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Several recent experiments investigate the orientational and transport behavior of self-
driven bacteria and colloidal particles in nematic liquid crystals. Correspondingly, we
study theoretically the dynamics of a minimal model microswimmer in a uniaxially
anisotropic fluid. As a first step, the hydrodynamic Green’s function providing the resulting
fluid flow in response to a localized force acting on the anisotropic fluid is derived
analytically. On this basis, the behavior of both puller- and pusher-type microswimmers
in the anisotropic fluid is analyzed. Depending on the propulsion mechanism and the
relative magnitude of different involved viscosities, we find alignment of the swimmers
parallel or perpendicular to the anisotropy axis. Particularly, also an oblique alignment is
identified under certain circumstances. The observed swimmer reorientation results from
the hydrodynamic coupling between the self-induced fluid flow and the anisotropy of the
surrounding fluid, which distorts the self-generated flow field. We support parts of our
results by a simplified linear stability analysis. Our theoretical predictions are in qualitative
agreement with recent experimental observations on swimming bacteria in nematic liquid
crystals. They support the objective of utilizing the possibly switchable anisotropy of a
host fluid to guide individual microswimmers and active particles along a requested path,
enabling controlled active transport.
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I. INTRODUCTION

Active particles have the ability to move autonomously in a surrounding fluid by converting
energy into directed motion. Artificial self-propelled nano- and microscale machines hold great
promise for future medical research to reach otherwise inaccessible areas of the body to perform
delicate and precise tasks. Prospective biomedical applications are precision nanosurgery, biopsy,
and transport of radioactive substances to tumor areas and inflammation sites [1–3]. Over the past
few decades, significant research efforts have been devoted to investigate the behavior of self-
propelling active particles because of their importance and relevance as model systems for transport
and locomotion in the micro- and nanoscale world; for recent reviews, see Refs. [4–12]. Unusual
macroscopic signatures and intriguing spatiotemporal patterns emerge from the interaction of
several active particles. For instance, the onset of collective motion [13–19], formation of dynamic
clusters [20–26], wave patterns [27–30], laning [31–35], motility-induced phase separation [36–41],
swarming [42–44], and active turbulence [45–52] are observed.
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In many cases, artificial self-driven particles and swimming microorganisms have to propel
through complex fluids, such as polymer gels and viscoelastic microemulsions [53–63]. Notable
examples include sperm navigation through the mammalian female reproductive tract [64,65],
bacteria locomotion in biofilm matrices composed of extracellular polymeric substances [66,67],
nematode movement in soil [68,69], and the motion of synthetic microswimmers and microrobots
in blood vessels for targeted drug delivery applications [70–75]. A wealth of fascinating behaviors
emerges from the coupling between the activity of self-driven particles and the complexity of the
host fluid.

Among complex fluids, liquid crystals (LCs) show states of matter, the physical properties of
which are intermediate between conventional liquids and solid crystalline states [76,77]. They
consist, for instance, of elongated rodlike or flat disklike organic molecules that, for example,
display a collective orientational order along one axis described by the so-called director [78].
This simplest form of LCs are the uniaxial nematics, the rheological properties of which were
characterized by many works [79–84].

Mathematically, the hydrodynamic coupling between the nematic director and the velocity field
is, for example, described using a continuum mechanics approach based on the Leslie-Ericksen
theory [85–88]. An alternative formulation of the hydrodynamic behavior of LCs, based on standard
conservation equations of mass, energy, momentum, and on appropriate equations for variables
describing the underlying spontaneously broken symmetries, has likewise been proposed [89–93].

To measure the rheological properties of complex fluids, microrheological techniques are
promising means. These are based on the observation of either the nondriven, passive motion of
probe particles inserted into the surrounding medium or of their driven motion when subject to
imposed forces. The motion of passive particles immersed in a LC is quite well understood and
has thoroughly been studied for many years [94–96]. Given types of anchoring and alignment
of the LC molecules on the particle surfaces elastically distort an otherwise spatially uniform
alignment of the director field [97]. The consequential elastic energy in anisotropic LCs can result in
a novel class of colloidal interactions between particles [98,99]. Experimentally, it has been shown
that self-diffusion in a nematic LC obeys a generalized Stokes-Einstein relation with the effective
diffusion coefficient along the oriented far-field director usually larger than that perpendicular to it
in the investigated cases [100–103].

The axisymmetric flow field around a sphere dragged along the director of an undisturbed,
aligned nematic LC has theoretically been studied in the particular case of neglecting one viscosity
coefficient [104]. The method yields analytical expressions for the frictional drag acting on a sphere
in an otherwise quiescent LC. A general solution for arbitrary orientation and viscosity coefficients
has later been obtained numerically using a finite-difference approach [105]. More recently, closed-
form analytical formulas derived from conservation laws for nematic LCs have been derived using
a Fourier transform technique [106–108]. The Stokes drag of a spherical particle in various nematic
environments has further been studied by means of computer simulations [109–112].

Examples for investigations on active particles in nematic LCs are given, for instance, by the
swimming of motile bacteria in nematic LCs. This type of active suspensions were called “living
liquid crystals” [113]. Experiments carried out in lyotropic chromonic nematic LCs revealed that
swimming bacteria, such as E. coli [114], B. subtilis [113,115–117], and P. mirabilis [118,119],
tend to align along the local director. This observed behavior suggests that swimming in an
anisotropic medium can conveniently be utilized as a guiding strategy to direct the motion of
self-propelling active agents. Moreover, it has been shown that fluid anisotropy can significantly
alter pairwise interactions between swimming bacteria and allow transport of cargo particles along
predetermined trajectories defined by the nematic director [115,120]. In addition, the dynamical
properties of self-assembly have been studied for motile bacteria [121] and phoretically driven
active particles [122]. The effects of thermal fluctuations of the nematic director on the dynamics
of a model active particle moving in a LC have further been considered theoretically and by means
of computer simulations [123,124]. Meanwhile, the effect of liquid-crystalline anisotropy on the
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behavior of a classical Taylor swimming sheet [125] undulating with small-amplitude traveling
waves has been examined [126–129].

Recently, the dynamics of a self-propelled spherical model squirmer with a prescribed tangential
slip velocity on its surface [130] has been investigated in a nematic LC using a combination of
lattice Boltzmann simulations and analytical calculations [131]. In the steady state of motion, it has
been demonstrated that a pusher-type (extensile) swimmer will swim along the nematic director
while a puller-type (contractile) swimmer will align along an axis perpendicular to the director.
The emerging reorientation of the swimmer has been attributed to the hydrodynamic coupling
between the flow field induced by the squirmer and the anisotropy described by the liquid-crystalline
viscosities. In the weakly anisotropic limit, the behavior of a general axisymmetric microswimmer
described as a linear combination of higher order singularity solutions of the Stokes flow has further
been considered [132].

In the present paper, we study theoretically the swimming behavior of a minimal model mi-
croswimmer freely moving in a viscous uniaxially anisotropic fluid. The axisymmetric swimmer is
modeled as a sphere asymmetrically placed between two active force centers that set the surrounding
fluid into motion [29,133]. Both pusher- and puller-type microswimmers can be realized in this way.
We include for the fluid flow in the surrounding medium the viscosity tensor of the same anisotropic
uniaxial structure as in a nematic LC [89–93].

Depending on the propulsion mechanism (pusher or puller), the initial orientation, and the ratio
between the anisotropic viscosities, we find that the swimmer aligns parallel or perpendicular
to the director, or, under some circumstances, assumes a steady intermediate orientation. Our
results indicate that the orientational behavior observed in recent experiments for different types
of microswimmers in nematic LCs can be understood qualitatively already from the resulting
anisotropy in the overall induced flow field surrounding the microswimmer. Consequently, by
adjusted director configurations or induced switching of the nematic director orientation, individual
microswimmers can be guided along a requested path.

The remainder of the paper is organized as follows. In Sec. II, we overview the low-Reynolds-
number continuum description used to characterize the dynamics of the surrounding anisotropic
fluid in relation to conventional nematic LCs. We then derive in Sec. III explicit expressions
for the Green’s function, which is the solution of the governing equations for a point-force
singularity acting in the fluid domain. In Sec. IV, we present our minimal model microswimmer
and investigate its swimming behavior in the anisotropic fluid. Concluding remarks are offered in
Sec. V, and technical details are relegated to the appendixes. We outline in Appendix A the algebra
leading to the derivation of the Green’s function using the Fourier transformation technique. In
Appendix B, we show some analytical calculations for the distances traveled by a microswimmer
during reorientation. We then quantify in Appendix C the fluid-mediated hydrodynamic interactions
between colloidal particles which could serve as a basis for future investigations of the behavior of
special particle-based microswimmer models [134–144].

