, sixth layer, and eleventh layer. Note that all quantities have been scaled by the post-tail
velocity and density, u3 and ρ3. In Fig. 5(a), ρunV

, uunV
, and ρunuunV

are plotted in blue, red, and
green respectively. The three different particle layers are denoted by solid lines (1), triangles (6),
and circles (11).

We observe that the volume-averaged density, velocity and momentum decay quickly to the
post-tail values for the first particle. For particles further downstream, it takes progressively longer.
In fact, the change from the prehead (PH) state to the post-tail (PT) state happens in about 15
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FIG. 6. The contributions of the pressure gradient term (right triangle) and the inviscid unsteady term
(circle) to the total drag force experienced by particles in layers 1 (blue), 6 (red), and 11 (green).

acoustic timescales for the first particle, 30 for the sixth, and 45 for the eleventh. Thus we expect the
upstream particles to have a higher drag force than the downstream particles because of the more
rapid change in a shorter amount of time. The surface-averaged radial momentum for each particle
sees a sharp positive spike early on, when the expansion head first sweeps over the particle. As
the wave passes over the particle, the radial momentum becomes negative, gradually decreasing in
magnitude before another large, negative spike when the tail of the expansion wave passes over the
particle. The large negative spike occurs approximately 15, 50, and 85 acoustic time units after the
expansion head initially sweeps over the respective particles. The corresponding force components
Fpg (t ) and Fiu(t ) and the total force F calculated using the above flow properties are shown in Fig. 6.
The forces have been nondimensionalized by the outflow conditions to give the drag coefficient,
CD = FD/ 1

2ρ3u
2
3A, where FD is the respective drag force and A is the cross-sectional area of the

particles. It is evident that the pressure gradient term contributes the most to the total drag, roughly
70%. More interestingly, however, the inviscid unsteady force contributes 30% to the total particle
drag force. In this type of flow configuration, neither term can be ignored. For the first particle, the
total drag force peaks at approximately t/τ = 2.5. The pressure gradient term reaches its peak value
just before that, at t/τ = 2.0, while the inviscid unsteady term achieves a peak value at t/τ = 2.8.
Similar behavior is observed for the other particle layers as well. It should be noted that for each
particle, there exists a very short time period for which the inviscid unsteady term contributes more
than the pressure gradient term. This only happens at very early and very late times (corresponding
to the expansion head first hitting the particle and to the expansion tail sweeping past), when the
pressure gradient force is very low.

B. Drag

Plotted in Fig. 7(a) are the fully resolved simulation results from CMT-NEK for the drag coefficient,
with open faced diamonds representing V 3 and the GF prediction with solid curves, as a function of
nondimensional acoustic time, t/τ . Going from left to right, the first set of curves is the drag for a
particle in the first layer (blue), the second set for a particle in the second layer (red), etc. We observe
that for the first particle, the model predicts the drag extremely well. We see an excellent match in
the initial slope, peak drag force at CD = 0.325, and the decay. In general, the model predicts the
increase in drag extremely well for the subsequent particle layers but tends to overpredict the peak
force experienced by particles that are deeper in the particle array. After a particle experiences the
peak force, the initial decay in drag is also captured fairly well; we begin to notice deviation from
the model once the wave moves deeper into the particle bed, as seen in Fig. 7(b). The model was
designed for only a single particle in a compressible flow. Where the model deviates is when the
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FIG. 7. (a) The drag coefficient, CD = FD/ρu2A, where FD is the drag force and A is the cross-sectional
area of the particle, plotted as a function of nondimensional time t/τ , for the first 20 particle layers for our fully
resolved simulation results from CMT-NEK (open symbols) for V 3 and for the single-particle model predictions
from Annamalai and Balachandar [24] (solid curves). In frame (b), we plot a particle in the eleventh layer to
highlight the deviation from the model prediction.

particle begins feeling the effect of its neighbors. For every particle layer that the expansion wave
encounters, multiple waves are generated. The transmitted wave is the wave that keeps propagating
further downstream into the bed. The reflected wave is the wave that reflects off of the individual
particles and propagates upstream as disturbances. These diffracted waves are seen as bumps in the
simulation particle drag force.

