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The force and torque on a Janus sphere moving in a rarefied gas with a thermal
gradient are calculated. The regime of large Knudsen number is considered, with the
momenta of impinging gas molecules either obtained from a Chapman-Enskog distribution
or from a binary Maxwellian distribution between two opposing parallel plates at different
temperature. The reflection properties at the surface of the Janus particle are characterized
by accommodation coefficients having constant but dissimilar values on each hemisphere.
It is shown that the Janus particle preferentially orients such that the hemisphere with a
larger accommodation coefficient points toward the lower temperature. The thermophoretic
velocity of the particle is computed, and the influence of the thermophoretic motion on the
magnitude of the torque responsible for the particle orientation is studied. The analytical
calculations are supported by direct simulation Monte Carlo results, extending the scope
of the study toward smaller Knudsen numbers. The results shed light on the efficiency of
oriented deposition of nanoparticles from the gas phase onto a cold surface.
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I. INTRODUCTION

Thermophoresis in gases, i.e., the motion of aerosol particles along a gradient in temperature,
has been applied both for preventing and inducing particle deposition on heated or cooled surfaces
from the gas phase, as already suggested by Aitken [1] in his seminal study of the phenomenon.
In the present paper we investigate whether thermophoretic deposition can be used for decorating
surfaces with nonsymmetric nanoparticles oriented with respect to the applied temperature gradient.
As a model system we consider a spherical Janus particle [2], Fig. 1, where each hemisphere is
characterized by a different accommodation coefficient for the reflection of gas molecules (giving
it a two-faced appearance similar to depictions of the god Janus). In the limit of large Knudsen
numbers, Kn = �/(2R) � 1, when the mean free path � of gas molecules is much larger than the
particle diameter 2R, the force and torque on the particle can be calculated analytically. This allows
identifying the interplay between thermophoretic motion and particle alignment. Without translation
the Janus particle is oriented with its more diffuse side pointing preferentially in the direction of the
lower temperature. However, a translation of the Janus particle through the surrounding gas results
in a torque aiming to orient the particles’ more diffuse side in a direction opposite to the direction of
motion. Since the thermophoretic force leads to a net motion toward the colder gas, this thus leads
to a weakening of the particle alignment.
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FIG. 1. Left: Sketch of the geometry, not to scale. A Janus particle of Radius R with different reflection
properties on its two hemispheres is suspended in a gas between two parallel plates of temperatures Tl and
Th, separated by a distance h with h � 2R. The orientation of the Janus particle is characterized by the unit
vector np normal to the equatorial plane separating the two hemispheres of the particle. The orientation of np

with respect to a Cartesian coordinate system with z-axis normal to the bounding plates can be given as polar
and azimuthal angles θ and φ, with np = sin θ cos φ ex + sin θ sin φ ey + cos θ ez. Right: Points r = r(ϑ, ϕ)
on the surface of the particle are parametrized by the polar and azimuthal angles ϑ and ϕ with r(ϑ, ϕ) =
R(sin ϑ cos ϕ ex + sin ϑ sin ϕ ey + cos ϑ ez ). This defines the usual local coordinate system with unit vectors
er = r/R, eϑ = ∂ϑr(ϑ, ϕ)/R and eϕ = er × eϑ . The surface normal n coincides with er (ϑ, ϕ).

The earliest estimate for the thermophoretic force on a particle at large Knudsen numbers seems
to be due to Einstein [3]. More exact calculations for the force and drag on a homogeneous sphere at
large Knudsen numbers were later performed by Waldmann [4] and simultaneously by Bakanov and
Derjaguin [5], allowing the determination of the thermophoretic velocity in this limit. Our analytical
calculations largely follow these early presentations. Notable extensions of these results to rotating
particles of various shape were presented by Borg, Söderholm, and Essén [6,7]. Extensive reviews
of analytical, numerical, and experimental results on the thermophoretic motion of particles in the
gas phase, including the transition flow and slip-flow regime, can be found in Refs. [8–11].

In the past few years it has become feasible to synthesize micro- or nanoparticles showing
large deviations from spherical symmetry, either by their geometry or by their surface properties
[12,13]. In that context Janus particles, composed of two hemispheres with different properties,
have probably received the most attention [14–16]. In the context of the present work, only the
surface properties of the two hemispheres are relevant. Two hemispheres with different momentum
accommodation coefficients can be formed by varying the surface roughness [17,18] or by covering
a part of the surface with a thin film [19,20]. While the motion of Janus particles in liquids have been
widely discussed [21,22], little attention was given to the theoretical description of their transport
in the gas phase. Notable exceptions are the studies by Rohatschek [23] and Beresnev et al. [24]
considering the photophoretic force due to inhomogeneous heating by absorption of electromagnetic
radiation on a Janus particle with different accommodation coefficients on its hemispheres in the
limit of large Knudsen numbers. We complement these results to arbitrarily translating and rotating
Janus particles in a thermal gradient.

This paper is organized as follows: In Sec. II we determine expressions for the force and torque
on a Janus particle. Section III considers a Janus particle in a gas described by a Chapman-Enskog
distribution, and the particle motion is illustrated by numerical solutions of the Langevin equation,
highlighting the interplay between thermophoretic motion and orientation in the temperature field.
In Sec. IV a Janus particle in the collisionless regime between two parallel surfaces is considered
analytically. These results are complemented using the direct simulation Monte Carlo (DSMC)
method in Sec. V, where finite Knudsen numbers are also considered.
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II. MOMENTUM TRANSFER BETWEEN GAS AND PARTICLE

To calculate the force on the Janus particle, we assume that the mean free path of gas molecules
is much larger than the diameter of the particle, such that the phase space distribution function
f (r, c) of gas molecules impinging onto the particle can be regarded as unchanged by the presence
of the particle. We will also assume that the gas only contains one kind of molecules having
mass m which are much lighter than the Janus particle, such that the particle’s recoil during a
collision with a molecule results in an infinitesimal change in its velocity. For the interaction of
the gas molecules with the particle surface we assume a Maxwell-type boundary condition with a
position-dependent accommodation coefficient a(r), which can be interpreted as the fraction a of
the incoming molecules that is reflected diffusely, while the fraction (1 − a) is reflected specularly.
In particular, for a surface moving at velocity uw and with wall temperature Tp, the phase space
distribution of the outgoing molecules obeys the boundary condition

f (r, c) = a(r)f (d)(r, c; uw ) + [1 − a(r)]f {r, c − 2n[(c − uw ) · n]}, for (c − uw ) · n > 0, (1)

where n is the outward unit normal vector at the surface pointing into the gas phase. Diffusely
reflected molecules are characterized by a Maxwellian distribution

f (d)(r, c; uw ) = ν(r)
2β2

p

π
e−βp (c−uw )2

, (2)

where we have used the abbreviation βp = m/(2kTp ), with the Boltzmann constant k, and where

ν(r) = −
∫

(c−uw )·n<0
[(c − uw ) · n]f (r, c)d3c (3)

is the molecule flux density at position r on the surface, i.e., the number of gas molecules impinging
on the surface per unit area and per unit time. The force density on the wall due to the interaction
with gas molecules is the momentum flux per unit area,

�(r) = −
∫

[(c − uw ) · n]mcf (r, c)d3c, (4)

carried by molecules toward and away from the wall.
The integrals are conveniently evaluated in an inertial frame of reference comoving with the

momentary velocity u of the particle and with the origin of the spatial coordinate system in the
center of the sphere. Thus, when the particle spins at an angular velocity ω, the wall velocity at
position r on the surface, uw = ω × r, will be orthogonal to the outward normal, n ≡ er = r/R, at
the surface, n · uw = 0. The force density at the surface can then be written as

�(r) = a(r)
[
�in(r) + �

(d)
out (r)

]+ [1 − a(r)] 2[�in(r) · n]n, (5)

with

�in(r) = −
∫

c·n<0
(c · n)(mc)f (r, c)d3c, (6)

�
(d)
out (r) = −

∫
c·n>0

(c · n)(mc)f (d)(r, c; ω × r)d3c (7)

= −
∫

c·n>0
(c · n)[m(c + ω × r)]f (d)(r, c; 0)d3c (8)

= −ν(r)m

[
1

2

√
π

βp

n + ω × r
]
, (9)

ν(r) = −
∫

c·n<0
(c · n)f (r, c)d3c. (10)
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Here, �in is the inward momentum flux at the surface, with its normal component con-
tributing with a factor 2 to the total momentum transferred on specular surfaces. Similarly,
�

(d)
out is readily identified as the outward momentum flux on a diffuse surface where, due

to rotation of the particle, on average one molecule carries away the additional momentum
mω × r tangential to the surface compared to the instantaneous rest frame of the surface
element.