II. LOW-REYNOLDS-NUMBER FLOWS IN THE ANISOTROPIC MEDIUM

Typically, due to their microscopic size, the flows of microswimmers induced in the surrounding
medium are characterized by low Reynolds numbers. Thus, it is the Stokes equation that dominates
the dynamics of the surrounding fluid, which we may generally write as

∇j σij (r ) = fi (r ). (1)

In this expression, σij (r ) = p(r )δij + σ̃ij (r ) denote the components of the stress tensor, with p(r )
describing the thermodynamic pressure field, δij denoting the Kronecker delta, and f (r ) quantifying
a force density acting on the fluid. Summation over repeated indices is implied. In a simple isotropic
fluid, σ̃ (r ) introduces the effect of viscous dissipation into the dynamic equations. It contains two
viscosity parameters, one associated with the shear viscosity and one with dissipation under volume
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changes. We note that the sign convention for σ̃ (r ) varies in the literature, and the corresponding
tensor may also be found to be defined with a minus sign.

In a uniaxially anisotropic fluid, the situation becomes more complex. We start from the
hydrodynamic symmetry-based equations for a conventional nematic LC deep in the nematic phase
as can be found, e.g., in Refs. [76,91,92]. The local orientation of the axis of uniaxial order is then
characterized by the director field n̂(r ) of unit magnitude |n̂(r )| = 1. In general, n̂(r ) may be a
dynamic field, possibly changing over time as a consequence of fluid flows. Simultaneously, spatial
variations of n̂(r ) cost energy and contribute to the stress tensor σ̃ (r ), as do, for instance, deviations
from aligning magnetic or electric fields [93], thus inducing fluid flows.

To be able to make analytical progress below, we consider the director permanently and spatially
homogeneously aligned along one global axis [79,105,132]. For instance, this could be achieved
by a strong aligning homogeneous external electric (under insulating conditions) or magnetic field
[77,92,93]. For perfect alignment of n̂(r ) along the field, several contributions to the stress tensor
drop out. The assumption of an undistorted, spatially homogeneous nematic director field can be
substantiated for cases in which the magnitude of the so-called Ericksen number Er is small [145].
Here, the Ericksen number is denoted as [146] Er = γ1UL/K . In this expression, γ1 is the so-called
rotational viscosity associated with pure director rotations [77], U is a typical speed, L is a typical
length scale, and K is the order of magnitude of the Frank elastic coefficients associated with elastic
distortions of the homogeneous director field [77]. Inserting as a typical size of a microswimmer
L ∼ 10−6 m, as a typical speed U ∼ 10−6 m/s, as well as characteristic orders of magnitude of
the material parameters for the commonly used liquid crystal 5CB, namely γ1 ∼ 0.1 Pa s for the
rotational viscosity [147] and K ∼ 10−11 N for the Frank elastic coefficients [148], we obtain Er ∼
10−2 � 1.

As a consequence, we reduce the stress tensor σ̃ (r ) to the dissipative stress tensor associated
with gradients in the fluid flow [92,93],

σ̃ij = σ D
ij = −νijkl∇lvk. (2)

Here, v(r ) is the velocity field, not writing the dependence on r explicitly any longer, and νijkl is
the material viscosity tensor of uniaxial symmetry, given by [92]

νijkl = ν2(δikδjl + δilδjk ) + 2(ν1 + ν2 − 2ν3)ninjnknl

+ (ν3 − ν2)(ninkδjl + ninlδjk + njnkδil + njnlδik )

+ (ν5 − ν4 + ν2)(δijnknl + δklninj ) + (ν4 − ν2)δij δkl . (3)

The remaining role of the director n̂ is thus to render the viscosity tensor uniaxially anisotropic.
From now on, we choose n̂ ‖ ẑ, yielding

−σ D
ij = ν2(vi,j + vj,i ) + 2(ν1 + ν2 − 2ν3)δizδjzvz,z + (ν3 − ν2)[δiz(vz,j + vj,z) + δjz(vz,i + vi,z)]

+ (ν5 − ν4 + ν2)(δij vz,z + δizδjzvk,k ) + (ν4 − ν2)δij vk,k, (4)

where commas denote partial derivatives.
As a next step, we include the typical assumption in related considerations of incompressible fluid

flows, i.e., local volume conservation and constant density. Consequently, the continuity equation
reduces to

∇ · v = 0. (5)

Physically, it is the pressure field p in Eq. (1) that needs to guarantee this relation. Under the initial
prerequisite of ∇ · v = 0, it thus needs to ensure ∂t∇ · v = 0 at all later times [92,93]. In contrast to
an isotropic fluid, where this implies the condition �p = 0 for the pressure (at least away from any
singularities), under our assumptions, one obtains the condition [92,93]

�p = 2(ν1 + ν2 − 2ν3)vz,zzz + (2ν3 − ν2 + ν5 − ν4)�vz,z (6)

that the thermodynamic pressure needs to satisfy.
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Next, the pressure is redefined as [93]

p′ = p − (ν5 − ν4 + ν2)vz,z. (7)

That is, instead of including the isotropic contribution (ν5 − ν4 + ν2)δij (∂zvz) into the viscous stress
tensor σ D

ij [in the second-to-last term in Eq. (4)], it is drawn forward into the pressure in Eq. (1).
Then, combining Eqs. (1) and (4)–(7), we obtain

∇ip
′ + ∇j σ

′D
ij = fi, (8)

where

−σ ′D
ij = ν2(vi,j + vj,i ) + 2(ν1 + ν2 − 2ν3)δizδjzvz,z + (ν3 − ν2)[δiz(vz,j + vj,z) + δjz(vz,i + vi,z)]

(9)

and p′ needs to satisfy

�p′ = 2(ν1 + ν2 − 2ν3)vz,zzz + 2(ν3 − ν2)�vz,z. (10)

The benefit of this transformation is that in the incompressible case the number of involved
viscosities can thus be formally reduced to three, namely ν1, ν2, and ν3. Obviously, it is the viscosity
ν2 that leads the term that is also present in the description of an isotropic liquid. Switching back to
the physical pressure field involves the combination of viscosities ν5 − ν4. It was demonstrated in
Refs. [92,93] that, working with the redefined pressure, the present formalism is compatible with the
original one by Leslie-Ericksen [77,85,86]. For convenience, we repeat here the relations between
the Leslie-Ericksen parameters α1, α2, α3, α4, α5, α6, γ1, as well as γ2 and the parameters used here,
as listed in Ref. [92]: α1 = 2(ν1 + ν2 − 2ν3) − γ1λ

2, α2 = −γ1(1 + λ)/2, α3 = γ1(1 − λ)/2, α4 =
2ν2, α5 = 2(ν3 − ν2) + γ1λ(λ + 1)/2, α6 = 2(ν3 − ν2) + γ1λ(λ − 1)/2, and γ2 = −γ1λ, where λ

is the parameter of flow alignment [92]. If one is interested in the thermodynamic pressure, one
would at the end need to switch back to the pressure field p [93].

For convenience, we here abbreviate

ν̄ = 2(ν1 + ν2 − 2ν3). (11)

Later in this work, an expansion around ν̄ = 0 will be performed. As can be inferred, e.g., from
Eq. (4), setting ν̄ = 0 neglects viscous forces parallel to the director on surfaces with their normal
along the director, caused by longitudinal variations of the velocity along the director.

III. GREEN’S FUNCTION

A. Solution in Fourier space

Having outlined the hydrodynamic equations governing the dynamics of our uniaxial anisotropic
fluid at low Reynolds numbers, we now derive explicit expressions for the Green’s function
representing the solution for the velocity field v(r ) at position r , due to a point force density
f (r ) = Fδ(r − r0) acting on the fluid domain at position r0. Then,

v(r ) = G(r − r0) · F. (12)

For an isotropic fluid of dynamic viscosity η, the Green’s function is given by the Oseen
tensor [149,150], namely, Gij = (8πηR)−1(δij + RiRj/R

2), where R = r − r0 and R = |R|. The
corresponding solution for the pressure is p = P · F, where Pj = Rj/4πR3. Thanks to the
linearity of the hydrodynamic equations, the solution for an arbitrary force distribution can readily
be determined by the superposition principle [151].
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The momentum equation for an anisotropic fluid given in a vectorial form by Eq. (8) can be
projected onto the Cartesian coordinate basis to obtain

−P,x + ν3vx,zz + ν2(vx,xx + vx,yy ) + Fx δ(R) = 0, (13a)

−P,y + ν3vy,zz + ν2(vy,xx + vy,yy ) + Fy δ(R) = 0, (13b)

−P,z + Kvz,zz + ν3(vz,xx + vz,yy ) + Fz δ(R) = 0, (13c)

where, for convenience, we have once more redefined the pressure variable as

P = p′ − (ν3 − ν2)vz,z, (14)

in addition to the viscosity coefficient

K = 2ν1 + ν2 − 2ν3. (15)

Solving Eqs. (13) for the velocity and pressure fields can conveniently be performed using the
Fourier transform technique [152]. At distances far away from r0, we assume that the flow fields
decay to zero, so that the Fourier transforms are well defined. We calculate the three-dimensional
(3D) (forward) Fourier transform of a function g(r ) given in real space as

F {g(r )} = g̃(k) =
∫
R3

g(r ) e−ik·r d r, (16)

together with the inverse Fourier transform

F−1{g̃(k)} = g(r ) = 1

(2π )3

∫
R3

g̃(k) eik·r dk, (17)

where k = (kx, ky, kz) is the wave vector that sets the coordinates in Fourier space.
It turns out to be adequate to employ the orthogonal coordinate system previously introduced by

