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Heating-induced drag reduction in relative movement of parallel plates

J. M. Floryan, S. Shadman, and M. Z. Hossain
Department of Mechanical and Materials Engineering, University of Western Ontario, London,

Ontario, N6A5B9, Canada

(Received 10 February 2018; published 4 September 2018)

An external force is required to maintain the relative movement of horizontal plates. It is
shown that this force is reduced when the plates are subject to a spatially distributed heating.
The largest reduction occurs for heating wavelengths of the order of distance between the
plates with its magnitude increasing proportionally to the second power of the relevant
Rayleigh number. It is shown that a sufficiently strong heating eliminates the need for the
driving force altogether. The drag-reducing effect is active only in small Reynolds number
flows and is stronger in fluids with smaller Prandtl numbers.
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I. INTRODUCTION

Friction between moving shafts found in numerous machines contributes to the energy cost of
operating these devices. This cost may be estimated by determining force required to maintain the
relative motion between these parts. Similar processes can be found in other applications, e.g., the
towing of a free-floating body in a shallow basin. In general, flows which form in the space between
two infinite plates in relative motion are well approximated by the Couette flow model, which is one
of the family of simple flows frequently used in analyses.

Couette flow is characterized by the absence of a streamwise pressure gradient, a linear velocity
distribution across the fluid layer and the lack of the linear stability limit [1]. The nonlinear stability
analyses are well reviewed in Ref. [2] and demonstrate various routes to secondary finite-amplitude
states as well as to turbulence. Surface modifications either in the form of transverse grooves [3],
axisymmetric ribs [4], or wall transpiration [5] can lead to centrifugal instabilities. Replacing the plane
Couette flow with the annular Couette flow leads to shear instabilities [6]. Transition to secondary
states leads to an increase in the wall shear and the need to increase the externally imposed driving
force. Such states should be avoided if minimization of energy cost is of interest.

Analyses of nonisothermal Couette flows are rather limited. They typically involve fluids with
temperature-dependent material properties in a flow system exposed to a spatially uniform heating
[7]. The addition of gravity brings in buoyancy effects which may generate secondary flows through
the Rayleigh-Bénard instability [8,9] if the relevant critical conditions are met. Analyses of the
resulting mixed convection are well reviewed in Ref. [10]. The use of spatially nonuniform heating
leads to structured convection which occurs regardless of the heating intensity, but which is yet to be
studied in the case of Couette flow. It is known that such heating leads to the reduction of pressure
losses in pressure-gradient driven flows [11–13].

The present work is part of a wider search for drag-reducing methods which, in the present case,
manifests itself in the form of reduction of the external force required to maintain the relative plate
movement. One of the approaches is to ensure stability of the flow so that transition to secondary states
is avoided. Another approach, which is followed here, is to create spatial flow modulations which
could lead to the reduction of shear and, thus, reduction of the driving force. The use of grooves
for this purpose has been explored in Refs. [14–16]. This paper explores modulations created by
spatially distributed heating. Since convective flows are highly unstable, we shall limit this analysis
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FIG. 1. Schematic diagram of the flow system.

to conditions when secondary flows are not likely to form. Precise determination of heating conditions
resulting in a system bifurcation requires a formal stability analysis and such analysis will not be
attempted. Results of stability analysis of convection between stationary plates [17,18] provides a
good guidance for selection of acceptable heating levels. Analysis of stability of pressure-gradient-
driven flow in a periodically heated channel shows flow stabilization with an increase of the flow
Reynolds number [19] which suggests that estimates taken from Refs. [17,18] are valid for the flow
driven by the moving plate. Section II presents the model problem where the lower plate is heated,
and the upper plate is kept isothermal. Section III provides a description of the system dynamics.
Section III A discusses the response to a spatially periodic heating while the mean temperatures of
the plates are kept the same. Since it is unlikely that the mean temperatures can remain identical
in applications, Sec. III B discusses changes in the system response due to a mismatch between
these temperatures. Section III C describes variations of the system response due to changes of the
Prandtl number. Section IV discusses the heat transfer processes. Section V describes the system
response when the upper plate is heated while the lower plate is isothermal. Section VI provides a
short summary of the main conclusions.

II. PROBLEM FORMULATION

Consider two horizontal plates moving relative to each other and separated by a distance 2h∗ as
shown in Fig. 1. The resulting gap extends to ±∞ in the x direction and is filled with a fluid of
thermal conductivity k∗, specific heat c∗, thermal diffusivity κ∗ = k∗/ρ∗c∗, kinematic viscosity ν∗,
dynamic viscosity μ∗, thermal expansion coefficient �∗ and with variations of density ρ∗ described
by the Boussinesq approximation. The gravitational acceleration g∗ acts in the negative y direction.
The upper plate is pulled in the positive x direction with a constant velocity U ∗

top while the lower
plate is stationary. When the system is isothermal, the drag force and the resulting flow field can be
easily determined,

v0(x, y ) = [u0(y), 0] =
[

(1 + y)

2
, 0

]
, p0(x, y ) = C, Q0 = 1, τ0 = −0.5, F0 = 0.5,

(2.1)
where velocity has been scaled with U ∗

top as the velocity scale, Q0 stands for the flow rate scaled with
the same velocity scale, τ0 stands for the shear acting on the upper plate scaled with U ∗

topμ
∗/h∗, F0

denotes the force per unit length and width required to drag the upper plate scaled with U ∗
topμ

∗/h∗
and the relevant Reynolds number is defined as Re = U ∗

toph/ν.
Introduce an external heating resulting in sinusoidal temperature variations along the lower plate,

T ∗
L (x∗) = T ∗

mean,L + 0.5 T ∗
p cos(α∗x∗), T ∗

U (x∗) = T ∗
U , (2.2a,b)

where the subscripts “mean” and “p” refer to the mean and periodic parts, respectively, T ∗
p is the

peak-to-peak amplitude of the periodic component, and subscripts L and U refer to the lower and
upper plates, respectively. Using the upper plate’s temperature for reference and introducing the
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relative temperature θ∗ = T ∗ − T ∗
U lead to plates’ temperatures of the form

θ∗
L(x) = θ∗

uni + 0.5 θ∗
p cos(α∗x∗), θ∗

U (x) = 0, (2.3)

where θ∗
uni = T ∗

mean,L − T ∗
U , θ∗

p = T ∗
p . Using half of the gap height h∗ as the length scale and

κ∗ν∗/(g∗�∗h∗3) as the temperature scale results in the temperature boundary conditions of the
form

θL(x) = Rauni + 0.5 Rap cos(αx), θU (x) = 0, (2.4)

where Rauni = g∗�∗h∗3T ∗
uni/(κ∗ν∗) is the uniform Rayleigh number measuring the intensity of the

uniform heating, Rap = g∗�∗h∗3T ∗
p /(κ∗ν∗) is the periodic Rayleigh number measuring the intensity

of the periodic heating, and all material properties are evaluated at the reference temperature T ∗
U .