The force and torque on the particle are obtained by integrating �(r) and r × �(r) over the
surface of the particle, respectively. For this, the phase space distribution function f (r, c) of the
molecules impinging on the particle surface has to be specified. In the following sections we will
consider two cases: (i) a Chapman-Enskog distribution with a thermal gradient and (ii) a distribution
between diffusely reflecting parallel plates held at different temperatures in the collisionless
regime.

Figure 1 illustrates the geometry and the coordinate system used. For both cases described
above, we assume a Janus particle with radius R located between two parallel plates at distance
h. For our analytical calculations, the coordinate system is chosen such that its origin lies at
the momentary center of the sphere. The z axis of this coordinate system lies in direction
normal to the plates, while the x and y axes span a plane parallel to them. Points r = r(ϑ, ϕ) =
R(sin ϑ cos ϕ ex + sin ϑ sin ϕ ey + cos ϑ ez) on the surface of the particle are parametrized by the
polar and azimuthal angles ϑ and ϕ with 0 � ϑ � π and 0 � ϕ < 2π . This defines the usual
local coordinate system with unit vectors er = r/R, eϑ = ∂ϑr(ϑ, ϕ)/R, and eϕ = er × eϑ on the
surface of the sphere. The surface normal n coincides with er (ϑ, ϕ). The orientation of the Janus
particle is characterized by the unit vector np normal to the equatorial plane separating the two
hemispheres of the particle. The momentum accommodation coefficient a(r) is a+ on the upper
hemisphere with r · np > 0 and a− on the lower hemisphere. The orientation of np with respect to
the Cartesian coordinate system is parametrized by the polar and azimuthal angles θ and φ with
np = np(θ, φ) = sin θ cos φ ex + sin θ sin φ ey + cos θ ez.

III. CHAPMAN-ENSKOG-DISTRIBUTION, � � h

A. Force and torque on a Janus particle

In this section we focus on the situation that the plate distance h is much larger than the mean
free path of the gas molecules, and the Janus particle is located far away from both plates. Under
these circumstances the state of the gas at rest is characterized by the molecule number density, n,
temperature, T , pressure, p = nkT , and conductive heat flux q = −λ∇T , where λ is the thermal
conductivity of the gas. Let f̃ (r, c̃) be the phase space density in the rest frame of the gas, where
for the moment we have denoted quantities in this frame of reference by a tilde. To first order in
the temperature gradient it can be obtained from the Boltzmann equation via a Chapman-Enskog
expansion as [4,8,25,26]

f̃ (r, c̃) = n

(
β

π

)3/2

e−βc̃2

[
1 − 2

5

mλ

n(kT )2

(
βc̃2 − 5

2

)
c̃ · ∇T

]
, (11)

with the abbreviation β = m/(2kT ). The relation between the molecular velocities c̃ in the rest
frame of the gas and their velocities c in the inertial frame moving with the momentary velocity
u of the particle relative to the gas is given by a Galilean transformation, c = c̃ − u, and thus the
distribution function in the rest frame of the particle is f (r, c) = f̃ (r, c̃) = f̃ (r, c + u). For our
purposes it suffices to expand this to first order in the particle velocity and only keep the lowest-order
terms in ∇T and u,

f (r, c) ≈ n

(
β

π

)3/2

e−βc2

[
1 − 2

5

mλ

n(kT )2

(
βc2 − 5

2

)
c · ∇T − 2β c · u

]
. (12)
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With this velocity distribution function the molecule flux density on the surface of the sphere is
calculated using Eq. (10),

ν(r) = n

2

[
1√
πβ

+ n · u
]
, (13)

and the inward momentum flux, Eq. (6), becomes

�in(r) = −nm

2β

[
1

2
n +

√
β

π
(I + n ⊗ n) · û

]
, (14)

where we have used the abbreviation

û = u + [λ/(5p)]∇T = u − q/(5p). (15)

The tensor product obeys a ⊗ b · c = a(b · c) and I is the identity matrix with I · a = a · I = a.
Collecting terms we can write for the differential force per surface element [with a = a(r)],

�(r) = −p

{
1

2

(
2 − a + a

√
Tp/T

)
n +

√
β

π

[
aû + (4 − 3a)n ⊗ n·û +√(Tp/T )

π

2
a n ⊗ n·u

]}

−pa

(√
β

π
+ β n · u

)
ω × (Rn). (16)

The net force and torque are calculated by integrating �(r) and r × �(r) over the surface of the
sphere. This requires the integration of the tensors products of the surface-normals up to third order
over each hemisphere, presented in Appendix A 1. With these integrals we obtain for the force on
the Janus sphere (S0 = 4πR2),

F = −4

3
S0p

√
β

π

[
û + π

8

√
Tp

T

1

2
(a+ + a−)u

]
+ 1

8
S0p (a+ − a−)

(
1 −

√
Tp

T

)
np

− 1

4
S0p

√
β

π
(a+ − a−) (Rω × np ) − 1

3
S0p β

1

2
(a+ + a−) (Rω × u). (17)

The first term in this expression agrees with the results of Bakanov and Derjaguin [5] and Waldmann
[4] for the thermophoretic and drag forces on a sphere with surface-temperature TP = T and
homogeneous accommodation coefficient a = a+ = a−. Under these conditions the net force on the
particle vanishes when it moves with a drift velocity ud = q/[5p(1 + aπ/8)]. The second term is
purely due to diffuse reflection from a sphere with a temperature different from its surroundings. The
third term is due to the inhomogeneous rotational drag on the diffuse surface, while the fourth term
corresponds to a “negative” Magnus force due to impinging particles being reflected predominantly
in direction of rotation from the diffuse surface [7,27–29]. Note that in these expressions S0p serves
as the natural scale for the force, while the rotational and translational velocities, u and Rω, are
scaled with the characteristic thermal velocity c̄ = 1/

√
β = √

2kT /m of the gas molecules.
Similarly, integrating the torque density, dM(r) = r × �(r)dS with r = Rn, over the surface of

the sphere yields,

M = −2

3
S0pR2

√
β

π

1

2
(a+ + a−)ω − 1

4
S0pR

√
β

π
(a+ − a−)(np × û)

+ 1

16
S0pR2β (a+ − a−){−3(u · np )ω + u(ω · np ) + [u · ω − (u · np )(ω · np )]np}. (18)

In this expression the first term corresponds to rotational drag, and for a sphere with a homoge-
neous accommodation coefficient a = a+ = a− we recover M = −αωω, with the familiar friction
coefficient αω = 2π

3 aR4n
√

8mkT/π , [30].
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Note that on fully specular surfaces the net momentum transfer is purely normal to the surface,
since the normal component of velocity is reversed while the tangential component is conserved
upon reflection. On diffusely reflecting surfaces the outward momentum flux consists of a purely
normal part due to the diffuse reflection and a purely tangential part due to the rotation of the
sphere. Since the torque is the surface integral of dM(r) = r × �(r)dS, it is seen that only
diffusely reflecting surfaces contribute to the torque and in particular that the torque is independent
of the temperature distribution on the surface of the sphere even for nonuniform temperature
distributions.