Bickel [153,154] in which the Fourier-transformed vector components in the plane perpendicular
to the director are decomposed into longitudinal and transverse components [155–157]. For a given
vector quantity Q̃, the components of which in the Cartesian coordinate basis are (Q̃x, Q̃y, Q̃z), the
corresponding components in the new orthogonal basis formed by the unit vectors {el , et , ez} are
given implicitly by the orthogonal transformation⎛

⎜⎝
Q̃x

Q̃y

Q̃z

⎞
⎟⎠ = 1

k⊥

⎛
⎜⎝

kx ky 0

ky −kx 0

0 0 k⊥

⎞
⎟⎠ ·

⎛
⎜⎝

Q̃l

Q̃t

Q̃z

⎞
⎟⎠, (18)

where Q̃l and Q̃t refer to the longitudinal and transverse vector components, respectively. Moreover,

k⊥ =
√

k2
x + k2

y . We note that the components along the ẑ direction parallel to the director are

not affected by this transformation. Transforming the momentum equations stated by Eqs. (13)
to Fourier space and projecting the resulting equations onto the new orthogonal basis, we obtain

ik⊥P̃ = −(ν3k
2
‖ + ν2k

2
⊥)ṽl + Fl, (19a)

0 = −(ν3k
2
‖ + ν2k

2
⊥)ṽt + Ft , (19b)

ik‖P̃ = −(Kk2
‖ + ν3k

2
⊥)ṽz + Fz, (19c)

where we have used the notation k‖ := kz. In addition, by transforming Eq. (5) to Fourier space, a
direct relation between the components ṽl and ṽz can be established. Specifically,

k⊥ṽl + k‖ṽz = 0. (20)
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It can be noted from Eq. (19b) that the transverse component ṽt is independent of the pressure
variable and can be separated from the longitudinal and normal velocity components. Solving this
equation for ṽt yields

ṽt = G̃t tFt = Ft

ν3k
2
‖ + ν2k

2
⊥

. (21)

Furthermore, by combining Eqs. (19a) and (19c), the pressure variable P̃ can be eliminated.
Upon making use of Eq. (20), the solutions for the normal and longitudinal velocities read

ṽz = G̃zzFz + G̃zlFl = k2
⊥Fz − k⊥k‖Fl

ν3k4 + ν̄k2
‖k

2
⊥

, (22a)

ṽl = G̃llFl + G̃lzFz = k2
‖Fl − k⊥k‖Fz

ν3k4 + ν̄k2
‖k

2
⊥

, (22b)

where we have employed the abbreviation ν̄ defined in Eq. (11).
Based on Eqs. (21) and (22), the Green’s tensor in the new vector basis {el , et , ez} is a function

of k‖ and k⊥ only. It can be expressed in a matrix form as

G̃ =

⎛
⎜⎜⎜⎝

k2
‖

ν3k4+ν̄k2
‖k

2
⊥

0 −k⊥k‖
ν3k4+ν̄k2

‖k
2
⊥

0 1
ν3k

2
‖+ν2k

2
⊥

0
−k⊥k‖

ν3k4+ν̄k2
‖k

2
⊥

0 k2
⊥

ν3k4+ν̄k2
‖k

2
⊥

⎞
⎟⎟⎟⎠. (23)

The components of this Green’s function in the original Cartesian basis in Fourier space are
obtained by means of a standard change of basis [158]. Following Eq. (18), we obtain

G̃xx = G̃t t sin2 ϕk + G̃ll cos2 ϕk, (24a)

G̃yy = G̃t t cos2 ϕk + G̃ll sin2 ϕk, (24b)

G̃xy = (G̃ll − G̃t t ) cos ϕk sin ϕk, (24c)

G̃xz = G̃lz cos ϕk, (24d)

G̃yz = G̃lz sin ϕk, (24e)

where the angle ϕk follows from the representation of the wave vector k in Fourier space in spherical
coordinates as

k = k

⎛
⎜⎝

sin ϑk cos ϕk

sin ϑk sin ϕk

cos ϑk

⎞
⎟⎠. (25)

Moreover, G̃yx = G̃xy , G̃zx = G̃xz, and G̃zy = G̃yz as required by the symmetry of the Green’s tensor
in an unbounded domain.

Finally, the redefined pressure variable associated with this flow field can be calculated from
Eqs. (19) as

P̃ = −i
k‖

(
ν2k

2
⊥ + ν3k

2
‖
)
Fz + k⊥

(
Kk2

‖ + ν3k
2
⊥
)
Fl

ν3k4 + ν̄k2
‖k

2
⊥

. (26)

Expressions of the Green’s function for the velocity and pressure fields in real space are obtained
via inverse Fourier transform according to Eq. (17). Since the goal of the present work is to study the
behavior of a model microswimmer in an anisotropic medium, we confine ourselves to analytical
expressions for the velocity field in real space.
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B. Solution in real space

The inverse Fourier transform of Eqs. (24) according to Eq. (17) is straightforward, though
laborious, and thus is shifted to Appendix A. As shown there, the final expressions of the Green’s
function for the velocity field in real space, see Eq. (12), can conveniently be expressed in terms of
the following set of convergent definite integrals:

Gzz = 1

2π2R

∫ 1

0

(1 − s2Q2) dQ

[ν3 + ν̄s2Q2(1 − s2Q2)]
√

1 − Q2
, (27a)

Gxx = 1

4π2R

∫ 1

0

[
s2Q2�−

ν3 + ν̄s2Q2(1 − s2Q2)
+ �+

(ν3 − ν2)s2Q2 + ν2

]
dQ, (27b)

Gxz = cos ϕ

2π2R

∫ 1

0

csQ2 dQ

[ν3 + ν̄s2Q2(1 − s2Q2)]
√

1 − Q2
, (27c)

Gxy = sin(2ϕ)

4π2R

∫ 1

0

[
1

(ν3 − ν2)s2Q2 + ν2
− s2Q2

ν3 + ν̄s2Q2(1 − s2Q2)

]
1 − (2 − s2)Q2

(1 − s2Q2)
√

1 − Q2
dQ,

(27d)

where, again, R := |R| denotes the radial distance from the singularity. In addition, ϕ and ϑ denote
the azimuthal and polar angles, respectively, such that

R = r − r0 =

⎛
⎜⎝

x − x0

y − y0

z − z0

⎞
⎟⎠ = R

⎛
⎜⎝

sin ϑ cos ϕ

sin ϑ sin ϕ

cos ϑ

⎞
⎟⎠. (28)

We further define the shorthand notations s := sin ϑ and c := cos ϑ . Moreover,

�± =
[

1 ± 1 − (2 − s2)Q2

1 − s2Q2
cos(2ϕ)

]
1√

1 − Q2
. (29)

As already mentioned, the remaining five components can be determined by using the symmetry
property of the Green’s tensor in an unbounded medium, such that Gzx = Gxz, Gzy = Gyz, and Gyx =
Gxy . The components Gyy and Gyz are determined by, respectively, substituting ϕ by ϕ − π/2 in the
expressions of Gxx and Gxz given above.

For an accurate numerical evaluation of the Green’s function, it is essential to remove the
singularity at Q = 1. This can adequately be achieved by making use of the change of variable
Q = sin ξ , and thus dQ/

√
1 − Q2 = dξ , leading to well-behaved integrals for ξ between 0 and π/2.

An exact analytical calculation of these integrals is possible only under some special conditions,
notably when ν̄ = 0.

The Green’s function derived in this section serves as a basis for the assessment of the swimming
behavior in an anisotropic medium as detailed in the next section.

IV. SWIMMING IN A NEMATIC LIQUID CRYSTAL

We consider a minimal active model microswimmer [29,133] composed of a rigid sphere of
radius a subject to hydrodynamic drag. Self-propulsion is achieved through two oppositely aligned
active forces f and − f oriented along the symmetry axis of the swimmer, as schematically
illustrated in Fig. 1. Both puller- and pusher-type microswimmers can be modeled by directing the
forces toward or away from the swimmer body, respectively. The two force centers are separated by
a distance L from each other and are asymmetrically disposed with respect to the sphere center. This
asymmetry is set through the parameter α that takes values between 0 and 1/2. The orientation of
the swimmer is described by the unit vector t̂ pointing into the direction of the nearer force center.
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FIG. 1. Illustration of the active model microswimmer. The swimmer is modeled as a sphere of hydrody-
namic radius a with no-slip surface condition, subject to hydrodynamic drag. Two point force centers exert
active forces + f and − f separated a distance L from each other. They are asymmetrically disposed with
respect to the swimmer body. Then, the resulting self-generated flow field leads to propulsion by transporting
the sphere. The positions of the force centers relative to the swimmer body are set by the parameter α that takes
values between 0 and 1/2. The unit vector t̂ points toward the nearer force center, along the swimmer axis. A
quiver plot of the self-induced velocity field in the surrounding fluid is schematically shown for the upper half
of the fluid domain in the isotropic limit for ν1 = ν2 = ν3. The microswimmer displayed here is referred to as
a pusher because it pushes out the fluid along the swimming axis. By directing the two point forces toward the
spherical body, the swimmer is known as a puller because it pulls the fluid inward along the swimming path.