The field equations take the form

∂u

∂x
+ ∂v

∂y
= 0, u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ∇2u, (2.5a,b)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v + Pr−1 θ, u

∂θ

∂x
+ v

∂θ

∂y
= Pr−1∇2θ, (2.5c,d)

where (u, v) are the velocity components in the (x, y) directions, respectively, scaled with Uv
∗ =

ν∗/h∗ as the velocity scale, p stands for the pressure scaled with ρ∗U ∗2
ν as the pressure scale,

and Pr = ν∗/κ∗ is the Prandtl number. These equations are subject to boundary conditions (2.4)
combined with

u(−1) = 0, u(1) = Re, (2.6a)

v(−1) = 0, v(1) = 0, (2.6b)

where U ∗
top/Uv

∗ = Re. As the flow is driven by the movement of the upper plate, the mean pressure
gradient is eliminated through imposition of constraint of the form

∂p

∂x

∣∣∣∣
mean

= 0. (2.7)

Heating alters the flow, leading to changes of the shear stress acting on the upper plate, �τ ∗ =
τ ∗ − τ ∗

0 , which, when scaled with U ∗
v μ∗/h∗, can be expressed as

�τ = − du

dy

∣∣∣∣
y=1

+ 1

2
Re (2.8)

and results in the change in the overall driving force, �F ∗ = F ∗
0 − F ∗, which, when scaled with

ρ∗U ∗2
ν , can be evaluated using the following relation:

�F = F0 − F = Re

(
1

2
− Re−1λ−1

∫ λ

0

du

dy

∣∣∣∣
y=1

dx

)
. (2.9)

The pressure is constant under isothermal conditions but becomes periodic when heating is added
resulting in an additional lifting force G∗ acting on the upper plate. This force scaled with ρ∗U ∗2

ν

can be evaluated according to the following formula:

G = λ−1
∫ λ

0
p|y=1dx. (2.10)

The heating affects also the flow rate whose change, �Q∗ = Q∗ − Q∗
0, scaled with Uv

∗ is
described by the following formula:

�Q = Re

{
Re−1

[∫ 1

−1
u(x, y ) dy

]∣∣∣∣
mean

− 1

}
. (2.11)

094101-3



J. M. FLORYAN, S. SHADMAN, AND M. Z. HOSSAIN

The amount of heat transferred between the plates can be viewed as an energy cost associated
with the flow-re-arrangements and can be quantified in terms of the mean Nusselt number defined as

Nuav = λ−1
∫ λ

0

∂θ

∂y

∣∣∣∣
y=1

dx. (2.12)

System (2.5)–(2.7) was expressed in terms of the stream function defined in the usual manner,
u = ∂ψ

∂y
, v = − ∂ψ

∂x
, leading to the field equations of the following form:

∇4ψ − Pr−1 ∂θ

∂x
= NV V , ∇2θ = Pr NV θ , (2.13)

where NV V = ∂
∂y

( ∂
∂x

ûu + ∂
∂y

ûv) − ∂
∂x

( ∂
∂x

ûv + ∂
∂y

v̂v), NV θ = ∂
∂x

ûθ + � ∂
∂ŷ

v̂θ and the hat identifies
product of two unknowns. The x dependence of the unknowns was captured by expressing them as
well as all products as Fourier expansions based on the heating wave number α:

q(x, y ) =
n=+∞∑
n=−∞

q (n)(y)einαx, (2.14)

where q stands for any of the following quantities: ψ, θ, p, u, v, ûu, ûv, v̂v, ûθ, v̂θ . These
expansions were substituted into (2.13) and the Fourier modes were separated leading to a system of
nonlinear ordinary differential equations for the modal functions. This system was solved using two
distinct methods. The first method used the variable-step-size finite-difference approximation [17],
and the second method used the Chebyshev collocation method [19]. The numerical parameters
selected for this study guaranteed at least six digits agreement between results produced by both
methods. The results were also checked by comparing them with analytic solutions for small and
large α limits presented in Appendices A and B. The pressure was determined using 2.5(b) and 2.5(c)
from the known velocity and temperature fields using (2.5b) and 2.5(c). It was assumed that pressure
was zero under isothermal conditions and, thus, its nonisothermal modifications were normalized by
bringing their mean value to zero.

III. DESCRIPTION OF SYSTEM DYNAMICS

A. Plates with equal mean temperatures

Identical mean temperatures of both plates correspond to Rauni = 0. When the upper plate is
stationary (Re = 0), a purely periodic heating results in the formation of convective counter-rotating
rolls with the fluid moving upwards above the hot spots and downwards above the cold spots, as
illustrated in Fig. 2(a), and its temperature rising above the mean in most of the fluid volume. Slow
movement of the upper plate (Re = 1) results in a competition between the plate-driven and the
buoyancy-driven motions. The flow topology is simple in the zones with the clockwise-rotating rolls
as the roll movement is kinematically consistent with the plate movement, resulting in the formation
of a single stream of fluid moving in the positive x-direction located in the immediate vicinity of the
moving plate. A complex flow topology forms in the zones with the counterclockwise-rotating rolls
as the fluid stream splits into two branches, one flowing above the rolls and one flowing beneath
them. The upper branch is dominated by the plate effect, and the lower branch is dominated by the
roll effect [see Fig. 2(b)]. Most of the fluid remains trapped in the rolls, i.e., either in the clockwise
rolls attached to the lower plate or in the counterclockwise rolls bounded by the two branches of
the stream moving to the right. The complexity of this topology near the upper plate is illustrated in
Fig. 3. A further increase of the plate velocity (Re = 5) results in the dominance of the plate-driven
movement with most of the fluid moving to the right, the elimination of the counterclockwise rolls
and the reduction of the size of the clockwise rolls [see Fig. 2(c)] but with the buoyancy effects still
providing a significant contribution to the overall flow dynamics. A further increase of Re results in
the eventual elimination of the rolls [see topology for Re = 50 in Fig. 2(d)]. The sequence of plots
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FIG. 2. The flow and temperature fields for RaP = 1000, Pr = 0.71, Rauni = 0, α = 2 and (a) Re = 0,
(b) Re = 1, (c) Re = 5, (d) Re = 50. Thick lines identify streamlines, thin lines identify isotherms, gray shadings
identify zones of cold fluid. Thick streamlines mark borders of bubbles trapping the fluid. Enlargement of box
shown in panel (b) is displayed in Fig. 3. Flow conditions used in these plots are marked in Fig. 10 using squares.

FIG. 3. Enlargement of the box shown in Fig. 2(b). The streamline emanating from the in-flow stagnation
points corresponds to ψ = 0.286322.
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FIG. 4. Variations of the local |ψmax| associated with the upper plate (solid line), the clockwise rolls (dashed
line), and the counterclockwise rolls (dashed-dotted line) as functions of Re for α = 2, RaP = 1000, Pr = 0.71,
Rauni = 0.

displayed in Fig. 2 illustrates the process of formation of both the flow and thermal boundary layers
near the lower plate as Re increases. Variations of the local maxima of the stream function associated
with the upper plate movement and with both types of rolls as functions of Re (Fig. 4) demonstrate
that the dominance of the upper plate begins for Re > 4 and, for such conditions, the movement of
the clockwise rolls results from both the buoyancy effects as well as the plate-induced pull.