In Fig. 7, the first particle’s drag force is captured well until the wave reaches the second particle
layer. When the transmitted wave hits the second particle layer, a reflected wave propagates back
upstream. Just when the second particle layer experiences the peak drag force, we observe that the
first particle layer experiences a slight increase or bump in drag which is due to a reduction in
the wake pressure of the first layer. As the wave propagates to the third layer, we observe a slight
increase in the drag force for layer 2 and an even greater increase for layer one. By the time the
wave reaches layer 4, the drag for layer 1 has almost completely decayed. This behavior continues
far downstream as the expansion wave generates more reflected waves that propagate upstream and
interfere with the other particles. For the first particle layer, the decay in drag is captured very well.
Further downstream, we begin to observe the dissipative effects of the particle bed.

In Fig. 8, we plot the particle drag forces for V 10 and V 15 in the same fashion as we did for
V 3 alongside the results from the GF theorem. In both cases, the peak force and initial slope are
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FIG. 8. The drag coefficient, CD = FD/ρu2A, where FD is the drag force and A the cross-sectional area
of the particle, plotted as a function of nondimensional time t/τ , for the first 20 particle layers for our fully
resolved simulation results from CMT-NEK (open symbols) for V 10 in panel (a) and for V 15 in panel (b). Shown
with solid curves are the single particle model predictions from Annamalai and Balachandar [24].

predicted well for the first particle layer. The subsequent peak forces are slightly underpredicted
but, more importantly, are slightly delayed compared to the GF model.

The particles in these two cases are significantly closer together than in V 3 and we observe more
interference with the expansion wave head, where before it was far less affected. Just like in V 3,
we observe fluctuations in drag resulting from pressure reflections from streamwise and transverse
neighbors in the form of bumps in the drag coefficient. However, because of the more compact
particle beds, these fluctuations in drag are slightly larger than for V 3. In V 3, we also observed
that after the expansion tail has swept over the particles, the drag goes down to 0 and proceeds to
fluctuate about this value for all particles. For V 10 and V 15, the same happens for every particle
except the ones in the first layer, closest to the outflow. In V 10 and especially V 15, the drag on the
first particle remains mostly negative after the tail has swept over.

C. Flow field

We now examine the instantaneous flow fields for V 3, V 10, and V 15. The figures in this section
are all taken as slices from the center of the particle bed. In Fig. 9, we plot contours of the gas
pressure, P/P4, inside the particle bed for V 15 at various times, t/τ . Figure 9(b) corresponds to the
time instant when the expansion wave head just passes over the first particle layer and Fig. 9(e) to
the instant when the head passes over the last particle layer. In Figs. 9(b) and 9(c), the expansion
head changes from a sharp front to a bowlike shape as it passes through the particle layers. The
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FIG. 9. Contour plots of nondimensional gas pressure, P/P4, inside the particle bed for V 15 at times,
t/τ = 7, 41, 63, and 88, from when the expansion wave head passes over the first particle layer to when it
leaves the particle bed in frames (a)–(d). In the subsequent frames, (e)–(h), we change the legend scale to better
highlight the fluctuations that occur inside the bed at times t/τ = 10, 41, 63, and 88.
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FIG. 10. Contour plots of Mach number for (a) V 3, (b) V 10, and (c) V 15 at the time instance t/τ = 63.

wave weakens and gets broader while it propagates further into the particle bed in Fig. 9(d). The
expansion wave stretches across eight particle layers as it nears the end of the bed in Fig. 9(e). In
these instances, the front, which has significantly weakened, does not have the bowlike shape seen
at early times. In Figs. 9(g)–9(j), we plot the gas pressure P/P4 at similar times but with a different
scale for the contours to highlight the fluctuations that occur in the bed when the expansion wave
sweeps over the particles.

We plot the contours of Mach number inside the particle beds in Figs. 10(b)–10(d) for V 3, V 10,
and V 15, respectively. The contours are plotted at the time instant when the expansion wave head
passes over the sixteenth particle layer and exits the image frame. In all three cases, low-Mach-
number regions develop on the upstream and downstream side of each particle, corresponding to
the stagnation points on a sphere. High-Mach-number regions develop around the azimuthal area
of the particles. The upstream particles in V 3 experience a maximum surface Mach number of
Ma = 0.678, while V 10 and V 15 experience slightly higher surface Mach numbers of Ma = 0.756
and Ma = 0.862, respectively. In general, the higher volume fraction cases develop a higher Mach
number field as the flow squeezes past the particles.

D. Mean quantities

In the following figures, we plot cross-section-averaged profiles of various quantities scaled by
the high-pressure region, 4, values. The planar average is taken over a finitely sized slice at a number
of streamwise points throughout the particle bed at different instances in time, starting at the time
when the expansion wave head collides with the first particle layer. Throughout these figures, the
time series will proceed from the right at x = 40, the location of the first particle layer, toward the
left at x = 0, the location of the last particle layer. A series of five data sets is plotted for every case.
Starting at the rightmost data set on every plot and proceeding to the left, time intervals of t = 0.05
(red), 0.2 (green), 0.35 (cyan), 0.55 (blue), and 0.7 (black) are represented.

