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A large variety of industrial and natural systems involve the adsorption of solid particles
to the fluidic interface of droplets in motion. A diffuse interface model is here suggested
to directly simulate the three-dimensional dynamics of a fluid droplet rising across a cloud
of large particles. In this three-phase model the two solid-fluid boundaries and the fluidic
boundary are replaced with smoothly spreading interfaces. The capillary effects and the
three-phase flow hydrodynamics are fully resolved. A special treatment is adopted for the
interparticle collisions. The effect of the particle concentration on the terminal velocity
of a rising fluid droplet is then investigated. It is found that, at low Reynolds number,
the terminal velocity of a rising fluid droplet decreases exponentially with the particle
concentration. This exponential decay is confirmed by a simple rheological model.
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I. INTRODUCTION

A large variety of systems involve the adsorption of solid particles to the fluidic interface
of droplets in motion. Important industrial applications include the stabilization of emulsions
and foams [1], the armoring of droplets moving in capillary tubes [2], along with the recovery
of mineral particles by rising gas bubbles [3,4]. The encapsulation of oceanic air bubbles in a
stabilizing organic film of particles is also remarkable phenomenon, for which the addition of a
solid constituent drastically changes the dynamics of a natural binary fluid system [5]. The direct
numerical simulation of such ternary systems is difficult. This can probably be attributed to the
complexity of the mechanism itself, in which capillary effects, three-phase flow hydrodynamics, and
interparticle collisions are all intertwined. The majority of the developed three-phase models were
used to primarily test the dynamics of a single particle trapped at a planar fluidic interface [6–8].
Some more complex simulations were also performed to study the rearrangement of ellipsoidal
particles initially placed at the fluidic interface of an immobile spherical droplet [9,10]. When
it comes to simulating the rise of a droplet across a cloud of particles, only a few attempts can
be found in the literature. We cite, for instance, the work of van Sint Annaland et al. [11], in
which the dynamics of a rising gas bubble interacting with a large cloud of pointlike particles were
simulated. Sasic et al. [12] later suggested particle-resolved simulations in a relatively small ternary
system, typically containing no more than five particles. More recently, Bogner et al. [13] reported

*g.lecrivain@hzdr.de
†taniguch@cheme.kyoto-u.ac.jp

2469-990X/2018/3(9)/094002(14) 094002-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.3.094002&domain=pdf&date_stamp=2018-09-25
https://doi.org/10.1103/PhysRevFluids.3.094002


LECRIVAIN, KOTANI, YAMAMOTO, HAMPEL, AND TANIGUCHI

Fluid constituent A

Fluid constituent B

Solid constituent S

FIG. 1. Schematic of the reference ternary system representing a fluid droplet B rising in the host fluid A.
The particles of the solid constituent S adsorb at the fluidic interface of the binary fluid.

particle-resolved simulations of a much larger system, thereby pointing out the growing importance
of fully resolved three-phase flow simulations. In a similar way, the aim of this work is the fully
resolved and three-dimensional simulation of a rising fluid droplet in a multiparticle system. The
diameter of each particle spreads over 10 grid points and that of the bubble over about 50 points.
The simulations are performed using a modified diffuse interface model, meaning that the fluidic
boundary and the two solid-fluid boundaries are replaced with smoothly spreading interfaces [14].
The three-phase diffuse interface model extends on formulations previously proposed [15–18]. After
suggesting an appropriate treatment for the interparticle collisions, found to adversely affected by
the diffusivity of the solid-fluid interface, the effect of particle concentration on the terminal velocity
of a rising droplet is investigated.

II. SIMULATION MODEL

A. Binary fluid mixture

Suppose a ternary system, in which a dispersed solid constituent representing the particle cloud
is immersed in a binary fluid mixture. A schematic of the reference ternary system presently
investigated is illustrated in Fig. 1. The capital letter “S” is hereafter introduced to denote a quantity
associated with the solid constituent. The field φS(x, t ), where x is the spatial coordinate and t the
time, denotes the volume fraction of the solid constituent. The binary fluid mixture separates into
its two immiscible fluid constituents, “A” and “B.” The constituent A represents the host fluid and
the constituent B the fluid inside the droplet. In a similar fashion, the two volume fractions φA(x, t )
and φB(x, t ) are also introduced. The separation of the binary fluid mixture into its two constituents
is driven by the minimization of the free energy

F = kBT0

v0

∫
V

f (φA, φB, φS) dx, (1)

where V is the region of space occupied by the ternary system, kB the Boltzmann constant, T0 the
temperature, v0 a reference unit volume, and f the free energy density scaled by the reference value
e0 = kBT0/v0. The formulation recently suggested by the same authors is here retained for the free
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FIG. 2. Bulk component of the free energy density fb(ψ, φS) inside and outside the solid constituent.

energy density [19,20]. The reader is referred to Appendix A for its exact formulation. Because of
the phase summation φA + φB + φS = 1, the free energy density is rewritten as f (ψ, φS), where
this order parameter is defined as ψ (x, t ) = φA − φB. The value of this parameter ψ is obtained
from the minimization of the free energy. The bulk component of the free energy density fb(ψ, φS)
is shown in Fig. 2.