In an isothermal system, the force F0 given by Eq. (2.1) is required to maintain the motion of
the plate. This force is created by friction which is responsible for fluid being dragged by the plate.
For nonisothermal systems, results displayed in Fig. 2 suggest that the buoyancy-driven roll rotation
assists with the fluid movement likely reducing the need for the external driving force F but this
prediction needs to be confirmed through solution of (2.5)–(2.7). The shear stress acting on the plate
varies periodically in x with its amplitude significantly exceeding the isothermal stress (see Fig. 5).
Its mean value decreases below the isothermal stress and may even change direction. In the latter case,
the convection-generated stresses are large enough so that the external force must change direction

FIG. 5. Distribution of the shear stress τU acting on the upper plate for α = 2, RaP = 1000, Pr = 0.71,
Rauni = 0 at Re = 1 (solid line) and Re = 10 (dashed line). Enlargement of the box shown in panel (a) is
displayed in panel (b) including shear mean values.
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FIG. 6. Variations of �F/Re as a function of α for Pr = 0.71, Rauni = 0, Re = 1 (solid lines) and Re = 10
(dashed lines). Thin dotted lines identify asymptotes. The shaded area identifies conditions where the driving
force must change direction and becomes a braking force.

and act as a brake to prevent plate acceleration and to maintain its prescribed velocity. The positive
difference �F = F0 − F [see Eq. (2.9)] identifies conditions leading to the reduction of the driving
force and �F/Re > 0.5 identifies conditions when the driving force must change direction, i.e., its
role changes from driving the plate movement to opposing its movement.

The results presented in Fig. 6 demonstrate that all heating wave numbers lead to a decrease of the
driving force with the magnitude of this reduction being a strong function of α. The largest reduction
occurs for α ≈ 1–2 with its magnitude decreasing proportionally to α4 if an excessively small α is
used. This reduction is also proportional to Re Pr2Ra2

p (see Appendix A for details). The flow and
temperature fields (not shown) are qualitatively similar to those displayed in Fig. 2. The use of an
excessively large α also results in a reduction of �F but at a much higher rate, proportionally to α−7.
This reduction is also proportional to Re Pr−2Ra2

p (see Appendix B). Plots of the temperature fields
displayed in Fig. 7 demonstrate that a sufficient increase in α leads to the formation of a boundary
layer close to the lower plate containing convective effects and a conductive layer with a very simple
flow topology above it (see Appendix B for further details). The qualitatively different dependence
on Pr for small and large α shows a relatively stronger role of conduction for large α’s and a relatively
stronger role of convection for small α’s.

Heating affects the volume of fluid driven to the right by the plate motion. The flow rate generally
increases with Rap, as illustrated in Fig. 8, as the buoyancy force assists the motion of the plate. The
maximum increase occurs for the same α’s as those which produce the largest force reduction. There
are special cases, however, where a combination of a sufficiently large Rap with a proper range of
small α’s results in a decrease in the flow rate. This is caused by the formation of various in-flow
separation bubbles which block the fluid motion in the positive x direction as illustrated in Fig. 9.
Regardless, the flow rate always increases if α is sufficiently small as demonstrated in Appendix A.

The heating-induced motion modifies the pressure field as illustrated in Fig. 10. The fluid is driven
upwards above the hot spots by the buoyancy force. It turns sideways as it approaches the upper plate
with the local pressure maxima at the upper plate responsible for the turn. It is subsequently driven
downwards above the cold spots by the negative buoyancy force with the local pressure maxima
forming at the lower plate to force the fluid to turn sideways. The resulting pressure distributions at
the plates have large-amplitude x-periodic variations (see Fig. 11) and generate net forces as well
as moments, with the heating-induced lifting force at the upper plate G being of special interest.
Variations of this force as a function of α illustrated in Fig. 12(a) demonstrate that G is largest for
approximately the same conditions which lead to the largest reduction of the driving force. The
evaluation of bending moments requires determination of the x-location xref where the pressure is
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FIG. 7. The flow and temperature fields for RaP = 1000, Pr = 0.71, Rauni = 0, Re = 1 and α = 1 (a),
α = 5 (b), α = 8 (c), α = 10 (d). Thick lines identify streamlines, thin lines identify isotherms, gray shadings
identify zones of cold fluid. Thick streamlines mark borders of various bubbles trapping the fluid.

equal to its mean value (see Fig. 11). The bending moment around this point is defined as

M =
∫ xmax

xmin

(p − pave)(xref − x)dx, (3.1)

where xmin = xref + (x1 − xref )/2 is the location of the minimum pressure and xmax = xref −
(xref + 1 − x1)/2 is the location of the maximum pressure, and the x distances are measured using
fraction of the wavelength. An opposite moment acts around point x1 (see Fig. 11), i.e., there are two
moments per wavelength. The magnitude of M decreases rather rapidly for large α’s [see Fig. 12(b)]
due to the reduction of both the amplitude of the pressure variations as well as the plate length
contributing to a single moment, while their number per unit plate length increases. Such moments
are unlikely to create any structural problems. Suprisingly, M increases for small α’s [see Fig. 12(b)]
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FIG. 8. Variations of change of the flow rate driven by movement of the upper plate �Q/Re as a function
of α for Pr = 0.71, Rauni = 0, Re = 1 (solid lines) and Re = 10 (dashed lines). Thin dotted lines identify
asymptotes. Dashed-dotted line identifies the negative values of �Q for Rap = 2000, Re = 1.

in spite of a significant reduction of the intensity of convection, and this effect is associated with an
increase of the plate length reponsible for the creation of a single moment.

The force-reducing effect is a strong function of Re [see Fig. 13(a)]. The magnitude of �F
increases proportionally to Re for small Re’s, reaches a maximum at Re ∼ 5–6 and then decreases
at a rate proportional to Re−2. The flow topologies displayed in Fig. 2 show that the elimination of
�F is associated with the reduction of convection bubbles and confinement of convection effects to
a thin boundary layer near the lower plate. Variations of the flow rate follow a similar pattern [see
Fig. 13(b)]: �Q increases at first proportionally to Re, reaches a maximum at Re ∼ 5–6 and then
decreases at a rate proportional to Re−2.

�F is a stronger function of Rap than of Re as it increases proportionally to Ra2
p [see Fig. 14(a)].

A saturation develops for large enough Rap slowing down this growth. The saturation starts at a
smaller Rap when Re is smaller. Flow topologies displayed in Fig. 15 show expansion of the rolls
and reduction of the size of the stream tube with an increase in Rap. The amount of fluid driven by
the plate increases with Rap but the development of complex flow topologies (not shown) reduces
this flow for a range of small α’s [see Fig. 14(b)].

FIG. 9. The flow and temperature fields for Rap = 2000, Pr = 0.71, Rauni = 0, Re = 1, α = 0.25.
Enlargement of box in Fig. 6(a) is displayed in panel (b). Thick lines identify streamlines, thin lines identify
isotherms, gray shadings identify zones of cold fluid. Thick streamlines mark borders of various bubbles trapping
the fluid.
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FIG. 10. Pressure fields for α = 2, RaP = 1000, Pr = 0.71, Re = 1 (a) and Re = 10 (b). Dotted and dashed-
dotted lines identify the positive and negative values, respectively. Thick solid lines illustrate streamlines. Shaded
areas correspond to positive pressure.