B. Thermophoresis and orientation of a Janus-sphere

The motion of the Janus particle is dictated by the bombardment of gas molecules resulting in
an average force and torque as calculated above. Due to the stochastic nature of the bombardment,
the momentary force and torque on the particle are subject to fluctuations, leading to center-of-mass
and orientational diffusion. In the following, we will choose the spherical Janus particle to have
a homogeneous density ρp, such that its mass and moment of inertia are mp = (4π/3)ρpR3

and Ip = (2/5)mpR2, respectively. From the equipartition theorem, assuming the particle to be
almost in thermal equilibrium with the surrounding gas, it will have a typical thermal translational
and rotational velocity of

√
2kT /mP and Rω ∼ R

√
2kT /IP , respectively, where T is the gas

temperature at the particle position. The characteristic velocity of gas molecules, c̄ = 1/
√

β =√
2kT /m, is much larger than both these particle-velocities, since by assumption the particle mass

is much larger than the molecular mass. The last term in each of the expressions for F and M are
thus expected to be negligible compared to the other terms, since they are of second order in the
ratio of particle and molecular velocities, while the others are of first order in these ratios. This also
remains true for a particle moving at its thermophoretic drift velocity ud 	 q/(5p). Note that for the
force this corresponds to the Magnus force on the particle being negligible for the particle moving
at its thermal velocity.

For a particle moving much more slowly than the typical molecular velocities in the gas it is thus
admissible to neglect the terms quadratic in ω and u. When further assuming the temperature of the
particle to be the same as that of the surrounding gas phase, Tp = T , the force and torque on the
sphere have the form

F = −αuu + Aqnq + Aω(np × ω), (19)

M = −αωω + Bq (np × nq ) + Bu(np × u), (20)

where nq = q/|q| is the unit vector pointing in direction of the diffusive heat flux, and the
coefficients αω, Aq, Aω, αω, Bq , and Bu can be read off from Eqs. (17) and (18). When we allow
for fluctuations in the force and torque, we obtain the Newton-Euler-Langevin equations [31,32]
dictating the particle motion,

mpdu = −αuu dt + Aqnq dt + Aω(np × ω) dt +
√

2αukT dWu, (21)

Ipdω = −αωω dt + Bq (np × nq ) dt + Bu(np × u) dt +
√

2αωkT dWω, (22)

dnp = ω × np dt, (23)

where the fluctuations are assumed to be Gaussian white noise with [33–35]

〈dWσ (t ) ⊗ dWσ ′ (t ′)〉 = Iδ(t − t ′)δσσ ′dt, σ, σ ′ ∈ {u, ω}. (24)

The set of stochastic differential equations can be discretized via the Euler algorithm such that for
a finite time step �t the incremental fluctuations are �Wσ = √

�t N σ (0, 1), where N σ (0, 1) are
vectors containing independent normally distributed random variables with mean 0 and variance 1
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at each time step. In Appendix B Eqs. (21)–(23) are stated in nondimensional form adequate for a
numerical analysis.

For a particle at rest, u = 0, the Euler equation describing the orientation of the particle are
equivalent to those of a damped magnetic or electric dipole rotating in an applied magnetic or
electric field [31,32], where the interaction energy of the dipole and the field can be described as a
potential,

Vq (np ) = −Bq (np · nq ) = −Bq cos θ̃ , Bq = S0R

20

√
β

π
(a+ − a−)|q|, (25)

and where θ̃ is the angle between the particle axis and the heat flux. In equilibrium, the angular
probability distribution function p(θ̃ , φ̃) for the orientation of the particle in polar coordinates is
thus given by the Boltzmann distribution,

p(θ̃ , φ̃) = N exp[−Bq cos(θ̃ )/(kT )], N−1 =
∫ π

0

∫ 2π

0
p(θ̃ , φ̃) sin θ̃ dφ̃ dθ̃ = 4π

sinh[Bq/(kT )]

Bq/(kT )
,

(26)

and the marginal distribution, p(θ̃ ) = ∫ 2π

0 p(θ̃ , φ̃) sin θ̃ dφ̃, for the polar angle θ̃ is

p(θ̃ ) = Ñ sin θ̃ exp[−Bq cos(θ̃ )/(kT )], Ñ−1 =
∫ π

0
p(θ̃ ) dθ̃ = 2

sinh[Bq/(kT )]

Bq/(kT )
. (27)

When the “northern” hemisphere is more diffusely reflecting than the southern hemisphere,
a+ > a−, i.e., Bq > 0, the Janus-particle thus aligns with the heat flux, i.e., with the more diffuse
side pointing toward the colder region. Note that by the same reasoning, and since Bq and Bu have
the opposite sign, a particle moving at a constant velocity with respect to an isothermal gas will
orient preferably with the more diffuse side opposite to the direction of motion.

We next turn to the translational motion of the particle, governed by Eq. (21). At steady state,
the average force 〈F〉 on the particle vanishes. The next-to-last term in Eq. (21) describes the
contribution of the coupling between particle rotation and orientation to the force. It is plausible
that for any orientation np the rotational velocity has no preferred direction, i.e., 〈ω〉|np

= 0. Thus,
when averaging Eq. (21) over the entire phase space, the contribution of this term vanishes, and the
drift velocity becomes

ud = 〈u〉 = Aq

αu

nq = q
5p

[
1 + π

16
(a+ + a−)

]−1
. (28)

To find the coupling of the drift velocity to the rotation, we average the torque M over velocity
space. Since the drift velocity is colinear with the heat flux, the last two terms in Eq. (20) can be
combined to an effective torque such that

M(eff) = −αωω + B (eff)
q (np × nq ), (29)

where we have introduced the effective coupling strength

B (eff)
q =

(
Bq + Bu

Aq

αu

)
= Bq

{
1 −

[
1 + π

16
(a+ + a−)

]−1
}
. (30)

The translation of the particle thus weakens the torque aligning the particle with the heat flux.
This is expected, since the drift is also in direction of the heat flux, such that the torque due to
the heat flux and due to the drift velocity partially compensate. The situation can be interpreted
as a dipole in a potential as in Eq. (25), where the coupling strength Bq has been replaced by the
effective coupling strength B (eff)

q , and the angular distribution of the particle is again dictated by a
corresponding Boltzmann distribution as in Eq. (27). For the case of maximal dissimilarity between
the hemispheres of the Janus particle, a+ = 1 and a− = 0, we obtain B (eff)

q = 0.164 Bq .
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FIG. 2. Probability density functions (PDF) of the Janus sphere orientation (cos θ = np · ez). Left: sta-
tionary sphere, right: translating sphere. Blue histograms: numerical results from the Newton-Euler-Langevin
equation; Red lines: prediction from the Boltzmann distribution for u = 0; Green dashes: prediction from the
Boltzmann distribution for u = ud . T = 300 K, R = 500 nm, ∇T = 5 K/mm ez, ρp = 1000 kg/m3, a+ =
1, a− = 0, ρg = 0.011 kg/m3, m = 6.63 · 10−26 kg, λ = 18 mW/(mK), q = −λ∇T .