The nondimensional cross-stream averaged gas density, 〈ρ〉/ρ4, is plotted in Fig. 11. The gas
density is initially at 1.0 and quickly decays to a value that fluctuates between 0.6 and 0.7, with
a larger range of fluctuations occurring for the higher volume fraction cases, V 10 and V 15, and a
lower range for V 3. Between particle layers, density can vary as much as 20% of the post-tail density
as the flow has to navigate around the particles. Particles deeper in the bed take progressively longer
to experience the same density drop. The value of density (and other quantities) at x = 40 at early
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FIG. 11. Plot of nondimensional gas density as a function of depth into the bed for all three cases, solid
curves representing V3, dashed curves representing V10, and dotted curves representing V15. x = 40 is the
position of the first particle layer and x = 0 is that of the last particle layer. The colors represent different
instances in time, increasing from right to left, starting at red, when the expansion wave head first hits the
particles, proceeding to green, cyan, and blue as it propagates through the bed, and black as the head leaves the
bed.

time differs between V 3, V 10, and V 15. This is due to the binning procedure shown in Fig. 12(b).
In plane 1, the average for V 10 and V 15 will be different because the expansion wave has already
interacted with the particles in the first layer. On the contrary, for V 3 in plane 1, the expansion wave
has not swept over the first particle layer.

In Fig. 12(a), we show the schematic for the model we will use to predict the nondimensional
pressure and temperature drop. We use an analysis similar to Han et al. [29], where we model
the particle bed as a nozzle or area reduction for the flow from state 4 to state 4′. Rather than a
continuous area reduction, we assume an instantaneous area reduction from state 4 to 4′. Using
isentropic flow through a nozzle relations, for a given tail Mach number we first compute A4/A

∗,
the required area ratio that would accelerate the flow from state 4 to the sonic state, denoted by the
asterisk (*), as well as P4/P

∗ and T4/T ∗ using Eqs. (23)–(25) below:

A

A∗ = 1

Ma

[(
2

γ + 1

)(
1 + γ − 1

2
Ma2

)] γ+1
2(γ−1)

, (23)

P

P ∗ =
[(

2

γ + 1

)(
1 + γ − 1

2
Ma2

)]− γ

γ−1

, (24)

T

T ∗ =
[(

2

γ + 1

)(
1 + γ − 1

2
Ma2

)]−1

. (25)

The effective area reduction, or A4′/A4, is 0.97, 0.9, and 0.85 respectively for V 3, V 10, and
V 15. Now knowing A4/A

∗ and A4′/A4, we can easily compute A4′/A∗. From this area ratio, we
can readily obtain Ma4′ and hence P4′/P ∗ and T4′/T ∗. Using the initial values P4 and T4, we can
set up a chain of ratios to obtain the final pressures and temperatures as

T4′ = T4′

T ∗
T ∗

T4
T4, (26)

and

P4′ = P4′

P ∗
P ∗

P4
P4. (27)
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FIG. 12. An isentropic flow model is utilized by assuming that the particle bed acts similar to a converging
nozzle. The main assumption in panel (a) is that the area change from state 4 to state 4′ occurs instantaneously
at every particle layer. A schematic of the planar-averaged binning procedure is shown in panel (b).

As we will see, this simple analysis gives very good predictions for final pressure, temperature, and
Mach number.

In Figs. 13 and 14, we plot the averages of gas pressure and gas temperature (symbols),
respectively, throughout the particle bed and the analytical results (solid lines). The pressure and
temperature have been scaled by the high-pression-region values, P4 and T4 respectively.