Analyzing (2.9) shows that the external force required to drive the upper plate decreases to zero
when �F = Re/2. Such conditions can be easily achieved and correspond to the gray shading in
Fig. 6. When �F > Re/2, the heating-induced effects are strong enough so that the external force
must change direction and act as a brake to prevent the plate from accelerating. This shows that the
system becomes metastable when exposed to a periodic heating. Consider a stationary upper plate
without any external forces acting on it and apply heating to the lower plate. The convection-induced
forces increase with Rap [see Fig. 14(a)] but the system remains at rest due to its periodicity and
x symmetry. The addition of any disturbance which breaks the symmetry will not generate plate
motion if the heating is too weak; an external force is required to support such motion and heating
is too weak to generate it. For strong enough heating, disturbances will generate plate motion as the
buoyancy forces can overcome friction. As the plate accelerates (Re increases), the buoyancy forces
decrease [see Fig. 13(a)] until a state of equilibrium is reached where the increased friction balances
the decreased driving force. The upper plate may move in either horizontal direction depending on
the form of the initial disturbance. This mechanism can be used to move a free-floating body by
simply heating one of the plates.

0 0.5 1
-300

-200

-100

0

100

200

x/

P

xmin
x1xmax

xref

FIG. 11. Distributions of the pressure at the upper (black lines) and lower (gray lines) plates for α = 2,
RaP = 1000, Pr = 0.71, Re = 1(solid lines) and Re = 10 (dashed lines). The average values of pressure at the
lower wall overlap within the plotting accuracy as they are −32.2, −31.7 for Re = 1, 10, respectively. The
characteristic points used in the evaluation of moments at the upper plate are marked with thin dotted lines using
Re = 1 as an example.
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FIG. 12. Variations of the lifting force G (a) and the moment M (b) as functions of α for Pr = 0.71, Rauni = 0,
Re = 1 (solid lines) and Re = 10 (dashed lines).

B. Plates with different mean temperatures

As it is unlikely that the mean temperatures of both plates can be kept equal, it is of interest
to determine how their difference may affect the system response. This difference is expressed in
the analysis as the uniform Rayleigh number Rauni whose positive (negative) values correspond to
the lower plate being hotter (cooler). The results displayed in Fig. 16 demonstrate that the uniform
heating increases �F while cooling decreases it, and the change is approximately linear with Rauni.
The type of variations as a function of α remains nearly identical for larger Re’s (see Re = 10 in
Fig. 16) for all Rauni’s considered with an upward shift resulting from the increase of Rauni, and with
the most effective α nearly unchanged. A shift from Rauni = −150 to Rauni = 150 increases �F by
a factor of ∼20 when Re = 10, but this is not sufficient to change the direction of the driving force.
In the case of smaller Re’s (Re = 1 in Fig. 16), the most effective α shifts from α = 1.6 to α = 2.5,
and �F approximately quadruples when Rauni changes in the same range, and this is sufficient to

FIG. 13. Variations of �F (a) and �Q (b) as functions of Re for Pr = 0.71, Rauni = 0, α = 2 (solid lines) and
α = 1 (dashed lines). Thin dotted lines identify asymptotes. Plots of flow and temperature field for conditions
identified using squares are displayed in Fig. 2. See text for other details. The shaded area in panel (a) identifies
conditions where the driving force must change direction and becomes a braking force.
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FIG. 14. Variations of �F (a) and �Q (b) as functions of Rap for Pr = 0.71, Rauni = 0, Re = 1 (solid lines)
and Re = 10 (dashed lines). Plots of flow and temperature fields for conditions identified using squares are
displayed in Fig. 15. See text for other details. The shaded area identifies conditions where the driving force
must change direction and becomes a braking force when Re = 1 and the double shaded area identifies such
conditions for Re = 10.

change the direction of the driving force. Variations of the flow rate �Q follow the same pattern as
variations of �F and have similar magnitudes regardless of Re (see Fig. 17).

C. Effects of the Prandtl number Pr

The Prandtl number describes transport properties with conductive effects expected to play a
larger role in the small-Pr fluids. The spatial temperature variations will be stronger and less affected
by convection in such fluids, leading to larger changes of �F. The results displayed in Fig. 18(a)

FIG. 15. The flow and temperature fields for Re = 1, Pr = 0.71, Rauni = 0, α = 2 at (a) Rap = 500 and
(b) Rap = 3000. Thick lines identify streamlines, thin lines identify isotherms, gray shadings identify zones of
cold fluid. Thick streamlines mark borders of various bubbles trapping the fluid. Flow conditions used in these
plots are marked in Fig. 14 using squares.
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FIG. 16. Variations of �F/Re as a function of α (a) and as a function of Rauni (b) for Re = 1 (solid lines) and
Re = 10 (dashed lines), and RaP = 1000, Pr = 0.71. The shaded areas identify conditions where the driving
force changes direction and becomes a braking force.

demonstrate a nearly three-orders of the magnitude increase of �F resulting from replacing fluids
with Pr = 10 with fluids with Pr = 0.1, changing �F from being insufficient to change the direction
of the driving force at large Pr’s to being more than sufficient at small Pr’s. The increase of the flow
rate follows the same pattern as documented in Fig. 18(b). The character of the changes in �F and
�Q as functions of α remains qualitatively similar for all Pr’s with the relevant curves just shifted
upwards for smaller Pr’s as illustrated in Fig. 19.

IV. HEAT TRANSFER EFFECTS

The temperature differences between and along the plates lead to the formation of vertical and
horizontal heat fluxes. The former one is of interest as the heat flow between the plates can be viewed
as a potential energy cost associated with the use of heating to reduce the driving force. This heat
flux can be created only by convection in the case of a purely periodic heating. Variations of the
corresponding mean Nusselt number Nuav displayed in Fig. 20(a) demonstrate that Nuav is a strong

FIG. 17. Variations of �Q/Re (a) as a function of α and as a function of Rauni (b) for Re = 1 (solid lines)
and Re = 10 (dashed lines), and RaP = 1000, Pr = 0.71.
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FIG. 18. Variations of (a) �F/Re and (b) �Q/Re as functions of Pr at Re = 1 (solid lines) and Re = 10
(dashed lines) for RaP = 1000, Rauni = 0.

function of α and reaches a maximum at α ≈ 0.8–1, which is smaller than the α required to maximize
�F . The use of an excessively small α reduces Nuav at a rate proportional to α2 (see Appendix A),
which is much slower than the reduction of �F . The use of an excessively large α reduces Nuav at
a rate proportional to α−3 (see Appendix B), which is also much slower than the reduction of �F .
The maximal Nuav occurs at Re = 0 with an increase in Re reducing Nuav [see Fig. 20(b)] through
the elimination of convective effects (see Fig. 13). An increase in Rap results in an increase in Nuav

proportional to Ra2
p, which is the same as the rate of increase of �F , with a very slight reduction of

this growth due to saturation effects in the upper range of Rap’s considered in this study [Fig. 20(c)].
The addition of a uniform heating component leads to a change in the heat flow due to both changes
in the intensity of convection as well as due to the addition of a conductive flux. Nuav increases when
the lower plate is heated and decreases when it is cooled, varying in a qualitatively similar manner
as a function of α for all Re’s of interest with the relevant curves shifted upwards as Rauni increases
[see Fig. 21(a)]. The increase is nearly linear in the range of Rauni of interest with the rate of change
being a strong function of α [see Fig. 21(b)].

FIG. 19. Variations of (a) �F/Re and (b) �Q/Re as functions of α at Re = 1 (solid lines) and Re = 10
(dashed lines) for RaP = 1000, Rauni = 0.
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FIG. 20. Variations of Nuav in panel (a) as a function of α for Re = 1 (solid lines) and Re = 10 (dashed
lines), in panel (b) as a function of Re for α = 1 (dashed lines) and α = 2 (solid lines), and in panel (c) as a
function of Rap for Re = 1 (solid lines) and Re = 10 (dashed lines), for Pr = 0.71, Rauni = 0. Thin dotted lines
identify asymptotes.