Several variants of this model can be found in the literature; see, e.g., Refs. [159–162]. Denoting
by rS the center position of the sphere, the positions of the force centers are

r+ = rS + αL t̂, (30a)

r− = rS − (1 − α)L t̂. (30b)

Without loss of generality, we only consider in the following motion in the plane y = 0.

A. Swimming behavior for ν̄ = 0

We begin our analysis with the particular case of ν̄ = 0. Exact analytical expressions for the
Green’s function can be obtained in this situation. Integrating Eqs. (27) for y = 0 yields

Gzz = 1

8πν3R
(2 − s2), (31a)

Gxx = 1

8πν3R

[
1 + s2 + 2

s2

(√
c2 + s2

E
− 1

)]
, (31b)

Gxz = cs cos ϕ

8πν3R
, (31c)

and Gxy = 0, where we have defined the viscosity ratio

E = ν2

ν3
, (32)

noting that E � 0 [90]. Remarkably, the anisotropy enters only through the xx component. We
further recover the Oseen tensor in the isotropic limit, for which E = 1.
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For a pusher, the flow velocity field at position r induced by the swimmer is obtained by
superimposing the flow fields due to each of the two active forces. Specifically,

v(r ) = [G(r − r+) − G(r − r−)] · f . (33)

The flow field induced by a puller is given by the same expression with f of opposite sign. In
the far-field limit |r − rS| � L, the leading-order term possesses a force-dipolar flow structure that
decays as |r − rS|−2.

Because of the complexity of the Green’s function, we confine ourselves to the lowest order in
the Faxén laws. This implies not too large a/(αL) and a/[(1 − α)L] for our analysis to be valid.
The self-induced translational velocity V and rotational velocity � of the spherical body and thus
of the swimmer are

V = v(rS), (34a)

� = 1
2 ∇ × v(rS). (34b)

We next define for convenience ψ = π/2 − ϑ to denote the orientation angle relative to the
horizontal direction, such that ψ ∈ [−π/2, π/2]. It follows from Eqs. (31) through (34) that the
nonvanishing components of the swimming velocities and rotation rate are given by

Vx = V0 cos ϕ cos ψ

(
w

cos2 ψ
− tan2 ψ

)
, (35a)

Vz = V0 sin ψ, (35b)

�y = �0 cos ϕ tan ψ

(
1 − 1

w

)
, (35c)

where

V0 = f (1 − 2α)

4πν3Lα(1 − α)
(36)

denotes the swimming speed in an isotropic medium, for which E = 1. Moreover,

w =
√

sin2 ψ + cos2 ψ

E
, (37a)

�0 = f (1 − 2α + 2α2)

8πν3L2α2(1 − α)2
. (37b)

We note that �0/f > 0. In addition, it can clearly be seen that no net self-induced motion occurs
when the swimmer body is symmetrically located between the two force centers, i.e., for α = 1/2.
The swimmer in this configuration only pumps the fluid and is termed “shaker”.

In order to illustrate from the above equations the effect of the anisotropy on the swimming
behavior, we consider a small deviation from the isotropic values. By performing a Taylor expansion
of the rotation rate about E = 1, the leading-order term reads

�y ∼ �0

4
(1 − E) cos ϕ sin (2ψ ). (38)

Then, for a pusher-type swimmer (�0 > 0) and for E < 1, the orientation ψ = 0 (cos ϕ = ±1)
is a stable fixed point. Accordingly, the swimmer aligns in the steady limit perpendicular to the
director and moves at a speed V⊥ = V0/

√
E. In contrast to that, the orientation ψ = ±π/2 is a

stable fixed point for E > 1. In this situation, the swimmer aligns parallel to the director and swims
at a speed V‖ = V0. The opposite behavior is observed for a puller-type swimmer (�0 < 0) where
the alignment occurs parallel to the director for E < 1 and perpendicular to the director for E > 1.
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FIG. 2. Swimming trajectories in the (x, z) plane for (a) pusher- and (b) puller-type swimmers for a vertical
director orientation along the z axis and various values of the viscosity ratio E = ν2/ν3. The swimmer is
released from the origin with an initial inclination ψ0 = π/6. Arrows indicate the direction of time evolution.
Here, α = 2/5 and ν̄ = 0.

In an isotropic fluid (E = 1), the rotation rate vanishes. Accordingly, the swimmer maintains a
constant orientation and swims along a straight trajectory.

In Fig. 2, we illustrate for various values of E exemplary swimming trajectories in the (x, z) plane
for pusher- [Fig. 2(a)] and puller- [Fig. 2(b)] type microswimmers in the particular situation of ν̄ =
0. The swimmer is initially released from the origin of the coordinate system with an orientation
ψ0 = π/6 relative to the horizontal. Here, we set α = 2/5 for the swimmer asymmetry. Results for
six values of the viscosity ratio E are shown, which span a wide range of values for actual nematic
liquid crystals. In fact, we can calculate analytically from the initial conditions the overall horizontal
and vertical distance covered until complete alignment parallel and perpendicular to the director is
achieved, respectively. The expressions that we found are listed in Appendix B.

To gain more insight into the effect of E on the swimming behavior, we define at this point
the effective viscosities associated with the motion of a particle parallel and perpendicular to the
director. In analogy to Stokes’s law, we define the effective viscosities as ηeff

‖,⊥ = 1/(6πaμ‖,⊥),
respectively, where μ‖,⊥ stands for the hydrodynamic mobility function (cf. Appendix C for their
derivation). For ν̄ = 0, we obtain

ηeff
⊥

ηeff
‖

= 4

1 + 3 arctan
(√

1
E

−1
)

√
E(1−E)

. (39)

Performing a Taylor expansion about E = 1 to leading order yields

ηeff
⊥

ηeff
‖

∼ 1 + 1

2
(E − 1). (40)

For common nematic LCs, such as 5CB and MBBA, the ratio of effective viscosities is ηeff
⊥ > ηeff

‖
(and thus E > 1) as observed in experiments [102,103,111] and in computer simulations [109,163].
This means a higher mobility along than perpendicular to the director. In our system, this implies that
a pusher-type swimmer aligns with the director, whereas a puller tends to swim in the perpendicular
direction. Such a behavior is in agreement with the theoretical predictions and lattice Boltzmann
simulations of a squirmer model [131], and also with the alignment dynamics of pusher-type
bacteria observed in recent experiments [113–119].

For E < 1 in Eq. (40), the ratio of effective viscosities is ηeff
⊥ < ηeff

‖ . This situation is less
common but might in practice be encountered in discotic nematics or in corresponding lyotropic
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FIG. 3. Quiver plots of the velocity field induced by a pusher- [panels (a), (b), and (c)] and a puller-type
[panels (d), (e), and (f)] microswimmer in a uniaxially anisotropic fluid, e.g., an aligned nematic LC, for
various values of the viscosity ratio E = ν2/ν3, while ν̄ = 0. The dash-dotted lines connecting the force centers
are plotted to indicate the orientation of the swimmer. Here, we set an inclination ψ = π/6 and a swimmer
asymmetry α = 2/5. The color bars show the magnitude of the flow velocity scaled by f/(ν3L). Spherical
swimmer bodies are not shown here for clarity. In the isotropic case (E = 1, center subfigures), the flow field
is symmetric relatively to the swimmer axis. Therefore, no reorientation occurs. For E > 1 (left subfigures), the
flow is significantly more pronounced along the director axis (vertical). This results in asymmetric flow fields
relatively to the swimmer axis and effective shear flows around the swimmer body. In panel (a), for a pusher,
this leads to a counterclockwise and in panel (d), for a puller, to a clockwise rotation of the swimmer. Vice
versa, for E < 1 (right subfigures), the flow perpendicular to the director is more pronounced. This implies
opposite asymmetry and then opposite sense of rotation.

micellar LCs [103]. In this case, our pusher tends to align along the direction perpendicular to the
director, whereas the puller tends to align parallel to the director.

For illustration of the resulting behavior, we present in Fig. 3 quiver plots in addition to color
contour diagrams of the self-induced velocity field given by Eq. (33) for a pusher [f > 0, Figs. 3(a),
3(b), and 3(c)] and for a puller [f < 0, Figs. 3(d), 3(e), and 3(f)] for three different values of the
viscosity ratio E. The flow velocities are scaled by f/(ν3L). Here, the swimmer is inclined by an
angle ψ = π/6 relative to the horizontal. We use the same parameters as in Fig. 2, where ν̄ = 0 and
α = 2/5.

It becomes clear from Fig. 3 that the viscosity ratio E has a pronounced influence on the resulting
flow field induced by the swimmer. Moreover, we can illustratively understand from these plots the
orientational behavior of the swimmer calculated above.

For E = 1, i.e., in the isotropic situation, corresponding to the center Figs. 3(b) and 3(e), the
induced fluid flow is symmetric with respect to the swimmer axis passing through both active force
centers. Thus, the swimmer propels in a straight way.