To validate the qualitative reasoning leading to Eqs. (28)–(30), we discretize the Newton-Euler-
Langevin Eqs. (21)–(23) using an Euler algorithm (see Appendix B for details) and simulate the mo-
tion of the sphere. The equations are nondimensionalised using a timescale τ = mp/(S0p

√
β/π ),

a velocity scale U0 = R/τ , and a frequency scale �0 = 1/τ , such that u/U0 and ω/�0 become
the dimensionless velocity and angular frequency. As an example, we consider a sphere of radius
R = 500 nm and density ρp = 1000 kg/m3, with a diffusely reflecting northern hemisphere and
a specularly reflecting southern hemisphere, a+ = 1, a− = 0. The sphere is surrounded by a gas
of molecular mass m = 6.63 × 10−26 kg at temperature T = 300 K, density ρg = 0.011 kg/m3,
and thermal conductivity λ = 18 mW/(mK). A temperature gradient of ∇T = 5 K/mm ez is
applied such that the heat flux q = −λ∇T is directed in negative z direction. Then Kn ≈ 10, ud ≈
22 mm/s, τ ≈ 150 μs, Bq/(kT ) ≈ 2.73, and B (eff)

q /(kT ) ≈ 0.45. For simplicity, the temperature in
the vicinity of the translating sphere was assumed not to change appreciably during its motion such
that a steady state is attained in the simulation. In Fig. 2 normalized histograms for the distribution of
the azimuthal angle θ = arccos(np · ez) the particles adopts during the simulations are shown both
for a sphere held at a fixed position (left), u = 0, and a translating sphere (right), where the particle
attains a mean velocity 〈u〉 = ud according to Eq. (28). Note that θ = π − θ̃ . The histograms
compare excellently with the angular distributions according to the Boltzmann distribution Eq. (27)
with potential Eq. (25), both for a stationary sphere (red lines) and for a translating sphere (green
dashes).

Note that at a given Kundsen number the necessary temperature gradient for alignment increases
rapidly with decreasing particle radius. If for some scale factor s the particle radius R is scaled
∼s and the gas density ρg∼s−1, the Knudsen number remains the same. When simultaneously the
temperature gradient (and thus the heat flux) is scaled ∼s−3, the exponent Bq/(kT ) and Beff

q /(kT )
in the Boltzmann distributions of the particle orientation remain the same, while the drift speed ud

scales ∼s−2 and the timescale τ∼s2. As illustration, based on the above example and s = 0.1, an
R = 50 nm Janus particle in a gas with density ρg = 0.11 kg/m3 needs a temperature gradient of
|∇T | = 5 K/μm to have the same angular distribution as in the example of Fig. 2 above.

IV. FREE MOLECULAR FLOW BETWEEN PARALLEL PLATES: � � h

A. Forces and torque on a Janus particle

When the mean free path � of gas molecules is much larger than the separation h of the plates in
Fig. 1, the Chapman-Enskog expansion cannot be used for the phase space distribution function for
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the molecules impinging on the particle. Instead, each molecule must be traced back to its position
of last diffuse scattering, i.e., the container walls, to infer the corresponding phase space distribution
function [10]. In particular, we will assume that collisions between molecules can be neglected and
only collisions with the walls of the container or the sphere play a role. Without the sphere, the
phase space distribution between the parallel diffusely reflecting plates is a superposition of two
half-space distributions,

f̃ (r, c̃) = f
(d )
l (c̃)H (c̃ · ez) + f

(d )
h (c̃)H (−c̃ · ez), (31)

where H (x) is the Heaviside step function [H (x) = 1 for x > 0 and H (x) = 0 for x < 0], and

f
(d )
i (c̃) = ν

2β2
i

π
exp(−βi c̃2), βi = m

2kTi

= 1

c̄2
i

, i ∈ {l, h}, (32)

with constant molecule flux density ν at the walls. Similar to what was done above we have
introduced the characteristic molecular velocities c̄l = 1/

√
βl and c̄h = 1/

√
βh for gas molecules

reflected from the lower and upper wall, respectively. Macroscopically, the gas is at rest and the cor-
responding molecule density is n = ∫f (r, c)d3c = √

πν(
√

βl + √
βh) = √

πν(c̄−1
h + c̄−1

l ), while
the pressure, temperature, and heat flux are [25] p = nkT̄ = m

3

∫
c2f (r, c)d3c, T̄ = √

TlTh, and
q = m

2

∫
c2 cf (r, c)d3c = −2νk(Th − Tl )ez, which can be combined to q/p = −2ez(c̄h − c̄l )/

√
π .

For a stationary, nonrotating sphere and Maxwell-type boundary conditions it can be shown that
ν(r) = ν is constant on all surfaces [10], and we assume this to hold to a good approximation
when the sphere is allowed to move, i.e., we again assume that the phase space distribution of
molecules impinging on the sphere is not altered by the presence of the sphere. In the frame of
reference of the center of mass of the sphere, moving at velocity u relative to the gas, the molecular
velocities transform as c = c̃ − u. As before, the corresponding phase space distribution function
in this frame of reference is f (r, c) = f̃ (r, c̃) = f̃ (r, c + u), which we expand to first order in the
particle velocity

f (r, c) ≈ ν
2β2

l

π
exp(−βlc2)[(1 − 2βlc · u)H (c · ez) + (u · ez)δ(c · ez)]

+ ν
2β2

h

π
exp(−βhc2)[(1 − 2βhc · u)H (−c · ez) − (u · ez)δ(c · ez)], (33)

where δ(x) is the Dirac δ function. With this expression and using Eq. (10), the molecule flux density
at position r = Rer on the surface of the sphere is

ν(r) = ν
{
1 + (u · n)

[
c̄−1
h (π − ϑ ) + c̄−1

l ϑ
]/√

π
}
, (34)

where, as shown on the right-hand side of Fig. 1, the angle ϑ is the polar angle with cos ϑ = n · ez

and 0 � ϑ � π . Correspondingly, the force density �(r) on the surface of the sphere is again given
by Eq. (5), with

�in(r) = − νm

2
√

π
{n[c̄h(π − ϑ ) + c̄lϑ] + ez[(c̄h − c̄l ) sin ϑ]} − νm(I + n ⊗ n)u, (35)

�
(d)
out (r) = −ν(r)m

[√
πc̄p

2
n + ω × r

]
, (36)

where c̄p = 1/
√

βp = √2kTp/m is the characteristic molecular velocity based on the particle
temperature.

The force and torque on the particle are again obtained by integrating �(r) and r × �(r) over
the surface of the sphere. As before, the orientation-dependent integrals over each hemisphere are
evaluated in Appendix A. As we have seen in the calculation using the Chapman-Enskog expansion,
the terms quadratic in u and ω can safely be neglected, as we are interested in particle-velocities
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far below the typical thermal velocities of gas molecules, and thus we will do so in the following.
Under these conditions the force becomes

F = −4

3
mνS0u

[
1 + π

8

1

2
(a+ + a−)

c̄p

2

(
c̄−1
h + c̄−1

l

)]−
√

π

16
mνS0[3(c̄h − c̄l )ez

+ (a+ − a−)[2c̄p − (c̄h + c̄l )]np] − 1

4
mνS0(a+ − a−)c̄p

(
c̄−1
h − c̄−1

l

)
u · N(np )

− 1

4
mνS0(a+ − a−)Rω × np, (37)

where the tensor N(np ), linking velocity and particle orientation to the force, can be found in
Appendix A 2. For u = ω = 0 and a± = 1 the force agrees with the result by Phillips [36,37].

Correspondingly, the torque becomes, again neglecting terms quadratic in u and ω,

M = −2

3
R2mνS0

1

2
(a+ + a−)ω − 1

4
RmνS0(a+ − a−)np × u

− 1

3π
√

π
RmνS0(c̄h − c̄l )(a

+ − a−)τ (θ )
np × ez

|np × ez| , (38)

with θ = arccos(np · ez) ∈ [0, π ] and (see Appendix A 2)

τ (θ ) = 1

4
| cot θ |[(3 − cos(2θ ))E(− tan2 θ ) − 2K (− tan2 θ )] (39)

≈ 1

64
[67 sin(θ ) + 3 sin(3θ )], (40)

where K (m) = ∫ π/2
0 (

√
1 − m sin2 ψ )

−1
dψ and E(m) = ∫ π/2

0 (
√

1 − m sin2 ψ )dψ are the com-
plete elliptic integrals of first and second kind [38]. An excellent approximation for τ (θ ) is given
by Eq. (40), where the coefficients have been selected such that the analytical value τ (π/2) = 1
is captured; see Fig. 6. We can again define a “potential” such that τ (θ ) = −∂θVτ (θ ), with
Vτ (θ ) = − ∫ θ

π/2 τ (θ ′)dθ ′ ≈ 1
64 [67 cos θ + cos(3θ )].