Changes in the heat flow due to a change of the type of fluid being used are illustrated in Fig. 22
for purely periodic heating. When Re is small and buoyancy-driven effects dominate, an increase in
Pr reduces Nuav in a qualitatively similar manner for all α’s [see results for Re = 1 in Fig. 22(a)]
with an asymptote developing for small Pr [see Fig. 22(b)]. An increase in Re weakens convective
effects and results in a significant reduction of Nuav associated with an increase in Pr [see results
in Fig. 22 for Re = 10]. This reduction depends on α and a decrease in Pr may either increase or
decrease the heat flux depending on the α being used.

V. HEATING OF THE UPPER PLATE

Similar effects can be achieved by heating the upper stationary plate and imposing motion of the
lower plate. The similarity between both systems can be demonstrated by reversing the direction of
gravity, Rap → −Rap, and changing the sign of the temperature, θ → −θ [20]. The latter condition
implies a change of the sign of the temperature imposed at the upper plate and results in a shift of the
temperature field by a half-cycle in the x direction. The up-down “symmetry” between the lower and
upper heating is illustrated in Fig. 23, and this leads to the conclusion that the externally imposed
driving force is the same regardless of which plate is heated.

FIG. 21. Variations of Nuav in panel (a) as a function of α and in panel (b) as a function of Rauni for Re = 1
(solid lines) and Re = 10 (dashed lines) for Rap = 1000, Pr = 0.71.
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FIG. 22. Variations of Nuav in panel (a) as a function of α and in panel (b) as a function of Pr for Re = 1
(solid lines) and Re = 10 (dashed lines) for Rap = 1000, Rauni = 0.

VI. SUMMARY

An external force is required to generate a relative motion between horizontal plates with the rate
of this motion expressed in terms of the Reynolds number Re. The effects of spatially distributed
heating on the magnitude of this force have been analyzed. Heating resulting in the lower plate
temperature varying sinusoidally in the horizontal direction, with its amplitude expressed in terms
of a periodic Rayleigh number Rap and the spatial distribution described by the wave number α,
has been considered. The analysis has been limited to Rap < 2000 to avoid condition leading to a
potential formation of secondary flows. The difference between the mean plates’ temperatures has
been expressed in terms of the uniform Rayleigh number Rauni with positive values corresponding
to a warmer lower plate. The fluid motion results from a competition between the buoyancy-driven
effects and the plate-driven movement. The former has the form of counter-rotating rolls whose
distribution is dictated by the heating pattern. The latter one adds a rectilinear motion which leads
to the reduction and eventual elimination of the rolls if Re is large enough.

It has been shown that periodic heating always reduces the driving force, regardless of whether
the heating is applied to the lower or upper plate, but the magnitude of this reduction is a strong
function of the heating wave number. The largest reduction is achieved for α = 1 − 2 with a rapid
decrease of this effect when either too small or too large α’s are used. An increase in Rauni and
decrease in the Prandtl number Pr magnify this effect. An increase in Re eliminates the rolls and
reduces this effect, leading to its practical elimination for Re > 30–50 depending on the heating
intensity. The use of proper heating intensity and distribution results in the complete elimination of
the driving force as the plate movement can be supported by the buoyancy effects only. Conditions
where an external braking force needs to be used to prevent the plate from accelerating have also

FIG. 23. The flow and temperature fields for the same conditions as in Fig. 7(a) but with the upper plate
heated and the lower plate moving. Thick lines identify streamlines, thin lines identify isotherms, gray shadings
identify zones of cold fluid. Thick streamlines mark borders of bubbles trapping the fluid.
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been identified. It has been shown that a stationary system, which allows a free movement of one
of the plates, is metastable when exposed to periodic heating as motion of the plate in any direction
may result from application of an external disturbance if the heating intensity and distribution meet
certain conditions; these conditions have been explicitly identified.

Conditions used in the analysis were selected to avoid formation of secondary states. These
conditions were selected based on information available in the literature, however, a stability analysis
should be carried out to confirm these predictions.
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APPENDIX A: LONG-WAVELENGTH HEATING (α→0)

Introduction of a slow scale X = α x, representation of the unknowns as power series of α:

[u(X, y ), v(X, y ), θ (X, y )] =
n=4∑
n=0

αn[Un(X, y ), Vn(X, y ),�n(X, y )] + O(α5), (A1a)

p(X, y ) =
n=3∑

n=−1

αnPn(X, y ) + O(α5), (A1b)

�F =
4∑

n=0

�Fn αn, �Q =
4∑

n=0

�Qn αn, Nuav =
4∑

n=0

Nuav,n αn, (A2)

substitution of (A1) into the field equations and extraction of the leading-order terms result in the
following system:

∂2U0

∂y2
− V0

∂U0

∂y
= ∂P−1

∂X
,

∂V0

∂y
= 0,

∂P−1

∂y
= 0,

∂2�0

∂y2
= PrV0

∂�0

∂y
, (A3a–d)

U0(X, 1) = Re, U0(X,−1) = 0, V0(X,±1) = 0, (A3e–g)

�0(X,−1) = Rauni + 0.5RapcosX, �0(X, 1) = 0,
∂P−1

∂X

∣∣∣∣
mean

= 0, (A3h–j)

whose solution has the form of

U0 = Re(1 + y)/2, V0 = 0, P−1 = 0, �0 = (1 − y)(2Rauni + RapcosX)/4, (A4a–d)

�F0 = 0, �Q0 = 0, Nuav,0 = Rauni/2. (A4e–g)

The next-order system can be written as

∂2U1

∂y2
= ∂P0

∂X
,

∂V1

∂y
= −∂U0

∂X
,

∂P0

∂y
= Pr−1�0,

∂2�1

∂y2
= PrU0

∂�0

∂X
+ PrV1

∂�0

∂y
,

(A5a–d)

U1(X,±1) = 0, V1(X,±1) = 0, �1(X,±1) = 0,
∂P0

∂X

∣∣∣∣
mean

= 0 (A5e–h)

and has a solution of the form

U1(X, y ) = Pr−1Rap LU1(y) sinX, V1 = 0,

P0(X, y ) = Pr−1Rap LP 01(y) cosX + Pr−1RauniLP 02(y), (A6a–c)

�1(X, y ) = Pr ReRap L�1(y) sinX, �F1 = 0, �Q1 = 0, Nuav,1 = 0, (A6d–g)
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where LU1 = 1
480 + y

24 − y2

80 − y3

24 + y4

96 , LV 2 = 1
480 (5 − y)(−1 + y2)2, L�1 = 1

96 (5 − 6y2 + y4),

LP 01 = 1
40 + y

4 − y2

8 , LP 02 = y

2 − y2

4 .
The follow-up system has the form

∂2U2

∂y2
= ∂P1

∂X
+ U0

∂U1

∂X
+ dU0

∂y
V2,

∂V2

∂y
= −∂U1

∂X
,

∂P1

∂y
= Pr−1�1,

∂2�2

∂y2
= PrU0

∂�1

∂X
− ∂2�0

∂X2
+ PrU1

∂�0

∂X
+ PrV2

∂�0

∂y
, (A7a–d)