However, the anisotropic environment for E 
= 1 can break this symmetry. We noted above that
E > 1 is connected to a situation in which motion along the director is facilitated when compared to
the transverse motion. Correspondingly, in Figs. 3(a) and 3(d) for E > 1, the fluid flow induced by
both active force centers is more pronounced along the director (i.e., here, along the vertical). For the
pusher in Fig. 3(a), therefore, the flow induced by the force center on the right-hand side has a bias
toward the top, whereas a bias toward the bottom arises around the force center on the left-hand side.
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In between, the overall fluid flow thus shows a shear component, which here contains a rotational
component of counterclockwise sense. Consequently, the pusher in Fig. 3(a) with its body between
the two force centers is rotated toward the director (i.e., here, toward the vertical). For the puller in
Fig. 3(d), all flow directions are reversed, and therefore a clockwise rotation away from the director
and toward a perpendicular orientation results.

Vice versa, we motivated above that E < 1 is connected to a situation in which motion
perpendicular to the director is facilitated. Correspondingly, Figs. 3(c) and 3(f) for E < 1 indicate
a fluid flow asymmetric with respect to the swimmer axis and biased along the transverse axis (i.e.,
here, along the horizontal). More in detail, for the pusher in Fig. 3(c), the fluid flow induced by
the force center on the right-hand side is more pronounced toward the right, whereas for the force
center on the left-hand side it is more pronounced toward the left. Thus, in between, a net rotational
component of clockwise sense arises, rotating the swimmer toward the axis perpendicular to the
director. Again, for the puller in Fig. 3(f), all flows and thus rotational components are reversed so
that the puller here rotates toward the director.

B. Effect of ν̄

We now consider a more general situation and allow for a small nonzero value of ν̄. Accordingly,
we define the dimensionless number

A = ν̄

ν3
, (41)

noting that A � E − 4 [90]. Expanding the integrands in Eqs. (27) perturbatively in the parameter A

and evaluating the resulting integrals analytically, the solution for the Green’s function correspond-
ing to the plane y = 0 up to O(A3) reads

Gzz = 1

8πν3R

[
2 − s2 − A

8
s2(8 − 12s2 + 5s4) + 3A2

128
s4(4 − 3s2)(8 − 14s2 + 7s4)

]
, (42a)

Gxx = 1

8πν3R

[
1 + s2 + 2

s2

(√
c2 + s2

E
− 1

)
− 5A

8
s4c2 + 7A2

128
s6c2(10 − 9s2)

]
, (42b)

Gxz = cs cos ϕ

8πν3R

[
1 − A

8
s2(1 + 5c2) + s4A2

128
(80 − 140s2 + 63s4)

]
. (42c)

Again, Gzx = Gxz. We remark that for commonly used nematic liquid crystals, the magnitude of A

is not necessarily small. Therefore, we have tested the direct numerical solution of Eqs. (27) versus
our analytical results in Eqs. (42). Setting, for example, E = 1, we find very good agreement for
|A| < 1 in the full range of 0 � s2 � 1. For the commonly used liquid crystals MBBA and 5CB, we
estimate a value of A ≈ 4 from the literature [164]. Again testing the quality of Eqs. (42) within the
full range of 0 � s2 � 1, we obtain maximum deviations of Gzz, Gxx , and Gxz by factors of 1.3, 1.1,
and 1.6 for A = 4 and E = 1, always with identical sign. Thus, even if the analytical expressions
do not imply a full quantitative solution in several practical situations, they should still predict the
correct qualitative behavior in a broad regime of accessible parameter values. As required, Eqs. (42)
reduce to Eqs. (31) for A = 0. Using Eqs. (33) and (34), the resulting swimming velocities and
rotation rate are calculated up to second order in A as

Vx = V0 cos ϕ cos ψ

[
w

cos2 ψ
− tan2 ψ − 3A

8
cos2 ψ sin2 ψ + 5A2

128
cos4 ψ sin2 ψ

(
8 − 7 cos2 ψ

)]
,

(43a)

Vz = V0 sin ψ

[
1 − A

8
cos2 ψ

(
4 − 3 cos2 ψ

) + A2

128
cos4 ψ

(
48 − 80 cos2 ψ + 35 cos4 ψ

)]
, (43b)
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�y = �0 cos ϕ sin ψ

[
sec ψ

(
1 − 1

w

)
+ A

8
cos ψ (15 cos2 ψ − 8)

+ A2

128
cos3 ψ (192 − 520 cos2 ψ + 315 cos4 ψ )

]
. (43c)

As before, to gain further insight, we first investigate the swimming behavior for a small deviation
of the viscosity ratios A and E from the isotropic limit. Correspondingly, linearizing the rotational
velocity in Eq. (43c) about E = 1 and A = 0 yields

�y ∼ �0

4

(
1 − E − 2A + 15A

4
cos2 ψ

)
sin (2ψ ) cos ϕ. (44)

The resulting dynamical system of equations has thus three trivial fixed points at ψ = 0, ±π/2,
similar to what we previously observed for the case A = 0. Defining

ψA = arccos

(
2
√

15A(E − 1 + 2A)

15|A|
)

, (45)

two additional fixed points occur at ψ = ±ψA if ψA is a real number. Specifically, this is true for

A � max{A1, A2} or A � min{A1, A2}, (46)

where we have defined

A1 = (1 − E)/2 and A2 = 4(E − 1)/7. (47)

Determining the steady swimming trajectories for arbitrary values of the viscosity ratios E and
A is far from being trivial due to the existence of multiple fixed points depending on these values.
For convenience, we first consider the simple case of E = 1, for which ψA = arccos (2

√
30/15) �

0.24π is not a function of A, and A1 = A2 = 0. In addition, we confine ourselves for the sake
of clarity to the case of ψ0 ∈ [0, π/2] and ϕ = 0. The other situations can then be deduced from
symmetry arguments.

We now focus our attention on the behavior of a pusher-type swimmer, for which �0 > 0.
Considering an initial orientation ψ0 > ψA in Eq. (44), then �y < 0 if A > 0, and �y > 0 if A < 0.
Accordingly, the swimmer tends to rotate toward the director (ψ = π/2) for A > 0, while it tends to
rotate toward the orientation set by ψA for A < 0. In contrast to that, if ψ0 < ψA, then the swimmer
tends to rotate toward the axis perpendicular to the director (ψ = 0) for A > 0 and toward the axis
given by ψA for A < 0. An analogous discussion can be carried out for a puller-type swimmer, for
which �0 < 0 and thus all these tendencies of rotation are reversed.

In Fig. 4, we show the variation of the inclination angle ψ versus the scaled horizontal
distance x/L for a microswimmer that is initially released from the origin in an anisotropic fluid
for various values of A, while E = 1. Results for both a pusher [Figs. 4(a) and 4(b)] and a puller
[Figs. 4(c) and 4(d)] are shown for two initial orientations, namely for ψ0 = π/3 > ψA [Figs. 4(a)
and 4(c)] and for ψ0 = π/6 < ψA [Figs. 4(b) and 4(d)]. The curves were obtained by numerical
integration of the equations of motion using the exact Green’s function given by Eqs. (27). We
set the asymmetry parameter of the swimmer α = 2/5. Depending on the swimmer type, the
values of the viscosity ratio A, and the initial orientation, the swimmer aligns parallel to the
director, perpendicular to the director, or maintains a steady orientation at a constant inclination
angle ψA � 0.24π that is independent of the value of A. The linearized analysis described above
provides a useful framework for determining the steady-state swimming behavior.

Finally, we consider the general situation and vary both E and A. We begin with the situation
of A � min{A1, A2} and A � max{A1, A2}, for which ψA is not defined and thus the dynamical
system has only three fixed points at ψ = 0 and ψ = ±π/2. Moreover, let us consider a pusher-type
swimmer such that �0 > 0, as well as initial orientations ψ0 ∈ [0, π/2] and ϕ = 0. For E < 1,
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FIG. 4. Variation of the inclination angle versus the scaled horizontal distance for a pusher- [panels (a)
and (b)] and a puller-type [panels (c) and (d)] swimmer released from the origin with an initial inclination of
ψ0 = π/3 > ψA [panels (a) and (c)] and ψ0 = π/6 < ψA [panels (b) and (d)] for ϕ = 0 and various values of
the viscosity ratio A, while E = 1. Here, we set α = 2/5. Depending on the propulsion mechanism and on the
values of A and ψ0, the swimmer tends to align parallel or perpendicular to the director, or tends to swim along
the axis given by ψA � 0.24π indicated by the dashed lines. Arrows indicate the direction of time evolution.
When the steady alignment parallel to the director is reached (ψ = π/2), the swimmer moves along the z axis.

�y > 0, while for E > 1, it follows that �y < 0 for all values of ψ . Therefore, for any initial
orientation, a pusher will tend to rotate toward an axis perpendicular and parallel to the director, for
E < 1 and E > 1, respectively. A puller-type swimmer will exhibit the opposite behavior, as in the
case of A = 0 discussed earlier.