We remark that according to Eq. (13) the molecule flux density on a surface at rest in a gas
with velocities according to the Chapman-Enskog distribution is ν = n/

√
4πβ = (p/m)

√
β/π .

The factors p
√

β/π ubiquitous in Eqs. (17) and (18) for the force and torque on the particle in
the Chapman-Enskog distribution thus directly correspond to the factors mν in Eqs. (37) and (38),
which in particular makes the agreement between the translational and rotational friction factors in
the two different formulations transparent.

Using q/p = −2ez(c̄h − c̄l )/
√

π , valid for the superposed half-space distributions, the torque
can be rewritten as

M = − 2

3
R2mνS0

1

2
(a+ + a−)ω − 1

4
RmνS0(a+ − a−) np ×

(
u − 10

3π

τ (θ )

|np × ez|
q

5p

)
. (41)

Since 10/(3π ) ≈ 1.06 and, as can be seen in Fig. 6, τ (θ ) ≈ sin θ = |np × ez|, this agrees well with
Eq. (18) up to first order in u and ω.

B. Thermophoresis and orientation of a Janus-sphere

Just as in the case of a particle in a Chapman-Enskog distribution, its drift velocity is determined
by balancing drag and thermophoretic forces. For small temperature differences between the plates,
the third term in Eq. (37), linking the drift velocity to the particle orientation, is much smaller than
the friction in the first term (note that for each component |Nij | < 1). The last term in Eq. (37) will
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give no net contribution, since again the angular velocity has no preferred direction for a given
orientation, as argued for the Chapman-Enskog case. Finally, we assume that the difference in
temperature between the two plates is small enough that T̄ = √

TlTh ≈ (Th + Tl )/2 and that the
temperature of the particle is close to the mean gas temperature, such that the mean force on the
particle at steady state is approximately

〈F〉 ≈ −4

3
mνS0〈u〉

[
1 + π

8

1

2
(a+ + a−)

]
−

√
π

16
mνS0[3(c̄h − c̄l )ez], (42)

from which the drift velocity is obtained by solving 〈F〉 = 0 as

ud = 45π

128

q
5p

[
1 + π

16
(a+ + a−)

]−1
, (43)

where q/p = −2ez(c̄h − c̄l )/
√

π was used. Since 45π/128 ≈ 1.10 this has the same form and
agrees well with Eq. (28) obtained using the Chapman-Enskog distribution.

From Eq. (38) or (41) the torque on the particle has the form

M = −α̂ωω + B̂unp × u + B̂q τ (θ )
np × ez

|np × ez| , (44)

where the coefficients α̂ω, B̂u, and B̂q can directly be read off from Eq. (38). For a stationary
particle, u = 0, this again corresponds to a damped dipole in a potential

V̂q (θ ) = B̂qVτ (θ ), Vτ (θ ) = −
∫ θ

π/2
τ (θ ′)dθ ′ ≈ 1

64
[67 cos θ + cos(3θ )], (45)

where θ is the angle between the particle axis, np, and the z axis; see Fig. 1. Similarly, for a particle
moving with the drift velocity, Eq. (43), we can again introduce an effective potential for the particle
alignment

V̂ (eff )
q (θ ) = B̂q

(
Vτ (θ ) − 27π2

256

[
1 + π

16
(a+ + a−)

]−1
cos θ

)
(46)

≈ B̂qVτ (θ )

(
1 − 27π2

256

[
1 + π

16
(a+ + a−)

]−1
)

, (47)

where in the last line we have used Vτ (θ ) ≈ cos θ . For a+ = 1 and a− = 0, we get V (eff )(θ ) ≈
0.13B̂qVτ (θ ). As in Sec. III B we can estimate the probability distribution p(θ ) for the particle to
have a certain orientation with respect to the plates from a Maxwell-Boltzmann distribution,

p(θ ) = N̂ sin θ exp[−V̂q (θ )/kT ], N̂−1 =
∫ π

0
p(θ ) dθ. (48)

Here it is not immediately obvious what the correct temperature T in the Maxwell-Boltzmann
distribution should be, since the particle is not in thermal equilibrium with any of the walls.
However, we will assume that the temperature difference between the walls is small enough that
the arithmetic mean temperature T = (Tl + Th)/2 approximately equals the mean temperature
T̄ = √

TlTh calculated from the binary half-space distribution between parallel plates, such that
the arithmetic mean temperature can be used in Eq. (48).

For later reference, we note that using n = √
πν(c̄−1

h + c̄−1
l ), appropriate for the binary half-

space distribution between parallel plates, B̂q , can be written as

B̂q

kT
= 8nR3

3π (
√

T/Th + √
T/Tl )

(√
Th

T
−
√

Tl

T

)
(a+ − a−) ≈ 4

3π
nR3

(√
Th

T
−
√

Tl

T

)
(a+ − a−).

(49)
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In the next section we report simulation results for a moving Janus sphere based on the direct
simulation Monte Carlo (DSMC) method. This allows us not only to compare with the analytically
obtained results of this section, but also to gauge the influence of molecular collisions on the particle
translation and alignment at finite Knudsen numbers.

V. DSMC SIMULATIONS

We solve the Boltzmann equation by a DSMC method [26] in a variant based on the papers
[39,40]. This is a time splitting method where in a first step one solves the free transport equation
(the collisionless Boltzmann equation) for one time step. During the free flow, boundary conditions
are taken into account. In the second step (the collision step), the spatially homogenous Boltzmann
equation without the transport term is solved. An explicit Euler step is performed. To guarantee
positivity of the distribution function during the collision step, a restriction of the time step
proportional to the Knudsen number is needed. This means that the method becomes exceedingly
expensive for small Knudsen numbers.

A computational domain is discretized using a uniform grid size along all axes, resulting in a
cubic grid. Since a moving rigid body is immersed in a gas, we divide the computational domain
into three sets of grid cells: gas grid cells completely filled by gas molecules, rigid body grid cells
completely covered by the rigid body, and boundary grid cells which are partially filled by gas
molecules and partially by the rigid body. We note that due to the motion of the body we have to
update the volume of the cells occupied by the gas at every time step for boundary cells. This update
can be done efficiently by marking the boundary cells and their neighboring cells near the surface
of the rigid body. Only the boundary cells and their neighbors are candidates for boundary cells in
the next time step. Some computational effort is necessary to update the volume of boundary cells
occupied by the gas. One can take analytical as well as numerical approaches. We refer to Ref. [41]
for details on this issue.

We note that we have to apply the reflection boundary condition twice. First it is applied after
the free flow of the gas molecules and second when the rigid body collides with the gas molecules
due to its motion. Therefore, the total force exerted by the gas molecules is summed over both
steps. Note that this two-step procedure can lead to over-counting of collisions, e.g., when a specific
gas molecule reflected off the sphere in the first step collides again in the second step. However,
for small Mach number, Ma = u/c � 1, the probability for this to happen is small and using
this approximation in Ref. [41] for a sphere undergoing Brownian motion gave exact results for
fluctuations in velocity.