U2(X,±1) = 0, V2(X,±1) = 0, �2(X,±1) = 0,
∂P1

∂X

∣∣∣∣
mean

= 0, (A7e–h)

and its solution can be represented as

U2(X, y ) = Pr−1Re RapLU2(y)cosX, V2(X, y ) = Pr−1RapLV 2(y)cosX,

P1 = Pr−1Re RapLP 1 sinX, (A8a–c)

�2(X, y ) = Ra2
p L�21(y) + Rap[L�22(y) + Re2Pr2 L�23(y) + RauniL�24(y)]cosX

+ Ra2
p L�25(y)cos(2X), (A8d)

�F2 = 0, �Q2 = 0, Nuav,2 = Ra2
p/1400, (A8e–g)

where

LU2 = 1
100 800 (−1 + y2)[3 + (234 + 775 Pr)y − 4(29 + 25 Pr)y3 − 35y4 + 5(2 + Pr)y5],

LV 3 = 1
806 400 (−1 + y2)2[5 Pr(297 − 26y2 + y4) + 2(197 − 12y − 74y2 − 20y3 + 5y4)],

LP 1 = 1
16 800 [−104 + 35 Pr y(−5 + y2)

2
],

L�21 = 3C1(−35 − 79y + 70y2 + 26y3 − 35y4 + 5y5),

L�22 = 5C1[−1680(−3 + y)],

L�23 = C1(427 + 117y − 98y2 − 58y3 + 7y4 + 5y5),

L�24 = −2C1(−385 + 19y + 140y2 − 16y3 − 35y4 + 5y5),

L�25 = C1(140 − 128y + 35y2 + 47y3 − 35y4 + 5y5),

C1 = 1
403 200 (1 − y2).

The reader may note the appearance of a heat flux directed towards the upper plate. The next-order
system has the form

∂2U3

∂y2
= ∂P2

∂X
+ U0

∂U2

∂X
+ dU0

∂y
V3 + U1

∂U1

∂X
+ V2

∂U1

∂y
− ∂2U1

∂X2
,

∂V3

∂y
= −∂U2

∂X
, (A9a,b)

∂P2

∂y
= ∂2V2

∂y2
+ Pr−1�2,

∂2�3

∂y2
= PrU0

∂�2

∂X
− ∂2�1

∂X2
+ Pr

[
U1

∂�1

∂X
+ V2

∂�1

∂y
+ U2

∂�0

∂X
+ V3

∂�0

∂y

]
, (A9c,d)

U3(X,±1) = 0, V3(X,±1) = 0, �3(X,±1) = 0,
∂P2

∂X

∣∣∣∣
mean

= 0, (A9e–h)
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and its solution can be written as

U3(X, y ) = Pr−1Rap[LU31(y) + Re2 LU32(y) + RauniLU33(y)]sinX

+ Pr−1Ra2
p [LU34(y) + Pr−1LU35(y)]sin(2X), (A10a)

V3(X, y ) = Pr−1Re RapLV 3(y)sinX, (A10b)

P2(X, y ) = Pr−1Rap[LP21(y) + Re2 LP 22(y) + RauniLP 23(y)]cosX

+ Pr−1Ra2
p [LP 24(y) + Pr−1LP 25(y)]cos(2X), (A10c)

�3(X, y ) = Re Rap[PrL�31(y) + Re2Pr3 L�32(y) + RauniL�33(y)]sinX

+ ReRa2
p L�34(y)sin(2X), (A10d)

�F3 = 0, �Q3 = 0, Nuav,3 = 0. (A10e–g)

Coefficients LU31, . . . , LU35, LV 31, . . . , LV 35, LP 21, . . . , LP 25, L�31, . . . , L�34 are not given
here due to excessive length. The final system of interest in this analysis has the form

∂2U4

∂y2
= ∂P3

∂X
+ U0

∂U3

∂X
+ dU0

∂y
V4 − ∂2U2

∂X2
+ U1

∂U2

∂X
+ U2

∂U1

∂X
+ V2

∂U2

∂y
+ V3

∂U1

∂y
, (A11a)

∂V4

∂y
= −∂U3

∂X
,

∂P3

∂y
= ∂2V3

∂y2
− U0

∂V2

∂X
+ Pr−1�3, (A11b,c)

∂2�4

∂y2
= PrU0

∂�3

∂X
− ∂2�2

∂X2
+ Pr

[
U1

∂�2

∂X
+ V2

∂�2

∂y
+ U2

∂�1

∂X
+ V3

∂�1

∂y
+ U3

∂�0

∂X
+V4

∂�0

∂y

]
,

(A11d)

U4(X,±1) = 0, V4(X,±1) = 0, �4(X,±1) = 0,
∂P3

∂X

∣∣∣∣
mean

= 0. (A11e–h)

The pressure gradient term in (A11a) is purely periodic due to constraint (A11h). The remaining
terms on the right-hand side of (A11a) produce an aperiodic component of U4 in the form

U4,aper (X, y ) = Pr−2Re Ra2
p[LU41(y) + Pr LU42(y)], (A12)

which leads to the change of the driving force as well as the flow rate pulled by the plate of the form

�F4 = − (2076 + 13 375 Pr)

17 027 010 000
Re Pr2 Ra2

p , �Q4 = (92 + 83 Pr)

681 080 400
Re Pr2 Ra2

p . (A13a,b)

The right-hand terms of (A11d) produce an aperiodic component of �4 of the form

�4,aper (X, y ) = Ra2
p[L�41(y) + RauniL�42(y) + Re2L�43(y)], (A14)

which gives rise to a heat flux

Nuav,4 = − Ra2
p

34 054 020 000
[14 774 760 − 149 148Rauni + (52 014 + 82 200Pr + 367 655Pr2)Re2].

(A15)
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Coefficients LU41, LU42, LQ41, . . . , LQ43 in the above are not given due to excessive length.
The final expressions for the quantities of interest are

�F = −α4 (2076 + 13 375 Pr)

170 27 010 000
Re Pr2Ra2

p + O(α5),

�Q = α4 (92 + 83 Pr)

681 080 400
Re Pr2Ra2

p + O(α5),

Nuav = 1

2
Rauni + 1

1400
α2Ra2

p + α4Nuav,4 + O(α5). (A16)

Equation (A13) demonstrates that periodic heating always decreases the force and increases the
flow rate driven by the upper plate while the uniform heating plays no role in these processes. The
heating creates periodic modulations of the flow and temperature fields [Eq. (A6)]. Interactions
between the conductive and convective modulations create a net heat flow between the plates
at O(α2) and additional periodic modulations of the velocity and temperature fields [Eq. (A8)].
Further modulations are added at O(α3). Finally, the nonlinear interactions between the velocity field
modulations at O(α4) change the driving force as well as the flow rate driven by the motion of the
plate. This suggests that the largest heat flow will occur for α producing the most effective interactions
between the conductive temperature modulations and the primary flow field modulations. The largest
force reduction will occur for α leading to the most effective nonlinear interactions between the flow
field modulations. These two α’s are not the same.