The situation of A � max{A1, A2} or A � min{A1, A2}, for which five fixed points occur, is
more complex because the steady alignment also depends on the initial orientation. If A > 0
and ψ0 > ψA or A < 0 and ψ0 < ψA [which is equivalent to A(ψ0 − ψA) > 0], again assuming
initial orientations of ψ0 ∈ [0, π/2] and ϕ = 0, we find from Eq. (44) for a pusher (�0 > 0) that
�y < 0. Therefore, a pusher tends to rotate toward the director if ψ0 > ψA and A > 0. It tends to
rotate toward the axis set by ψA for ψ0 < ψA and A < 0. This rotational sense is reversed when
A(ψ0 − ψA) < 0, for which �y > 0. Then, the swimmer tends to rotate toward the axis set by ψA

for ψ0 > ψA and A < 0, while it tends to rotate toward the axis perpendicular to the director if
ψ0 < ψA and A > 0. Naturally, again, switching to a puller reverses these tendencies.

A state diagram of swimming obtained by numerical integration of the governing equations using
the exact Green’s function given by Eq. (27) is presented in Fig. 5 for a pusher [Figs. 5(a) and 5(b)]
and a puller [Figs. 5(c) and 5(d)] released from two exemplary initial inclinations ψ0 = π/3 [Figs.
5(a) and 5(c)] and ψ0 = π/6 [Figs. 5(b) and 5(d)]. The separating lines corresponding to the change
in the number of fixed points obtained from the linearized rotational velocity are plotted according
to Eq. (47) around the point corresponding to an isotropic fluid (E = 1 and A = 0). Far away from
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FIG. 5. State diagram of orientational swimming behavior in a uniaxially anisotropic fluid for a pusher
[panels (a) and (b)] and a puller [panels (c) and (d)] as obtained by numerically integrating the full nonlinear
equations. The swimmer is released from the origin with an initial inclination of ψ0 = π/3 [panels (a) and
(c)] and ψ0 = π/6 [panels (b) and (d)] for ϕ = 0. The solid and dashed lines shown around the point (A =
0, E = 1) are defined in Eq. (47). On the bottom right of each panel, the missing data points would fall into
the unphysical regime of A < AT = E − 4 [90].

this point, it becomes necessary to account for the nonlinear contributions to the rotational velocity
for an accurate determination of the lines of separation between the different states of orientational
alignment.

Finally, on the basis of experimental data taken from the literature [164], we estimated the values
A ≈ 4 and E ≈ 1.7 for the commonly employed nematic liquid crystals MBBA and 5CB. Using
these values, we find that a pusher-type swimmer tends to align parallel to the director for ψ0 > ψA

and perpendicular to the director for ψ0 < ψA, in agreement with the tendencies outlined in Figs. 4
and 5. Depending on the studied system in experiments, for instance, surface effects may favor the
case of ψ0 > ψA [66], so that predominately parallel alignment is observed. In contrast to that, we
find a puller-type swimmer for both cases to tend to align along the oblique direction suggested by
Fig. 4.

V. CONCLUSIONS

In summary, we have analyzed in this work theoretically the orientational behavior of self-
propelled minimal model microswimmers in a uniaxially anisotropic fluid. Both pusher- and puller-
type propulsion mechanisms were investigated. In general, we find different alignment behaviors
for these two types of swimmer.

Our analysis started from the derivation of the Green’s function describing fluid flows that are
generated by pointlike force centers in the anisotropic medium. To be able to perform the analytical
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calculations, we needed to assume that the anisotropy axis, i.e., the director when thinking of
nematic liquid crystals, remains unperturbed and homogeneously aligned during the action of the
swimmer. In a nematic liquid crystal, the latter may be achieved approximatively, for instance, deep
in the nematic phase by strong external aligning fields. Then three remaining viscosities characterize
the resulting fluid flows in the limit of fluid incompressibility.

First, we did not consider the influence of the viscosity associated solely with elongational and
compressional flows along the director. For the case corresponding to common nematic liquid
crystals consisting, e.g., of rodlike molecules, in which the mobility of suspended particles is
increased along the director when compared to perpendicular motion, we find an alignment of
pusher-type microswimmers and their swimming paths with the director. This behavior is in
agreement with recent experimental observations [113–119]. For pullers, we obtain the opposite
behavior, i.e., alignment and propulsion perpendicular to the director. Interestingly, our results
predict a reversal of these alignment tendencies, both for pushers and for pullers, if we switch
to the case of facilitated motion perpendicular to the director. Then the pushers orient themselves
perpendicular and the pullers parallel to the director. We conjecture that this behavior could be
observed, e.g., in discotic liquid crystals. Moreover, we showed how our results can be illustratively
inferred from the fluid flows generated by the active microswimmers in the surrounding medium.

Afterward, we included the influence of the remaining third viscosity, i.e., the one connected only
to elongational and compressional flows along the anisotropy axis. Interestingly, our results imply
that in this case, besides orientations parallel and perpendicular to the director, also an oblique
alignment relatively to the anisotropy axis becomes possible. Depending on the viscosity ratios and
propulsion mechanism, this oblique alignment can be the one observed in the final steady state.
Again, in each investigated situation, we found different orientational behavior for pushers and for
pullers.

At the end, let us recall that we have investigated in the present study the effects that the
self-induced flows in an aligned anisotropic fluid can have on the orientational behavior of a
self-propelling microswimmer. Depending on the system, for instance, concerning the shape of
the swimmer, the type and magnitude of surface anchoring of the director on the swimmer body, or
the nature of the anisotropic environment, elastic effects can become important as well [66]. The
relative magnitude of these contributions will be determined by the situation at hand.

Altogether, in conclusion, our theoretical results and predictions further support the previously
proposed objective of using anisotropic background fluids and nematic liquid crystals as host
media to realize controlled and guided active transport. Since the director orientation in nematic
liquid crystals can be imprinted in actual setups by suitable boundary conditions on confining
container walls, requested paths of directed motion, also through complicated geometries, become
conceivable. Moreover, the director orientation can be switched from outside by external fields,
allowing for real-time control of the propulsion paths.

For the future, naturally, from a theoretical and analytical point of view, a large challenge is
to allow for deflections of the director field in our formalism and to include the corresponding
couplings into the present description. Additionally, the effect of higher moments of the force
distribution exerted by the microswimmers on the surrounding fluid could be investigated. In
particular, the role of a force quadrupole for the alignment behavior should be analyzed. On
the phenomenological and experimental side, interesting questions concern the possibility of
observing the oblique states of alignment found in our work. Moreover, increased attention to
puller-type microswimmers in anisotropic fluids may be worthwhile. Apart from that, concerning
our predictions for the varying viscosity ratios, experimental analysis of the behavior of active
microswimmers in discotic liquid crystals offers a promising perspective.
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APPENDIX A: INVERSE FOURIER TRANSFORMS

The Fourier-transformed Green’s function has been derived in Sec. III of the main body of the
paper and is explicitly given by Eqs. (23) and (24). In this appendix, we provide technical details
regarding the inverse Fourier transformation to yield the expressions for the Green’s function in real
space stated by Eqs. (27).

1. The zz component

Substituting the zz component of the Fourier-transformed Green’s tensor as given by Eq. (23)
into Eq. (17) yields

Gzz = 1

(2π )3

∫
R3

k2
⊥

ν3k4 + ν̄k2
‖k

2
⊥

eik·r dk. (A1)

To reduce the complexity of the integral, we make use of the change of variables k‖ = k cos ϑk

and k⊥ = k sin ϑk , where ϑk ∈ [0, π ]. This leads to dk = k2 sin ϑk dk dϕk dϑk . In addition, the
argument of the exponential factor can be rewritten by noting that

ik · r = ikR[cos(ϕk − ϕ) sin ϑ sin ϑk + cos ϑ cos ϑk],

where R := |R| = |r − r0|, and ϕ and ϑ stand for the azimuthal and polar angles, respectively, such
that

R = r − r0 =

⎛
⎜⎝

x − x0

y − y0

z − z0

⎞
⎟⎠ = R

⎛
⎜⎝

sin ϑ cos ϕ

sin ϑ sin ϕ

cos ϑ

⎞
⎟⎠. (A2)

The first integration with respect to ϕk between 0 and 2π can easily be performed by making use
of the definition of the zeroth-order Bessel function [165],

1

2π

∫ 2π

0
eiβ cos(ϕk−ϕ) dϕk = J0(β ). (A3)

The next integration with respect to k between 0 and ∞ can then be performed by noting that∫ ∞

0
eibkJ0(ak) dk =

{
1√

a2−b2 if |b| < |a|,
i√

b2−a2 sgn(b) if |a| < |b|, (A4)

wherein sgn denotes the sign function. Using the change of variable Q = cos ϑk/s, Eq. (A1) can
then conveniently be expressed as a convergent definite integral over Q as

Gzz = 1

2π2R

∫ 1

0

(1 − s2Q2) dQ

[ν3 + ν̄s2Q2(1 − s2Q2)]
√

1 − Q2
, (A5)

where we have abbreviated s = sin ϑ . As already mentioned in the main text, an analytical
evaluation of the resulting integral is possible only under certain conditions. For ν̄ = 0, Eq. (A5)
reduces to the isotropic result, namely

Gzz = 1

8πν3R
(2 − s2). (A6)
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2. The xx and yy components

We next proceed in a similar way as done above for the zz component to the xx component of
the Green’s function. Inserting Eq. (24a) into Eq. (17) and making use of the identity

1

π

∫ 2π

0
cos2 ϕk eiβ cos(ϕk−ϕ) dϕk = J0(β ) − J2(β ) cos (2ϕ) (A7)

together with Eq. (A4) and

∫ ∞

0
eibkJ2(ak) dk =

{
1
a2

(
a2−2b2√

a2−b2 + 2ib
)

if |b| < |a|,
isgn(b)

a2

(
2|b| + a2−2b2√

b2−a2

)
if |b| > |a|, (A8)

we obtain

Gxx = 1

4π2R

∫ 1

0

[
s2Q2�−

ν3 + ν̄s2Q2(1 − s2Q2)
+ �+

(ν3 − ν2)s2Q2 + ν2

]
dQ, (A9)

where, again, we have made the change of variable Q = cos ϑk/s. Moreover,

�± =
[

1 ± 1 − (2 − s2)Q2

1 − s2Q2
cos(2ϕ)

]
1√

1 − Q2
. (A10)

It is worth mentioning that the terms associated with �− and �+ arise from the ll and t t related
contributions to the Green’s tensor, respectively.