To determine the motion of the rigid body, the Newton-Euler equations

m
du
dt

= F(t ), Ip

dω

dt
= M(t ),

dnp

dt
= ω × np, (50)

are solved by an explicit Euler scheme. Here the same time step is taken for the Boltzmann and the
Newton-Euler equations. The force and the torque on the sphere are computed by summing over
individual collisions with the gas molecules. Specifically, the total force and the total torque exerted
on the sphere are computed by accumulating the increments of the linear and angular momentum
transferred by all the colliding molecules. We again refer to Ref. [41] for details. Note that to obtain
the correct scale for the fluctuations in the force and torque, the number of simulated molecules must
equal the number of gas molecules in the physical situation studied [42]. This can be understood by
noting that in a conventional DSMC simulation s independent gas molecules are bundled together in
a single DSMC-particle. Thus, during a certain time interval N0 ± √

N0 collisions of gas molecules
of mass m with a wall are replaced with N0/s ± √

N0/s collisions of DSMC particles of mass sm

drawn from the same velocity distribution, resulting in the same mean value for the momentum
exchange ∼mc̄N0 = smc̄ N0/s with the wall. However, at the same time the fluctuations of the
exchanged momentum are increased from ∼mc̄

√
N0 to ∼smc̄

√
N0/s = mc̄

√
sN0. Obtaining the
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FIG. 3. Angular distribution for Kn = ∞ (collisionless simulation). The left panel corresponds to an initial
density ρ0 = 0.1 kg/m3 and the right one to ρ0 = 2.2 kg/m3.

correct magnitudes for both mean values and fluctuations of forces in the simulation thus requires
s = 1.

In the following two subsections we consider a freely rotating Janus particle that first has its
center of mass held at a fixed position and second is allowed to translate freely. In all cases
we consider a monoatomic gas with molecular mass m = 6.63 × 10−26 kg and use a hard-sphere
collision model with diameter d = 3.68 × 10−10 m. The initial phase space distribution of the gas
is a Maxwellian distribution with an initial temperature, density, and mean velocity as parameters.
In all cases the initial mean velocity of the gas and the translational and rotational velocity of the
rigid body are zero.

A. DSMC simulation of rotating Janus sphere

In the first case we consider a rotating Janus particle without translation. The computational
domain is a cube of side-length 200 nm. A spherical Janus particle of radius 25 nm and density
ρp = 1000 kg/m3 is located at the center of the cube. To track the reflection properties on each
hemisphere during the motion of the particle, a flag is assigned to boundary particles on the sphere,
indicating whether gas molecules are reflected diffusely or specularly from the respective patch of
the surface of the Janus particle. The initial temperature of the gas is set to 300 K. The temperatures
of the top and bottom wall are equal to 325 and 275 K, respectively. The temperature on the Janus
particle is always 300 K. We apply diffuse reflection boundary conditions at the top and bottom
walls of the cube and periodic boundary conditions at the side walls.

The domain was discretized by a cubic grid using 10 subdivisions in each direction. We have
considered three different values of initial density equal to ρ0 = 0.1 kg/m3, 0.22 kg/m3, and
2.2 kg/m3, corresponding to Knudsen numbers Kn = 22, 10, and 1, respectively. Since the
theoretical results have been derived only for Kn = ∞, we have first considered the two cases ρ0 =
0.1 kg/m3 and ρ0 = 2.2 kg/m3 and switched off the intermolecular collisions. For ρ0 = 0.1 kg/m3

the initial number of gas molecules per cell equals 12. Similarly, ρ0 = 0.22 kg/m3 and 2.2 kg/m3

correspond to 26 and 265 initial molecules per cell, respectively. In Fig. 3 we have plotted the
angular distributions according to the analytical results (Eqs. (48), (45), and (49) with T = 300 K )
together with the corresponding histograms from the simulations and find both results to be in good
agreement. One can see that for larger density, the Janus particle will be more strongly aligned, with
its diffusely reflecting part pointing towards the colder bottom wall.

We have further considered the cases with Kn = 10 and 1, i.e., with intermolecular collisions
switched on. In Fig. 4 the corresponding angular distributions are plotted together with the analytical
results for the collisionless case. One can observe that for Kn = 10 the numerical result is still
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FIG. 4. Angular distribution for Kn = 10, ρ0 = 0.22 kg/m3 (left), and Kn = 1, ρ0 = 2.2 kg/m3 (right). The
solid lines correspond to the theory presented in Sec. IV while the dashed line refers to the results presented in
Sec. III, with a heat flux according to Eq. (51).

close to the theoretical values for Kn = ∞. However, on the right panel of Fig. 4 one can see
that the numerical result of Kn = 1 deviates substantially from the theoretical values for Kn =
∞ (labeled BHS). This deviation stems from the fact that in this case the Knudsen number based
on the plate distance, �/h = 0.25, is relatively small, and it is necessary to take into account the
temperature jumps at the upper and lower boundaries of the simulation domain to obtain the correct
heat flux between the plates. For �/h � 0.5 the heat flux between parallel plates at a distance h is
approximated well as [43,44]

q = q0

(
1 + 4ζT√

π

�

h

)−1

, (51)

where ζT = 1.954 is the rarefaction parameter, and q0 = −λ(Th − Tl )/h is the continuum heat flux
with thermal conductivity λ ≈ 15

4
√

π
knc̄�, appropriate for a hard sphere gas with �−1 = √

2πd2n

and c̄ = √
2kT /m. Correspondingly, the prediction based on the Chapman-Enskog distribution,

Eqs. (27) and (25) with T = 300 K and using Eq. (51) for the heat flux, leads to excellent agreement
between the theory and the simulations, as indicated by the dashed line labeled CE on the right
panel of Fig. 4.

B. DSMC simulation of a rotating and translating Janus sphere

In this subsection we consider a freely rotating and translating Janus particle with a radius of
25 nm. All problem parameters are unchanged with respect to the previous case, apart from the
temperatures of the top and bottom walls which are now 337.5 and 262.5 K, respectively, and the
size of the simulation box. In addition to rotation we have translational motion in this case, since due
to the thermophoretic force the particle moves from the top to the bottom. It is not straightforward
to simulate a long period of time, since the moving sphere crosses the boundaries. Therefore, we
have considered a geometry of size �x = 200 nm, �y = 200 nm, �z = 300 nm, again discretized
with a cubic grid with cells of side lengths of 20 nm. The initial center of the sphere is at z =
200 nm and centered in the x-y slice cutting through the box, where the origin of the coordinate
system is located at the bottom wall. When the center of the sphere crosses the plane zc = 100 nm,
we translate it to z = 200 nm at fixed x and y coordinates. Simultaneously, gas molecules within
the updated volume of the sphere are translated to the sphere’s original position. When the sphere
crosses the side walls, we apply periodic boundary conditions.

In Fig. 5 we have plotted the angular distributions according to the theoretical prediction against
the simulated ones for Kn = ∞, 10, and 1. For Kn = ∞ and 10 the theoretical prediction is based on
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FIG. 5. The angle distribution of a rotating and translating Janus sphere for Kn = ∞, ρ0 = 0.1 kg/m3

(left), Kn = 10, ρ0 = 0.22 kg/m3 (center), and Kn = 1, ρ0 = 2.2 kg/m3 (right). The theoretical predictions are
according to Sec. IV for Kn = ∞ and 10, while Sec. III with a heat flux according to Eq. (51) was used for
Kn = 1.

the binary half space distribution, Eqs. (48), (47), and (49), while for Kn = 1 it is based on Chapman-
Enskog distribution using Eqs. (27), (25), (30) with T = 300 K, and a heat flux according to Eq. (51).
We again find reasonable agreement between the theoretical prediction and the simulation, even for
Kn = 1, where deviations between the theoretical prediction, valid for Kn = ∞, and simulations
are expected.

Finally, we have extracted the Janus particle’s mean velocity in z direction. For Kn = ∞ the
average numerical value for the drift velocity of 9.5 m/s is very close to the theoretical one, 9.2 m/s
from Eq. (43). However, for Kn = 10 the mean particle drift velocity of 7.1 m/s from the simulation
already deviates from the theoretical value at Kn = ∞. For Kn = 1 the simulated drift velocity is
2.4 m/s, while Eq. (28), with a heat flux according to Eq. (51), predicts a drift velocity of 3.0 m/s
under these conditions. Again, it needs to be kept in mind that the prediction is strictly valid only in
the limit Kn � 1, so a deviation between the theoretical prediction and the simulation is expected.