APPENDIX B: SHORT-WAVELENGTH HEATING (α → ∞)

This analysis is focused on periodic heating only. The flow variables are decomposed into the
isothermal flow identified using subscript 0 and modifications due to heating identified using subscript
1, and the temperature field is separated into the conductive field θ0 and convective modifications θ1:

u = u0 + u1, v = v1, p = p1, θ = θ0 + θ1, (B1a)

where u, u1 and v are scaled using Uv
∗ = ν∗/h∗, u0 is scaled using U ∗

top, p is scaled using ρ∗U ∗2
ν , θ

and θ1 are scaled using ν∗κ∗/(g∗ �∗ h∗3), and

u0 = Re

2
(1 + y), θ0 = Rap

4

[
cosh(αy)

cosh(α)
− sinh(αy)

sinh(α)

]
cos(αx ). (B1b,c)

The conductive temperature field can be approximated in the limit of α→ ∞ as

θ0 = Rap

2
[e−α(1+y ) + O(e−α )]cos(αx), (B2)

which demonstrates the formation of a thermal boundary layer near the heated wall. Introduce the
fast scale ξ = αx in the horizontal direction and the stretched scale η = α(1 + y) in the vertical
direction, and represent the inner solution as expansions of the form

[u1,in(ξ, η), v1,in(ξ, η), θ1,in(ξ, η)] =
n=7∑
n=2

α−n[Un(ξ, η), Vn(ξ, η),�n(ξ, η)] + O(α−8), (B2a)

[p1,in(ξ, η)] =
n=6∑
n=1

α−n[Pn(ξ, η)] + O(α−7). (B2b)

The flow properties of interest are expressed as similar expansions:

�F =
n=7∑
n=2

�Fn α−n, �Q =
n=7∑
n=2

�Qn α−n, Nuav =
n=7∑
n=2

Nuav,n α−n. (B3a–c)
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Substitution of (B2) into the field equations and grouping terms of the same orders of magnitude
result in the following systems and their solutions:

O(α−2) :
∂2U2

∂ξ 2
+ ∂2U2

∂η2
− ∂P1

∂ξ
= 0,

∂2V2

∂ξ 2
+ ∂2V2

∂η2
− ∂P1

∂η
= −Rap

2 Pr
e−η cos (ξ ), (B4a,b)

∂U2

∂ξ
+ ∂V2

∂η
= 0,

∂2�2

∂ξ 2
+ ∂2�2

∂η2
= −1

4
Pr Rap Re ηe−η sin (ξ ), (B4c,d)

U2(0) = 0, V2(0) = 0, �2(0) = 0,
∂P2

∂ξ

∣∣∣∣
mean

= 0, (B4e)

U2(ξ, η) = Rap

16 Pr
η(−2 + η)e−η sin (ξ ), V2(ξ, η) = Rap

16 Pr
η2e−η cos (ξ ), (B5a,b)

�2(ξ, η) = Rap

16Pr
Re η(1 + η)e−η sin (ξ ). �F2 = 0, �Q2 = 0, Nuav,2 = 0, (B5c–f)

O(α−3) :
∂2U3

∂ξ 2
+ ∂2U3

∂η2
− ∂P2

∂ξ
= 0,

∂2V3

∂ξ 2
+ ∂2V3

∂η2
− ∂P2

∂η
= 0,

∂U3

∂ξ
+ ∂V3

∂η
= 0,

(B6a–c)

∂2�3

∂ξ 2
+ ∂2�3

∂η2
= −1

2
Pr Rap[U2e

−η sin (ξ ) − V2e
−η cos (ξ )], (B6d)

U3(0) = 0, V3(0) = 0, �3(0) = 0,
∂P3

∂ξ

∣∣∣∣
mean

= 0, (B6e)

U3(ξ, η) = 0, V3(ξ, η) = 0, (B7a,b)

�3(ξ, η) = Ra2
p

256
+ C1 η − Ra2

p

128

(
1

2
+ η + η2

)
e−2η + Ra2

p

512
η(1 + 2η) cos (2ξ ), (B7c)

�F3 = 0, �Q3 = 0, Nuav,3 = C1. (B7d–f)

�3 has an aperiodic part [the first three terms in (B7c)] which generates a heat flow from the
lower to the upper wall, and C1 is a constant which needs to be determined by matching with the
outer solution:

O(α−4) :
∂2U4

∂ξ 2
+ ∂2U4

∂η2
− ∂P3

∂ξ
= Re

2
η
∂U2

∂ξ
+ Re

2
V2 ,

∂2V4

∂ξ 2
+ ∂2V4

∂η2
− ∂P3

∂η
= Re

2
η
∂V2

∂ξ
− �2

Pr
,

(B8a,b)

∂U4

∂ξ
+ ∂V4

∂η
= 0,

∂2�4

∂ξ 2
+ ∂2�4

∂η2
= 1

2
Pr Re η

∂�2

∂ξ
, (B8c,d)

U4(0) = 0, V4(0) = 0, �4(0) = 0,
∂P4

∂ξ

∣∣∣∣
mean

= 0, (B8e)

U4(ξ, η) = 1

768 Pr
Rap Re[(−24 − 6η − η2 + η3) + Pr(−30 − 3η + 2η2 + η3)] ηe−η cos (ξ ),

(B9a)

V4(ξ, η) = 1

768 Pr
Rap Re[(12 + 6η + 2η2) + Pr(15 + 6η + η2)]η2e−η sin (ξ ), (B9b)

�4(ξ, η) = − 1

768
Pr2RapRe2 η(15 + 15η + 10η2 + 3η3)e−η cos (ξ ), (B9c)

�F4 = 0, �Q4 = 0, Nuav,4 = 0, (B9d–f)
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O(α−5) :
∂2U5

∂ξ 2
+ ∂2U5

∂η2
− ∂P4

∂ξ
= Re

2
η
∂U3

∂ξ
+ U2

∂U2

∂ξ
+ V2

∂U2

∂η
+ Re

2
V3, (B10a)

∂2V5

∂ξ 2
+ ∂2V5

∂η2
− ∂P4

∂η
= Re

2
η
∂V3

∂ξ
+ U2

∂V2

∂ξ
+ V2

∂V2

∂η
− �3

Pr
,

∂U5

∂ξ
+ ∂V5

∂η
= 0, (B10b,c)

∂2�5

∂ξ 2
+ ∂2�5

∂η2

= Pr

[
1

2
Re η

∂�3

∂ξ
+ U2

∂�2

∂ξ
− 1

2
U4Rap e−η sin (ξ ) + V2

∂�2

∂η
− 1

2
V4Rap e−η cos (ξ )

]
, (B10d)

U5(0) = 0, V5(0) = 0, �5(0) = 0,
∂P5

∂ξ

∣∣∣∣
mean

= 0, (B10e)

U5(ξ, η) = 1

49 152 Pr2
Ra2

p [3 − 3η − 8η2 + 4η3 + Pr(−15 − 3η + 4η2 + 4η3)] ηe−2η sin (2ξ ),

(B11a)

V5(ξ, η) = 1

49 152 Pr2
Ra2

p [−3 + 4η2 + Pr(15 + 12η + 4η2)] η2e−2η cos (2ξ ), (B11b)

�5(ξ, η) = 1

49 152
Ra2

p Re[36 + 72η + 32η2 + 8η3 + Pr(51 + 102η + 56η2 + 16η3)]ηe−2η sin(2ξ ),

(B11c)

�F5 = 0, �Q5 = 0, Nuav,5 = 0, (B11d–f)

O(α−6) :
∂2U6

∂ξ 2
+ ∂2U6

∂η2
− ∂P5

∂ξ
= Re

2
η
∂U4

∂ξ
+ Re

2
V4,

∂2V6

∂ξ 2
+ ∂2V6

∂η2
− ∂P5

∂η
= Re

2
η
∂V4

∂ξ
− �4

Pr
,

(B12a,b)