Nondimensional pressure and temperature behave similarly to density as the expansion propa-
gates through the bed. The pressure and temperature inside the particle bed have prehead values
〈P 〉/P4 = 1.0 and 〈T 〉/T4 = 1.0 respectively. As the expansion propagates into the bed, the first
layer of particles see a very sudden attenuation. Particles further downstream see a much more
gradual drop. We note that the wave in case V 3 moves more rapidly through the bed as opposed
to V 10 and V 15, as indicated by the faster pressure and temperature drops. Further, as the tail
sweeps over the particle bed, the gas pressure and gas temperature settle at slightly different post-tail
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FIG. 13. Plot of nondimensional gas pressure as a function of depth into the bed for cases (a) V3 (squares),
(b) V10 (circles), and (c) V15 (right triangles). The analytical solution is shown in solid lines. x = 40 is the
position of the first particle layer and x = 0 is that of the last particle layer. The colors represent different
instances in time, increasing from right to left, starting at red, when the expansion wave head first hits the
particles, proceeding to green, cyan, and blue as it propagates through the bed, and black as the head leaves the
bed.
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FIG. 14. Plot of nondimensional gas temperature as a function of depth into the bed for cases (a) V3
(squares), (b) V10 (circles), and (c) V15 (right triangles). The analytical solution is shown in solid lines.
x = 40 is the position of the first particle layer and x = 0 is that of the last particle layer. The colors represent
different instances in time, increasing from right to left, starting at red, when the expansion wave head first hits
the particles, proceeding to green, cyan, and blue as it propagates through the bed, and black as the head leaves
the bed.

094301-21



GORAN MARJANOVIC et al.

0 10 20 30 40

0

0.2

0.4

0.6

0.8

x

〈 M
a〉

Mach number

 

 

10%
15%
3%

(a)

0 10 20 30 40

0

0.2

0.4

0.6

0.8

x

M
a

(b)

FIG. 15. Plot of Mach number as a function of depth into the bed for all three cases in panel (a), solid lines
representing V3, dashed curves representing V10, and dotted curves representing V15. x = 40 is the position
of the first particle layer and x = 0 is that of the last particle layer. The colors represent different instances
in time, increasing from right to left, starting at red, when the expansion wave head first hits the particles,
proceeding to green, cyan, and blue as it propagates through the bed, and black as the head leaves the bed.
Frame (b) shows the analytical results from an isentropic flow through an area change analysis.

values. V 3 sees final post-tail pressure and temperature of 〈P 〉/P4′ = 0.644 and 〈T 〉/T4′ = 0.882,
while V 10 sees final values of 〈P 〉/P4′ = 0.630 and 〈T 〉/T4′ = 0.876, and lastly V 15 sees values
of 〈P 〉/P4′ = 0.616 and 〈T 〉/T4′ = 0.870. This compares very well to the isentropic flow results,
with final pressures and temperatures of 〈P 〉/P4′ = 0.646, 〈T 〉/T4′ = 0.883 for V 3, 〈P 〉/P4′ =
0.630, 〈T 〉/T4′ = 0.876 for V 10, and 〈P 〉/P4′ = 0.616, 〈T 〉/T4′ = 0.871 for V 15. However, we
do observe some discrepancy in the intermediate state between initial and final pressures and
temperatures. Whereas the analytical results have a linear slope, the simulation results have a
more parabolic shape. There are several reasons for these discrepancies. For one, the isentropic
flow relations assume a continuous area change from state 4 to state 4′. This is why we observe
intense fluctuations throughout the bed in the simulations. Further, the particles act to produce wave
reflections that emanate back upstream and interfere with the flow, which the simple isentropic flow
through an area change analysis does not take into account.

In Fig. 15, we plot the planar-averaged local Mach number as a function of depth into the particle
bed from the present simulation [Fig. 15(a)] and for the analytical results from the isentropic flow
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FIG. 16. Plot of the nondimensional streamwise momentum as a function of depth into the bed for all three
cases, solid lines representing V3, dashed curves representing V10 and dotted curves representing V15. The
quantities have been nondimensionalized by ρ4c

2
4. x = 40 is the position of the first particle layer and x = 0

of the last particle layer. The colors represent different instances in time, increasing from right to left, starting
at red, when the expansion wave head first hits the particles and proceeding to green, cyan, and blue as it
propagates through the bed.

analysis [Fig. 15(b)]. The speed of sound used for the Mach number is the value in the high-pressure
region, c4. The particle bed acts like a sudden contraction when the expansion wave first hits the bed.
This area change results in a nozzling of the flow as it accelerates and navigates around the particles.
As the wave propagates through the different particle layers, it encounters many such converging and
diverging sections. This is evident in Fig. 15 as the planar averaged local Mach number fluctuates
between the particle layers. Initially, the particle bed sees no flow; as the expansion head propagates
into the bed, the flow accelerates rapidly. Because of the converging-diverging effect of the particle
layers, the particle bed Mach number fluctuates between values of 0.34 and 0.65 for the three cases,
tending to a wider range for higher volume fractions. The average particle bed Mach numbers, Ma4′ ,
are 0.43, 0.46, and 0.49 for V 3, V 10, and V 15 respectively. The particles themselves, however,
experience a much higher surface Mach number, with peak values of 0.678, 0.756, and 0.862
respectively for the three cases. The analytical results in Fig. 15(b) show good agreement with the
simulation results, with average particle bed Mach numbers of 0.42, 0.46, and 0.49. As before with
pressure and temperature, the slope of the intermediate region is linear for the analytical results,
whereas it fluctuates significantly for the simulation results. Further, there are much more intense
fluctuations in the Mach number than for the pressure and temperature and this is much more readily
apparent when compared to the analytical result.