Outside of the particle (i.e., φS = 0), the free energy has two stable minima. The first minimum
is located at ψ = −1 (fluid constituent B) and the second minimum at ψ = 1 (fluid constituent A).
Inside the particle (i.e., φS = 1), the free energy changes to a single well function with a minimum
located at ψ = 0 (solid constituent S). This field ψ is updated in time according to the modified
Cahn-Hilliard equation [17]

∂ψ

∂t
+ ∇ · [ψu − M (I − nS ⊗ nS) · ∇μ] = 0, (2)

where M is the mobility, I the unit tensor, nS = −∇φS/|∇φS| the local unit vector normal to the
surface of the solid particle, and μ(ψ, φS) = δF/δψ the chemical potential. Away from the particle
diffuse interface the outer product nS ⊗ nS is set to the zero tensor.

B. Solid constituent

The solid particle cloud forming the solid constituent S is decomposed into a number NS of
spherical particles with identical radius rs . The lowercase letter s ∈ S is hereafter used to denote a
quantity associated with the sth Lagrangian particle. As one moves from the inner particle region to
the outer region, the volume fraction φs of the sth particle smoothly transitions from unity to zero.
A number of smooth profiles are suggested in Ref. [21]. A truncated hyperbolic function, associated
with the interfacial distance ξS and the cutoff length ξc, is presently used to represent the spherical
shape of each particle. The exact mathematical expression for φs (x, t ) can be seen in Eq. (B1) of
Appendix B. Note that the cutoff length is primarily introduced to speed up the calculation time
because it reduces the number of times the hyperbolic function is called. The total volume fraction
of the solid constituent is then given by

φS(x, t ) =
∑
s∈S

φs. (3)
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C. Hydrodynamics

The total velocity field is resolved using the “smooth profile method,” which essentially uses
a Cartesian grid to solve the Navier-Stokes equations. In this method the total velocity field is
decomposed as u = (1 − φS)uAB + φSuS, where the first term is the velocity field of the binary
fluid and the second term the solid velocity field. This latter is defined as φSuS = ∑

φs[Vs + �s ×
(x − Xs )]. Further reading on the smooth profile method can be found in Refs. [21,22]. The total
velocity, which satisfies the incompressibility condition ∇ · u = 0, is here given by solving the
modified momentum equation

ρ

[
∂u
∂t

+ (u · ∇)u
]

= ∇ · [−pI + σ v] + ρφSfS + fc + fg, (4)

where σ v is the viscous stress tensor. The first additional term fS on the right-hand side of Eq. (4)
enforces the particle rigidity. Its exact formulation can be found in the original development of
the smooth profile method [21,22]. The second capillary term is given by fc = −ψ∇μ − φS∇μS,
where μS = δF/δφS [19]. The third gravity term is given by fg = (ρ − ρavg)g. The substraction by
the space-averaged density ρavg = ∫

ρ(x, 0) dx/
∫
dx was previously suggested for buoyancy-driven

droplet flows in a periodic domain [23]. The total density and viscosity fields are given by

ρ(x, t ) = φA(x, t )ρA + φB(x, t )ρB + φS(x, t )ρS, (5)

η(x, t ) = φA(x, t )ηA + φB(x, t )ηB + φS(x, t )ηS, (6)

where the constants ρi=A,B,S and ηi=A,B,S are the respective user-defined density and viscosity of
each constituent. Note that the two volume fractions φA and φB do not actually appear in our
implementation, since we introduced the order parameter ψ (x, t ). Hence the viscosity and the
density fields are rewritten as ρ(ψ, φS) and as ν(ψ, φS), respectively. The exact formulations are
shown in Appendix C.

D. Multiparticle dynamics

The hydrodynamic force Fhyd, the capillary force Fcap, the collision force Fcol, and an external
force Fext acting on each particle are presently retained. The equations for the translational velocity
Vs = dXs/dt , where Xs is the position of the sth particle center of mass, and the rotational velocity
�s are given by [24]

ms

dVs

dt
= Fhyd + Fcap + Fcol + Fext, (7)

Is

d�s

dt
= Thyd + Tcap, (8)

where ms = ρS
∫

φs dx is the particle mass and Is = ρSI
∫

φs�
2
s dx the diagonal inertia tensor, and

�s = x − Xs the distance vector from the particle center of mass to the spatial coordinate. The term
Thyd is the hydrodynamic torque, and Tcap the capillary torque. The hydrodynamic and the capillary
components are directly resolved. Their values are calculated by using a momentum conservation
between the solid constituent and the binary fluid mixture. A detailed description of the force and
torque calculations can be seen in Appendix D.