∂U6

∂ξ
+ ∂V6

∂η
= 0, (B12c)

∂2�6

∂ξ 2
+ ∂2�6

∂η2

= Pr

[
1

2
Re η

∂�4

∂ξ
+ U2

∂�3

∂ξ
+ V2

∂�3

∂η
− 1

2
U5Rape−η sin (ξ ) − 1

2
V5Rape−η cos (ξ )

]
, (B12d)

U6(0) = 0, V6(0) = 0, �6(0) = 0,
∂P6

∂ξ

∣∣∣∣
mean

= 0, (B12e)

U6(ξ, η) = RapRe2

92 160 Pr
[2250 + 720η + 345η2 + 45η3 − 9η4 − 8η5 + Pr(2070 + 630η

+ 285η2 − 18η4 − 4η5) − 3Pr2( − 900 − 180η − 30η2 + 5η3 + 5η4 + η5)]ηe−η sin(ξ ),

(B13a)

V6(ξ, η) = − RapRe2

92 160 Pr
[1125 + 615η + 240η2 + 57η3 + 8η4 + Pr(1035 + 555η

+ 210η2 + 42η3 + 4η4) + 3Pr2(450 + 210η + 60η2 + 11η3 + η4)]η2e−η cos (ξ ),

(B13b)
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�6(ξ, η) = Rap

21 233 664 Pr

{
−27

[
4096 C1 Pr η(3 + 3η + 2η2)e2η

+ Ra2
p

4
((−18 + 843 Pr)e2η + 2(9 + 18η + 18η2 + 16η3 + 8η4) − Pr(843 + 1584η

+ 1380η2 + 688η3 + 176η4))

]
cos(ξ ) + Ra2

p

[−5 − 15η + 24η2 + 36η3

+ Pr
(
127 + 381η + 492η2 + 252η3

)]
η cos(3ξ ) − 3456 Pr4Re3 η(90 + 90η + 60η2

+ 25η3 + 7η4 + η5)e2η sin(ξ )

}
e−3η, (B13c)

�F6 = 0, �Q6 = 0, Nuav,6 = 0, (B13d–f)

O(α−7) :
∂2U7

∂ξ 2
+ ∂2U7

∂η2
− ∂P6

∂ξ
= Re

2
η
∂U5

∂ξ
+ Re

2
V5 + U2

∂U4

∂ξ
+ U4

∂U2

∂ξ
+ V2

∂U4

∂η
+ V4

∂U2

∂η
,

(B14a)

∂2V7

∂ξ 2
+ ∂2V7

∂η2
− ∂P6

∂η
= Re

2
η
∂V5

∂ξ
+ U2

∂V4

∂ξ
+ U4

∂V2

∂ξ
+ V2

∂V4

∂η
+ V4

∂V2

∂η
− �5

Pr
, (B14b)

∂U7

∂ξ
+ ∂V7

∂η
= 0, (B14c)

∂2�7

∂ξ 2
+ ∂2�7

∂η2
= Pr

[
1

2
Re η

∂�5

∂ξ
+ U2

∂�4

∂ξ
+ V2

∂�4

∂η
+ U4

∂�2

∂ξ
+ V4

∂�2

∂η

− 1

2
U6Rape−η sin (ξ ) − 1

2
V6Rape−η cos (ξ )

]
, (B14d)

U7(0) = 0, V7(0) = 0, �7(0) = 0,
∂P7

∂ξ

∣∣∣∣
mean

= 0. (B14e)

Equation (B14a) dictates that the last four terms on the RHS are aperiodic, and the corresponding
aperiodic parts of the solution U7,ap and V7,ap can easily be determined:

U7,ap(η) = C2 η + Ra2
p Re

98 304Pr2
[(48 + 33Pr) − { L71(η) + Pr L72(η)}e−2η], V7,ap(η) = 0,

(B15a,b)
where L71(η) = 8(6 + 12η + 12η2 + 8η3 + 4η4 + η5), L72(η) = 33 + 66η + 66η2 + 44η3 +
22η4 + 4η5 and the constant C2 needs to be determined by matching with the outer solution.

The outer solution has the following form:

u1,out (x, y ) = α−7 Û7(y) + O(α−8), v1,out (x, y ) = 0, (B16a)

p1,out (x, y ) = α−3 P̂3(y) + O(α−8), θ1,out (x, y ) = α−3 �̂3(y) + O(α−8). (B16b)

Substitution of (B16) into the field equations and retention of the leading-order terms result in the
following system:

∂2Û7

∂y2
= 0,

∂P̂3

∂y
= Pr−1 �̂3,

∂2�̂3

∂y2
= 0, (B17a–c)

Û7(x, 1) = 0, �̂3(x, 1) = 0,
∂P̂3

∂X

∣∣∣∣∣
mean

= 0, (B17d–f)
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FIG. 24. Variations of the difference between the actual and the isothermal x-velocity components,
�u(=u − uiso ), as functions of y for RaP = 1000, Re = 1, Pr = 0.71, Rauni = 0, α = 30, at x/λ = 0 (solid
line) and x/λ = 0.5 (dashed line). Enlargement of the box shown in panel (a) is displayed in panel (b).

whose solution has the following form:

Û7(y) = Â7(y − 1), P̂3(y) = Â3(y2/2 − y), �̂3(y) = Â3(y − 1). (B18a–c)

Matching of (B18) with (B15a) and (B7c) leads to the determination of constants Â7, Â3 and the
composite solution expressed in terms of the outer variable in the form

u1,ap(y) = α−7

{
Ra2

pRe

98 304 Pr2

[
1

2
(48 + 33 Pr)(1 − y) − ( L71 + Pr L72)α(1 + y)e−2α(1+y )

]}
+O(α−8), (B19a)

�(x, y ) = α−3

⎧⎨⎩
Ra2

p

256 (1 − y) − Ra2
p

128

[
1
2 + α(1 + y) + α2(1 + y)2

]
e−2α(1+y )

+Ra2
p

512

[
α(1 + y) + 2α2(1 + y)2

]
cos (2αx )

⎫⎬⎭ + O(α−5). (B19b)

Analysis of (B19a) shows that the edge of boundary layer appears to the external flow as a wall
moving to the right adding a velocity correction linear in y (see Fig. 24). This is the mechanism
through which the heating increases the overall flow rate and decreases the driving force. The edge
of the boundary layer appears to the outer zone as a hot wall resulting in the formation of a temperature
component linear in y (see Fig. 25). The split of the temperature field into a uniform, x-independent
and conduction-dominated outer zone and a complex, convection-dominated boundary layer is clearly
visible.

The final expressions for the force and flow rate corrections, and for the Nusselt number are

�F = − 16 + 11Pr

65 536 Pr2
Ra2

p Re α−7 + 0(α−8), �Q = 61 + 41Pr

32 768 Pr2
Ra2

p Re α−7 + 0(α−8),

(B19c,d)

Nuav = Ra2
p

512
α−3 + 0(α−8). (B19e)
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FIG. 25. Variations of the temperature θ as functions of y for RaP = 1000, Re = 1, Pr = 0.71, Rauni = 0,
α = 30 at x/λ = 0 (solid line) and x/λ = 0.5 (dashed line). Enlargement of the box shown in panel (a) is
displayed in panel (b).
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