The component yy of the Green’s function can readily be deduced from the xx component
by performing a quarter circle rotation of the frame of reference around the z axis in the
clockwise direction. This corresponds mathematically to setting ϕ → ϕ − π/2 in Eq. (A10), which
is equivalent to interchanging the meanings of �− and �+ in Eq. (A9). Analytical expressions in the
case ν̄ = 0 are possible but they are rather complex and lengthy and thus are omitted here.

3. The off-diagonal components

The xz component of the Green’s function can be obtained by inserting Eq. (24d) into Eq. (17),
and integrating with respect to ϕk and then k. Making use of the identity

1

2π

∫ 2π

0
cos ϕk eiβ cos(ϕk−ϕ) dϕk = i cos ϕ J1(β ) (A11)

together with ∫ ∞

0
eibkJ1(ak) dk =

{
1
a

(
1 + ib√

a2−b2

)
if |b| < |a|,

1
a

(
1 − |b|√

b2−a2

)
if |b| > |a| (A12)

for a > 0, we find

Gxz = cos ϕ

2π2R

∫ 1

0

csQ2 dQ

[ν3 + ν̄s2Q2(1 − s2Q2)]
√

1 − Q2
, (A13)

where c = cos ϑ . In particular, we recover for ν̄ = 0 the component of the Green’s function in an
isotropic medium, namely

Gxz = cs cos ϕ

8πν3R
. (A14)

The yz component can readily be obtained by setting ϕ → ϕ − π/2 in Eq. (A13), or equivalently
cos ϕ → sin ϕ.
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Finally, the xy component of the Green’s function can be obtained by inserting Eq. (24c) into
Eq. (17) to obtain

Gxy = sin(2ϕ)

4π2R

∫ 1

0

[
1

(ν3 − ν2)s2Q2 + ν2
− s2Q2

ν3 + ν̄s2Q2(1 − s2Q2)

]
1 − (2 − s2)Q2

(1 − s2Q2)
√

1 − Q2
dQ,

(A15)

after making use of the identity

1

π

∫ 2π

0
cos ϕk sin ϕk eiβ cos(ϕk−ϕ) dϕk = − sin(2ϕ) J2(β ), (A16)

in addition to Eq. (A8). As already pointed out in the main body of the paper, Gzx = Gxz, Gzy = Gyz,
and Gyx = Gxy as required by the symmetry of the mobility tensor.

APPENDIX B: STEADY-STATE TRANSVERSE DISTANCES COVERED
BY THE SWIMMER UNTIL ALIGNMENT IS ACHIEVED

In this appendix, we calculate analytically the overall perpendicular and parallel distance covered
until complete alignment parallel or perpendicular to the director is achieved, given an initial relative
inclination ψ0 of the swimmer in the case of ν̄ = 0 studied in Sec. IV A.

Posing Vx = dx/dt , Vz = dz/dt , and �y = − cos ϕ dψ/dt , the phase-space equations follow
forthwith from Eqs. (35) upon eliminating the time differential. Specifically,

dx

dψ
= �w(w − sin2 ψ )

(1 − w) sin ψ
cos ϕ, (B1a)

dz

dψ
= �w cos ψ

1 − w
, (B1b)

where � has a dimension of length, defined as

� = 2α(1 − α)(1 − 2α)L

1 − 2α + 2α2
. (B2)

For a given initial inclination ψ0, say, for simplicity, in the range 0 � ψ0 � π/2, the steady-state
x position of a swimmer that aligns parallel to the director can be determined. Integrating Eq. (B1a)
for ψ varying from ψ0 to π/2 yields for the total distance δx traveled along the x direction from the
initial position to the final aligned state

δx = � cos ϕ

⎛
⎝cos ψ0 − ln (csc ψ0 − cot ψ0)

E − 1
− φ− + φ+

2
√

E(E − 1)
+

arctan
(√

q

w0
cos ψ0

)
E

√
q

⎞
⎠, (B3)

wherein q = 1 − 1/E and w0 = w(ψ = ψ0) according to Eq. (37a). Moreover, we defined

φ± = arctanh

(√
E

w0
(q cos ψ0 ± 1)

)
. (B4)

The final z position for a swimmer that aligns perpendicular to the director can be calculated in
a similar way by integrating Eq. (B1b) for ψ varying from ψ0 to 0. We obtain for the total distance
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δz traveled along the z direction from the initial position to the final steady state

δz = �

(
sin ψ0 − 1

2q
ln

[
2E(w0 + sin ψ0) sin ψ0 + cos2 ψ0

(1 − sin ψ0)2

]

− 1

2
√

q
ln{E[1 − q cos(2ψ0) − 2w0

√
q sin ψ0]}

)
. (B5)

Notably, both δx and δz diverge as E → 1 because no alignment behavior occurs in an isotropic
medium of equal viscosities ν2 = ν3.

APPENDIX C: HYDRODYNAMIC MOBILITIES

The Green’s function associated with a point force acting on the surrounding medium can be
employed to assess the effect of a fluid on the dynamics of suspended particles, particularly for
the computation of the self and pair mobilities [149,166]. These are tensorial quantities that, for
example, link the velocities of the particles to the forces exerted on them. In the following, we
derive explicit analytical expressions for the mobility functions in a uniaxial anisotropic fluid. They
can, for instance, serve as a basis for future investigations of the behavior of some particle-based
microswimmer models, such as the three-sphere swimmer introduced by Najafi and Golestanian
and its different variations [134–144]. A comparison between analytical predictions and boundary
integral simulations is also provided.

1. Self-mobility function

The hydrodynamic self-mobility function, denoted by μS, relates the translational velocity V of
a particle to the force F exerted on it. Specifically,

V = μS · F. (C1)

The self mobility of a particle located at the origin is computed from the Green’s function
associated with the suspending medium as

μS
ij = 1

(2π )3

∫
R3

G̃ij (k) g̃(k) dk, (C2)

where i, j ∈ {x, y, z} and g̃(k) is a wave-number-dependent regularization kernel. It is chosen in
such a way as to consider only the wave numbers k := |k| that are smaller than the cutoff value
kmax = π/(2a). One way to set the regularization kernel is a Heaviside step function with a sharp
Fourier cutoff of the form [167]

g̃(k) = H
( π

2a
− k

)
. (C3)

However, this regularization kernel can cause a nonlocalized force distribution in real space in
addition to the appearance of Gibbs oscillations in the radial velocity [106]. Therefore, a Gaussian
regularization function of the form

g̃(k) = e−(ka)2/π (C4)

is often preferred to overcome the drawback of the Heaviside regularization function. Setting k‖ =
k cos ϑk and k⊥ = k sin ϑk in the integrand, only g̃(k) depends on the wave number k, and thus both
regularization kernels in our case lead to the same final result.