E. Conserved quantities

We plot the nondimensional streamwise momentum, 〈ρu〉/ρ4c4, and the nondimensional stream-
wise kinetic energy, 〈ρu2〉/ρ4c

2
4, in Figs. 16 and 17, respectively. We observe a trend similar to

that with the Mach number. While the average conserved streamwise momentum is approximately
the same for all three cases at 〈ρu〉/ρ4c4 = 0.27, the average streamwise kinetic energy varied
from 〈ρu2〉/ρ4c

2
4 = 0.125 for V 3 to 〈ρu2〉/ρ4c

2
4 = 0.143 for V 10 and V 15. The streamwise kinetic

energy fluctuates much more intensely inside the bed than the streamwise momentum. In general,
the higher volume fractions experience the greatest fluctuations, with cases V 10 and V 15 having
fluctuations on the order of 50% of the average post-tail values.

In Fig. 18, we plot the nondimensional conserved plane averaged total specific energy of the
particle bed, 〈ρE〉/ρ4c

2
4. Initially, the bed is at a prehead value of 〈ρE〉/ρ4c

2
4 = 1.79 for all three

cases and quickly decays once the expansion wave head hits the first layer of particles. At later time,

094301-23



GORAN MARJANOVIC et al.

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

x

〈ρ
u

2 〉 /
 ρ

4
c 42

Streamwise Kinetic Energy

15%
10%
3%

FIG. 17. Plot of the nondimensional streamwise kinetic energy as a function of depth into the bed for all
three cases, solid lines representing V3, dashed curves representing V10, and dotted curves representing V15.
x = 40 is the position of the first particle layer and x = 0 is that of the last particle layer. The colors represent
different instances in time, increasing from right to left, starting at red, when the expansion wave head first hits
the particles, proceeding to green, cyan, and blue as it propagates through the bed, and black as the head leaves
the bed.

indicated by the bottom left most curves, the total energy decays to post-tail values of 〈ρE〉/ρ4c
2
4 =

1.07, 〈ρE〉/ρ4c
2
4 = 1.04, and 〈ρE〉/ρ4c

2
4 = 1.02, respectively for V 3, V 10, and V 15. This shows

that the denser packed particles dissipate more energy as the wave propagates through the bed. As
before, the wave travels faster through V 3 than the other two cases as can be observed by the more
rapid dissipation in total energy.

F. Fluctuating quantities

As was apparent in the previous figures, there are significant fluctuations about mean values
happening throughout the bed as the particles act like converging-diverging nozzles for the flow to
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FIG. 18. Plot of the nondimensional conserved total specific energy as a function of depth into the bed for
all three cases, solid lines representing V3, dashed curves representing V10, and dotted curves representing
V15. x = 40 is the position of the first particle layer and x = 0 is that of the last particle layer. The colors
represent different instances in time, increasing from right to left. Starting at red, when the expansion wave
head first hits the particles, proceeding to green, cyan, and blue as it propagates through the bed, and black as
the head leaves the bed.
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FIG. 19. Plot of the nondimensional root-mean-square (rms) density fluctuations normalized by the
maximum density fluctuation at each time as a function of depth into the bed for all three cases, solid lines
representing V3, dashed curves representing V10, and dotted curves representing V15. x = 40 is the position
of the first particle layer and x = 0 is that of the last particle layer. The colors represent different instances in
time, increasing from right to left. Starting at red, when the expansion wave head first hits the particles and
proceeding to green, cyan, and blue as it propagates through the bed.

navigate through. In the following figures, we examine the root-mean-square (rms) fluctuations of
our state variables and velocity. In Fig. 19, we plot the planar-averaged rms density fluctuations,
scaled by the maximum density fluctuations at each time interval. The density fluctuations peak
immediately upon arrival of the expansion wave. In general, for all cases, the peak fluctuations are
stronger and occur more frequently at early times.