VI. CONCLUSION AND OUTLOOK

In this paper we have investigated the translation and rotation of a Janus particle in a gas at
rarefied conditions under the influence of a temperature gradient. Janus particles with different
reflection properties on their respective hemispheres were considered. The main results obtained
are expressions for the probability density of the angle between the particle’s symmetry axis and
the heat flux, both for a stationary particle and a translating one. It is found that the particle’s
alignment is severely impacted by the thermophoretic translation of the particle. This is due to
the fact that thermophoretic forces align the particle with its diffuse side to the colder region,
while simultaneously causing the translation of the particle in this direction. During the resulting
thermophoretic motion of the aligned particle, the increased number of gas molecules impinging
on the windward diffuse side results in an adverse torque, reducing the alignment. The Brownian
motion of the particles’ orientation can be considered as a random walk in a potential with strength
proportional to the heat flux in the gas. For a freely translating sphere this potential is reduced to
less than 1/5 of the potential a nontranslating sphere experiences under the same conditions.

The scenario considered may be viewed as characteristic for the deposition of small particles
with a dipolar structure on a cold surface. A large temperature gradient can help depositing the
particles in an oriented manner. With that goal in mind it will be advantageous to reduce the drift
velocity of the particles to be deposited. One possibility to achieve this is to deposit charged particles
in an additionally applied electric field. For microparticles gravity can partially compensate the
thermophoretic force and reduce the drift velocity or even allow particle deposition against the
thermophoretic force. However, in this case large density inhomogeneities within the Janus particle,
for example, originating from a metallic coating of a polymer particle, may influence the alignment,
as gravity may exert an additional torque on the particle. To illustrate, the characteristic gravitational
energy scale of orientation for a spherical Janus particle with a density mismatch �ρ = 5000 kg/m3
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between its hemispheres is Eg = πR4g�ρ/4 ∼ 10−3kT for R = 100 nm, g = 9.8 m/s2, and T =
300 K, but grows with the forth power of the particle radius.

We would like to mention that the results were so far obtained without taking the thermal inertia
of the particle into account. Since the thermoporetic particle motion is toward colder regions, its
surface will be warmer than the surrounding gas phase (the timescales for thermal equilibration and
alignment are estimated in Appendix C). As we noted at the end of Sec. III A, the temperature profile
on the particle surface does not result in an altered torque on the particle; however, it contributes to a
force slowing the particle down [second line in Eq. (17)]. As this slower motion results in a reduced
torque on the diffuse surface of the sphere, this effect results in better alignment than predicted by
the present estimate.

Finally, we mention that particles of complex shape may also align with the temperature gradient,
as considered by Shrestha et al. [41], where a chiral particle with a diffuse-reflection boundary
condition at its surface in a thermal gradient was considered. This indicates that the results of
this paper are of relevance for a broader class of problems. How the alignment of a particle in a
temperature gradient depends on its shape, i.e., which particle shapes result in alignment, is an open
problem that could define a quite extensive arena for future studies.
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APPENDIX A: SURFACE INTEGRALS

In a Cartesian coordinate system with origin in the center of the sphere and the orthogonal unit
vectors ex, ey , and ez, a parametrization of the unit normal vectors on the surface of the sphere
reads, cf. Fig. 1,

n ≡ n(ϑ, ϕ) = sin ϑ cos ϕ ex + sin ϑ sin ϕ ey + cos ϑ ez, 0 � ϑ � π, 0 � ϕ < 2π. (A1)

The orientation of the Janus sphere is characterized by the orientation vector, np, normal to the
equatorial plane of the sphere. This separates the points r = r(ϑ, ϕ) = R n(ϑ, ϕ) on the surface of
the sphere into the sets S+ = {r = Rn | r · np > 0} and S− = {r = Rn | r · np < 0} on the upper
and lower hemisphere, respectively. For np we use the representation

np = sin θ cos φ ex + sin θ sin φ ey + cos θ ez, 0 � θ � π, 0 � φ < 2π. (A2)

Below we will use the abbreviations dS = R2 sin ϑ dϑ dϕ for the infinitesimal surface element
on the sphere and S0 = 4πR2 for its surface area.

1. Integrals: Janus sphere in a Chapman-Enskog distribution

For evaluating the integrals of �(r) and r × �(r) over the surface, integrals of tensor products of
the normal vector over a hemisphere are needed. We will here use a coordinate representation such
that ni = (n · ei ) is the ith component of the normal vector n, the tensor n ⊗ n has the representation
(n ⊗ n)ij = ninj , and so forth.

Since in this case the only distinguished vector is the orientation vector np, normal to the
equatorial plane of the Janus particle, we can without loss of generality choose to perform these
integrals in a Cartesian coordinate system where the particle’s axis of symmetry coincides with
the z axis. Thus, in this case the integrals over the upper and lower hemispheres, S+ and S−, are
restricted to 0 � ϑ � π/2 and π/2 � ϑ � π , respectively. With these preliminaries the integrals
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can be directly performed, and we obtain for the required integrals over the upper hemisphere, S+,

Ssph,+ =
∫

S+
dS = 1

2
S0, (A3)

Ssph,+
i =

∫
S+

nidS = 1

4
S0np,i , (A4)

Ssph,+
ij =

∫
S+

ninjdS = 1

6
S0δij , (A5)

Ssph,+
ijk =

∫
S+

ninjnkdS = 1

16
S0[δijnp,k + δjknp,i + δkinp,j − np,inp,jnp,k], (A6)

where δij = ei · ej is the Kronecker δ and np,i = np · ei . With this notation, these expressions are
valid for any orientation.

The corresponding integrals over the lower hemisphere are inferred from those of the upper
hemisphere by symmetry,

Ssph,− = Ssph,+, Ssph,−
μν = Ssph,+

μν , (A7)

Ssph,−
μ = −Ssph,+

μ , Ssph,−
μνσ = −Ssph,+

μνσ . (A8)

2. Integrals: Janus sphere in a binary half-space distribution

In the case of a Janus sphere in a binary half-space distribution, Eq. (31), both the orientation
of the particle, np, as well as the polar angle ϑ = arccos(np · ez) on the surface of the sphere enter
the integrals over the force and torque densities, cf. Eqs. (34) and (35). Without loss of generality,
the integrals can be evaluated for φ = 0 and transformed after evaluation, using Rz(φ), the matrix
representing a rotation around the z axis by an angle φ with Cartesian representation,

Rz(φ) =

⎛
⎜⎝

cos φ − sin φ 0

sin φ cos φ 0

0 0 1

⎞
⎟⎠. (A9)

The required integrals over the upper and lower hemispheres, S+ and S− are∫
S±

[a(π − ϑ ) + bϑ]n dS =
∫

S±

[
1

2
(a + b)π + 1

2
(a − b)(π − 2ϑ )

]
n dS

= 4πR2 π

8

[
±(a + b)np + 1

2
(a − b)ez

]
, (A10)∫

S±
[(π − 2ϑ )n dS = 4πR2 π

8
ez,

∫
S±

n dS = ±4πR2 1

4
np

∫
S±

n ⊗ n dS = 4πR2 1

6
I, (A11)∫

S±
[(π − 2ϑ )n ⊗ n dS = ±4πR2Rz(φ)N(θ, 0)Rz(−φ),

(A12)
N(nP ) ≡ N(θ, φ) = Rz(φ)N(θ, 0)Rz(−φ),

N11(θ, 0) ≈ 1

4π

2

9
[(3π − 7)π cos θ − 7(1 − cos2 θ ) cos θ ], (A13)

N22(θ, 0) ≈ 1

4π

2

9
[(3π − 7)π cos θ ], (A14)

N33(θ, 0) ≈ 1

4π

2

9

[
(3π − 4)π cos θ − 19

2
(1 − cos2 θ ) cos θ

]
, (A15)
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FIG. 6. Left: Function τ (θ ) from Eq. (39) (solid black line) and its approximation by Eq. (40) (red dotted
line). For comparison we have also plotted sin θ , the functional dependence of the torque on the orientation
found in the Chapman-Enskog case (green dash-dotted line). Right: The same for Vτ (θ ) = − ∫ θ

π/2 τ (θ ′)dθ ′.