The obtained self-mobility tensor has the diagonal form

μS =

⎛
⎜⎝

μS
⊥ 0 0

0 μS
⊥ 0

0 0 μS
‖

⎞
⎟⎠, (C5)
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where we denote by μS
⊥ and μS

‖ the self-mobility function for the translational motion perpendicular
and parallel to the director n̂, respectively. If we denote by ϑF the angle between the applied force
and the director, it follows from Eq. (C5) that the angle at which the velocity vector is directed
relative to the director is

ϑV = arctan

(
μS

⊥
μS

‖
tan ϑF

)
. (C6)

Clearly, the force and velocity vectors are collinear (so that ϑV = ϑF) in the particular situation of
an isotropic fluid, for which μS

⊥ = μS
‖ .

a. Parallel to the director

The particle self-mobility function associated with the motion parallel to the director is readily
obtained by inserting the component G̃zz of the Green’s function from Eq. (23) into Eq. (C2). After
the change of variable q = cos ϑk , the self mobility can conveniently be expressed in terms of a
definite integral over q as

μS
‖ = 1

4πa

∫ 1

0

1 − q2

ν3 + ν̄q2(1 − q2)
dq, (C7)

which, upon integration, leads to the exact result defined for ν̄ > −4ν3

μS
‖ = 1

4πaν3B

[(
C+ + 1

C+

)
arctan C+ −

(
C− + 1

C−

)
arctan C−

]
. (C8)

Here, we set the scaled viscosity coefficients

A = ν̄

ν3
, B =

√
A2 + 4A, C± =

√
A ± B

2
(C9)

and mention that arctan(iy) = i arctanh y, for y ∈ R. Particularly, the Stokes mobility is recovered
when ν̄ = 0,

μS
‖
∣∣
ν̄=0

= 1

6πaν3
. (C10)

Performing a Taylor expansion of Eq. (C8) up to second order around the isotropic values
corresponding to ν̄ = 0 and ν3 = η yields

6πηaμS
‖ = 1 − 4

35

ν̄

η
−

(
ν3

η
− 1

)
+ 8

385

(
ν̄

η

)2

+
(

ν3

η
− 1

)2

+ 8

35

(
ν3

η
− 1

)
ν̄

η
. (C11)

b. Perpendicular to the director

The particle self-mobility function for the motion perpendicular to the director can be calculated
by inserting the xx component of the Green’s function, given by Eq. (24a), into Eq. (C2) to obtain

μS
⊥ = 1

8πa

∫ 1

0

[
1

(ν3 − ν2)q2 + ν2
+ q2

ν3 + ν̄q2(1 − q2)

]
dq, (C12)

where again the change of variable q = cos ϑk has been made. Integration yields the exact result

μS
⊥ = 1

8πa

[
1

ν2

arctan β

β
+ 1

ν3B

(
arctan C−

C−
− arctan C+

C+

)]
, (C13)

where we have defined

β =
√

ν3

ν2
− 1. (C14)
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For ν̄ = 0, Eq. (C13) simplifies to

μS
⊥
∣∣
ν̄=0 = 1

8πaν3

⎡
⎣1

3
+

arctan
√

1
E

− 1
√

E(1 − E)

⎤
⎦. (C15)

In the limit of equal viscosities, i.e., for E = 1, we recover the particle bulk mobility in an isotropic
fluid.

Performing a Taylor series expansion of Eq. (C13) up to second order about ν̄ = 0 and ν2 = ν3 =
η yields

6πηaμS
⊥ = 1 − 3

70

ν̄

η
− 1

2

(
ν2

η
− 1

)
− 1

2

(
ν3

η
− 1

)
+ 2

231

(
ν̄

η

)2

+ 2

5

(
ν2

η
− 1

)2

+ 2

5

(
ν3

η
− 1

)2

+ 3

35

ν̄

η

(
ν3

η
− 1

)
+ 1

5

(
ν2

η
− 1

)(
ν3

η
− 1

)
. (C16)

Expressions of the self mobilities have likewise been obtained in Refs. [97,106].

2. Pair-mobility function

The fluid-mediated hydrodynamic interactions between particles are commonly expressed in
terms of the pair mobilities. These are tensorial quantities that bridge between the velocity of one
particle and the force exerted on another nearby particle. Here, we restrict ourselves for simplicity
to the translational pair-mobility function in the point-particle approximation. The latter represents
the leading-order term in an expansion of the pair mobilities in a power series of the ratio between
particle radius a and the interparticle distance h [168–170]. The accuracy and appropriateness of
the point-particle approximation will be assessed hereafter by direct comparison with fully resolved
boundary integral simulations.

We now consider a pair of particles of identical radius a, located at positions rα and rβ , such
that h = |rα − rβ | � a. The induced translational velocity of particle α due to a force exerted on
particle β is approximated in terms of the pair-mobility tensor as

V α = μP
αβ · Fβ, μP

αβ = G(rα − rβ ) + O(ε2), (C17)

where ε = a/|rα − rβ | � 1.
In the following, we calculate, for illustrative purposes, the components of the pair-mobility

function for the two situations of the connecting vector h = rα − rβ between two particles aligned
either parallel or perpendicular to the director.

First, we assume that particle β, upon which a force is exerted, is positioned at the origin, while
particle α is located at r = (0, 0, h). In this configuration, the pair-mobility function for the motion
parallel to the line of centers and n̂ can readily be obtained from Eq. (A5) as

μ‖P
zz

= 1

4πhν3
. (C18)

Thus, we recover for ν3 = η the pair-mobility function in an isotropic fluid.
Next, we consider that particle α is located at rα = (±h, 0, 0) such that the line connecting the

two centers is perpendicular to the director, still keeping the force on particle β along the director.
Setting ϑ = π/2 yields

μ⊥P
zz = 1

2π2h

∫ 1

0

√
1 − q2

ν3 + ν̄q2(1 − q2)
dq. (C19)

For an isotropic fluid, we have ν̄ = 0 as well as ν3 = η, and thus μ⊥P
zz = 1/(8πhη). The latter is

found to be half of the pair mobility parallel to the line of centers. Physically, this expresses that it
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FIG. 6. Variation of the rescaled self-mobility function for the motion (a) parallel and (b) perpendicular to
the director versus the viscosity ratios. Solid lines are the theoretical predictions given by Eqs. (C8) and (C13),
respectively, while the dashed line displayed in panel (a) is the asymptotic result given by Eq. (C11) for η = ν3.
Symbols give the boundary integral simulation results for two different mesh resolutions. Here we set A = 1/2
in panel (b).

is much easier to move the fluid transversally than to squeeze it into or out of the gap separating the
two particles [171].

The xx components of the pair-mobility function, corresponding to the force on particle β and
the resulting velocity of particle α perpendicular to the director, for these two typical configurations
can be obtained in an analogous way from Eq. (A9). We first consider the connecting vector h of the
two particles perpendicular to n̂ and then parallel to n̂. Setting ϑ = π/2 and ϕ = 0, π , the term with
the factor �− vanishes. Accordingly, the pair mobility is solely determined from the t t contribution
to the Green’s function, such that the ll-related part amounts to zero. In this way, the pair mobility
parallel (‖) to the line of centers can be evaluated analytically as

μ‖P
xx

= 1

4πh
√

ν2ν3
. (C20)

Finally, by setting ϑ = 0, π and ϕ = 0, π , the pair mobility perpendicular (⊥) to the line of centers,
with h parallel to the director, reads

μ⊥P
xx = 1

8πhν2
. (C21)

Again, the latter result is determined solely by the t t-related part in the Green’s function.

3. Comparison with numerical simulations

In order to confirm our theoretical predictions and assess the range of validity of the expansions,
we compare our analytical results with fully resolved boundary integral method (BIM) simulations.
The core idea of this numerical method is to express the solution of the governing equation given
by Eq. (1) in terms of singularity distributions on the domain boundary [172]. Then, the fluid flow
field inside a control volume can be computed while requiring only knowledge of the traction on
the domain boundaries. The method has the special advantage that only a single two-dimensional
(2D) grid is required for the determination of the surface velocities at the boundaries as well as for
the 3D computation of the flow field. The BIM code used in this work was developed by the first
author together with colleagues at the Biofluid Simulation and Modeling Group at the University of
Bayreuth and has been validated in many flow problems in the Stokes regime [173–178].
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FIG. 7. Variation of the rescaled pair-mobility function for two particles aligned with their connecting
vector h parallel or perpendicular to the director n̂ ‖ ẑ for (a) the zz and (b) the xx components. Lines are the
analytical predictions and symbols are the boundary integral simulation results obtained using 320 triangles
(squares) and 1280 triangles (circles). Here we set E = 1/10 and A = 1/2. Insets: Illustration of typical
configurations of a pair of particles disposed parallel or perpendicular to the director. The solid arrows indicate
the force applied to the particle located at the origin, while the dotted arrows indicate the velocity of the particle
located at distance h.

Figure 6 shows the rescaled self mobilities for the motion parallel [Fig. 6(a)] and perpendicular
[Fig. 6(b)] to the director as functions of the viscosity ratios. In the numerical simulations, the
spherical particle is meshed by consecutively refining an icosahedron [179,180] for different
triangulations. Results for a coarse mesh with 320 triangles and a finer mesh with 1280 triangles
are reported. The asymptotic result given by Eq. (C11) [shown as dashed lines in Fig. 6(a)] leads to
a good estimate of the self mobility parallel to the director in the depicted range of A. As for the
self mobility perpendicular to the director, shown for A = 1/2 in Fig. 6(b), both meshes brought
about similar results. The analytical predictions for both self mobilities are favorably compared with
numerical simulations over the whole range of the considered viscosity ratios.

In Fig. 7, we present the pair-mobility function versus the interparticle distance h when the line
connecting the centers of the two particles is oriented parallel or perpendicular to the director. For
h > 5a, the leading-order terms of the pair mobilities given by Eqs. (C18) through (C21) lead to
a very good prediction. However, for interparticle distances comparable with the particle radius, it
may become necessary to account for the higher order terms for an accurate quantitative prediction
of the fluid-mediated hydrodynamic interactions between the particles.
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