The nondimensional rms streamwise velocity fluctuations scaled by the maximum value at each
time interval are presented in Fig. 20 as a function of space and time. The rms velocity behaves
similar to the rms density. There is a very rapid increase early on, with the most intense fluctuations
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FIG. 20. Plot of the nondimensional rms streamwise velocity fluctuations normalized by the maximum
velocity fluctuation at each time as a function of depth into the bed for all three cases, solid lines representing
V3, dashed curves representing V10, and dotted curves representing V15. x = 40 is the position of the first
particle layer and x = 0 is that of the last particle layer. The colors represent different instances in time,
increasing from right to left. Starting at red, when the expansion wave head first hits the particles, proceeding
to green, cyan, and blue as it propagates through the bed, and black as the head leaves the bed.
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FIG. 21. Plot of the nondimensional rms pressure fluctuations normalized by initial pressure as a function
of depth into the bed for all three cases, solid lines representing V3, dashed curves representing V10, and dotted
curves representing V15. x = 40 is the position of the first particle layer and x = 0 is that of the last particle
layer. The colors represent different instances in time, increasing from right to left. Starting at red, when the
expansion wave head first hits the particles, proceeding to green, cyan, and blue as it propagates through the
bed, and black as the head leaves the bed.

occurring at early times. V 3 has higher, more frequent peak density, and velocity fluctuations at
later times than V 10 and V 15.

We plot the planar-averaged nondimensional rms pressure and temperature fluctuations scaled
by the peak fluctuating values as functions of space in Figs. 21 and 22. The peak pressure
fluctuations occur pretty regularly throughout the bed. V 3 experiences the lowest peak fluctuations
for temperature and pressure, on average equal to 0.4. V 10 and V 15 on average have fluctuations of
80% of the peak throughout the bed. One reason for this might be the confining effect of the higher
volume fraction cases. The larger particles create greater wakes and unsteadiness.
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FIG. 22. Plot of nondimensional rms temperature fluctuations normalized by initial temperature as a
function of depth into the bed for all three cases, solid lines representing V3, dashed curves representing V10,
and dotted curves representing V15. x = 40 is the position of the first particle layer and x = 0 is that of the
last particle layer. The colors represent different instances in time, increasing from right to left. Starting at red,
when the expansion wave head first hits the particles, and proceeding to green, cyan, and blue as it propagates
through the bed.
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The nondimensional rms temperature fluctuations, in Fig. 22, behave similarly to the aforemen-
tioned pressure fluctuations. We see the highest peaks for V 10 and V 15 throughout the bed. V 3 has
comparable peak fluctuations as V 10 and V 15 at early times only. The total pressure drop in the
bed is also greater than the total temperature drop, so the magnitude of the pressure fluctuations is
also larger.

IV. CONCLUSION

Using CMT-NEK, a discontinuous Galerkin spectral element flow solver, we simulated three cases
of an expansion wave propagating into a face-centered cubic array of particles. The three cases
considered have volume fractions of 3%, 10%, and 15%. We examined pressure, temperature,
density, and Mach number changes throughout the particle bed at varying times and compared
these results to theory obtained from a simple isentropic flow through a nozzle. The analytical
results compared well for the post-tail states of pressure, temperature, and Mach number; however.
the most significant discrepancy occurred in the intermediate region between the head and the
tail, where unsteady effects are prevalent. The model assumes a linear area change, whereas in
the simulations we have a nonlinear area change due to the converging-diverging nozzle effect
of the particles arrays. The root-mean-square fluctuations of various quantities were also examined.
The 3% volume fraction case has much higher fluctuations in density and velocity than the 10% and
15% volume fraction cases. On the other hand, 10% and 15% have higher fluctuations in temperature
and pressure.

Though the particles were stationary in this study, it is important to understand the drag, which
causes particle motion, that the particle bed experiences. We note that the inviscid drag models
of Annamalai and Balachandar [24] for a single particle in compressible flows showed very good
agreement with the drag experienced by the first particle layer. Deviation from the model occurred
as the wave propagated further into the bed and interactions with neighboring particles and volume
fraction effects became important. The model was designed for a single particle and hence does not
capture all of the complex physics in a particle bed, such as wave diffraction off of neighboring
particles. These wave reflections can act to modulate or attenuate the drag in time. Future study
should be performed for stronger waves generated with higher pressure ratios as well as larger
volume fractions. Densely packed beds experiencing a stronger expansion wave will exhibit some
interesting flow physics as the local flow reaches sonic and supersonic speeds, such as formations
of shocklets that can act to dissipate energy much more intensely.
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