N13(θ, 0) = 1

4π

4

9
cot θ [−4 cos(2θ )E(− tan2 θ ) + (1 + 3 cos(2θ ))K (− tan2 θ )] ≈ 1

4π

16

9
sin3 θ,

(A16)

N12(θ, 0) = N21(θ, 0) = N23(θ, 0) = N32(θ, 0) = 0, (A17)∫
S±

sin ϑ dS = 4πR2 π

8
,

∫
S±

sin ϑ cos ϑ n dS = 4πR2 π

32
ez. (A18)

By symmetry, the last two integrals must be independent of θ , since under reflection at the center
of the sphere, (ϑ, ϕ) → (π − ϑ, π + ϕ), both sin ϑ and cos ϑ n are symmetric, and it suffices to
evaluate them for θ = 0. Similar arguments can be used for the first integral; in particular, for a = b

the only distinguished vector is np, and without loss of generality θ = 0 can be considered. We were
not able to obtain analytical expressions for the diagonal components of N(θ, 0) and have instead
reported expressions that fit well to numerical evaluations of the corresponding integrals.

Obtaining the net torque on the particle requires evaluating the integral
∫
S+ sin θ (ez × er ) ·

ey dS, which can be done as follows for 0 � θ � π/2 [here H (x) is the Heaviside step function
introduced in Eq. (31), and the normalization is chosen such that τ (π/2) = 1]:

8

3
τ (θ ) = 1

R2

∫
S+

sin θ (ez × er ) · eydS = 1

R2

∫
S

H (r · np ) sin θ (ez × er ) · eydS (A19)

=
∫ π

0

∫ 2π

0
H (sin θ cos ϕ sin ϑ + cos θ cos ϑ ) sin ϑ (− sin ϑ cos ϕ) sin ϑdϕdϑ (A20)

= −4
∫ π/2+θ

π/2

∫ π/2

0
H (sin θ cos ϕ sin ϑ + cos θ cos ϑ ) sin3 ϑ cos ϕdϕdϑ (A21)

= −4
∫ θ

0

∫ π/2

0
H (− cos θ sin ϑ + sin θ cos ϑ cos ϕ) cos3 ϑ cos ϕdϕdϑ (A22)

= −4
∫ π/2

0

∫ arctan(tan θ cos ϕ)

0
cos3 ϑ cos ϕdϑdϕ (A23)

= −2

3
cot θ [2K (− tan2 θ ) − [3 − cos(2θ )]E(− tan2 θ )], (A24)
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where K (m) = ∫ π/2
0 (

√
1 − m sin2 ψ )

−1
dψ and E(m) = ∫ π/2

0 (
√

1 − m sin2 ψ )dψ are the com-
plete elliptic integrals of the first and second kind [38]. In the second step we used the fact that
the integral vanishes for θ = 0, such that for 0 � θ � π/2 the total integral can be found by adding
the integral over the region π/2 � ϑ � π/2 + θ and subtracting the corresponding region on the
other side of the sphere. Using the symmetry of the integrand and restricting the integral over ϕ

to only 0 � ϕ � π/2 finally yields the factor 4 in front of the integral over a reduced region. For
π/2 � θ � π , the relation τ (θ ) = τ (π − θ ) has to be used; the expression for τ (θ ) is preserved
under this symmetry when replacing cot θ by its absolute value.

An excellent approximation to τ (θ ) in terms of trigonometric functions is given by Eq. (40), as
shown in Fig. 6. The agreement between the approximate expressions for the diagonal parts of the
tensor Nij introduced above and their numerically obtained values is of equal quality.

APPENDIX B: NUMERICAL IMPLEMENTATION OF THE NEWTON-EULER-LANGEVIN
EQUATIONS BY EULER DISCRETIZATION

The Newton-Euler-Langevin Eqs. (21)–(23) are nondimensionalized using a timescale τ =
mp/(S0p

√
β/π ), a velocity scale U0 = R/τ , and a frequency scale �0 = 1/τ such that

t
˜
= t/τ, u

˜
= u/U0 and ω

˜
= ω/�0 become the dimensionless time, velocity, and angular fre-

quency. Time is discretized as t
˜
n = n dt

˜
, where dt

˜
� τ is the finite time step, and we write

du
˜

= u
˜
(t
˜
n+1) − u

˜
(t
˜
n) = u

˜
n+1 − u

˜
n such that the Euler-Langevin Eqs. (21)–(23) become

du
˜

= −guu
˜
dt

˜
+ aqnq dt

˜
+ aω(np × ω

˜
) dt

˜
+
√

Gudt
˜
N u, (B1)

dω
˜

= −gωω
˜

dt
˜
+ bq (np × nq ) dt

˜
+ bu(np × u

˜
) dt

˜
+
√

Gωdt
˜
N ω, (B2)

dnp = ω
˜

× np dt
˜
, (B3)

where all symbols on the right-hand side are evaluated at time step t
˜
n. N u and N ω are vectors

containing independent normally distributed random variables with mean 0 and variance 1 at each
time step. For Tp = T the parameters become

gu = 4

3

(
1 + π

16
(a+ + a−)

)
, aq = 4

3
F , aω = 1

4
(a+ − a−), Gu = 2guG, (B4)

gω = 5

2

1

3
(a+ + a−), bq = 5

2

1

4
F (a+ − a−), bu = −5

2

1

4
(a+ − a−), Gω = 5

2
2gωG,

(B5)

with

F = |q|
5p

1

U0
, G = kT

mpU 2
0

= mp/m

8π (R3n)2
. (B6)

The factor 5/2 in the coefficients of the equation for the angular velocity derives from mpR2/Ip for
a solid sphere. With these parameters the drift velocity and potential depth, Eq. (25), become

u
˜
d = aq

gu

= F
1 + π

16 (a+ + a−)
,

Bq

kT
= bq

Gω/(2gω )
= 1

4

F
G (a+ − a−). (B7)

The simulations Fig. 2 is based on were run from t
˜
= 0 to 600 with a time step of dt

˜
= 10−4 and

initial conditions u
˜
(0) = ω

˜
(0) = 0, np(0) = −ez. Sampling was done starting from time t

˜
s = 6/gω

on a total of 100 individual runs.
The particular choice of parameters used for Fig. 2 correspond to nq = −ez, F ≈ 7.966 and

G ≈ 0.7306.
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APPENDIX C: THERMAL TIMESCALES

For a nanoparticle of radius 10–500 nm with a thermal diffusivity ap = λp/(ρpCp ) 	 10−7 m2/s
the timescale for internal thermal equilibration, τth,int = R2/ap, is 1 ns–2.5 μs.

We estimate the net heat flux at large Kn to the surface of the particle whose temperature is
�T above the surroundings as q 	 2νk �T . Then the timescale for thermal equilibration due to
the external heat flux is τth,ext 	 (ρP CpR)/[3νk(a+ + a−)], or in units of the timescale used in
Appendix B, τth,ext/τ 	 Cpm/[k(a+ + a−)]. For Cp = 1000 J/kg/K, we obtain τth,ext/τ 	 4.8.

In the example of Fig. 2 we have τ ≈ 150 μs as the timescale for reaching equilibrium of rotation
and translation. Thus, τth,ext > τ � τth,int.
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