1. Depletion layer adjacent to the particle boundary (S1)

The reference system presently studied is composed of a binary fluid mixture, whose fluid
constituents A and B are ideally separated by a sharp interface, and by multiple hard-sphere particles
S with radii rs . In this work, however, the three interfaces A/B, A/S, and B/S are no longer sharp but
are replaced with smoothly spreading interfaces of user-defined thicknesses, which correspond to

094002-4



DIFFUSE INTERFACE MODEL TO SIMULATE THE RISE …

rij/rs = 4

(a) |Fsr
cap| = 0

r s

rij/rs = 3

(b) |Fsr
cap| > 0

ψ = 0.4

0.0

0.2

0.4

0.6

0.8

1.0

ψ

FIG. 3. Depletion layers adjacent to the boundaries of two solid particles immersed in the host consistent
A (a). The two particles are pinned. Upon a close encounter, the depletion layers deform, and the two particles
attract each other because of a short-range capillary force Fsr

cap (b).

given interfacial energies. Most of the particles are suspended in the host fluid. As one moves from
the host fluid constituent A to the particle inner region S, the order parameter ψ smoothly transitions
from unity to zero. This leads to the formation of a depletion layer across the solid particle boundary
[Fig. 3(a)].

In a multiple particle system, as is the case here, this depletion layer induces an undesired
capillary attraction. As two particles come close to each other, their respective depletion layers tend
to locally deform [Fig. 3(b)]. Subsequently, a short-range capillary force Fsr

cap arises. This scenario,
reminiscent of the liquid bridge bonding particles together [25,26], is an inevitable disadvantage
occurring when working with a diffuse interface model. The distance, at which the short-range
capillary force activates, here has a value comparable to that of the particle size, and so an affordable
computational cost is achieved. The undesired effect caused by the short-range attraction force Fsr

cap
can be further reduced by setting a smaller ratio of the interfacial thickness to the particle radius.
Counteracting this short-range capillary attraction is a central aspect of this work. We suggest
implementing the repulsive collision force acting on the ith particles as Fcol = −(Fsr

cap + ∇Uij ),
where Fsr

cap is calculated using a preliminary set of simulations (detailed in the result section) and
Uij is a truncated Lennard-Jones potential [27]. The potential takes the form

Uij =
{

4ε
[(

σ
rij

)12 − (
σ
rij

)6]
if rij < rc

0 elsewhere
, (9)

where ε is the depth of the potential well, rij = |Xi − Xj | the separation distance between the
center of masses of the ith and the j th particles, σ = 2rs + ξc the distance at which the interparticle
potential equates zero, and rc = 21/6σ the cutoff distance. The truncation suppresses the attractive
part of the potential.

III. RESULTS

The governing equations were implemented in their nondimensional form using the Reynolds
number Re, the Péclet number Pe, and the capillary number Ca. These three nondimensional
numbers are defined as

Re = ρ0U0L0

η0
, Pe = U0L0

D0
, Ca = η0U0

γ0
, (10)

where ρ0 = ρA and η0 = ηA are the density and the viscosity of the host fluid constituent A,
respectively. The reference velocity is set to U0 = √

gL0. The reference length is defined as
L0 = ξ , the diffusion coefficient as D0 = e0M , and the reference surface tension as γ0 = e0L0.
This nondimensionalization is similar to that used in previous studies on phase separation [28,29].
For the sake of conciseness, the procedure implemented to solve the governing equations is found
in Appendix D. Using the present implementation, a fluid density ratio up to ρA/ρB = 40 can
be achieved. The resulting droplet Reynolds and Eötvös numbers are calculated, based on the
droplet radius rb, as Reb = ρArb

√
grb/ηA = 0.98 and Eob = ρAgr2

b /γ0 = 0.23 for all subsequent
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TABLE I. Input parameters used in the simulation sets. The term � is the size of a grid element and N the
number of grid nodes. In S3, S4, and S5, the Eötvös droplet numbers, Eob, and the Reynolds droplet number,
Reb, are set to constant values.

Binary fluid mixture Solid constituent Collision Dimensionless numbers Grid

ξA
ξ

ξB
ξ

χ
ρA
ρB

ηA
ηB

rb
ξ

ξs
ξ

ξc
ξ

ρS
ρA

ηS
ηA

rs
ξ

NS
σ
ξ

ε

γ0ξ2 Pe Re
100

Ca
100

�
ξ

N

S1 1 1 8/3 [1-40] 1 18.3 – – – – – 0 – – 1 1 5 1 1283

S2 1 1 8/3 – – – 3 3.6 1 1 5 2 13.6 0.5 1 1 5 1 1283

S3 1 1 8/3 10 1 [16,42.6] 3 3.6 1 1 [3.75,10] 22 [11.1,23.6] 0.5 1 [1.54,0.35] [5.77,3.53] 1 [902, 2562]

S4 1 1 8/3 10 1 26.6 3 3.6 1 1 6.25 [0-300] 16.1 0.5 1 0.72 4.47 1 1602, 1603

S5 1 1 8/3 10 1 [16-42.6] 3 3.6 1 1 [3.75-10] 22 [11.1,23.6] 0.5 1 [1.54-0.35] [5.77-3.53] 1 [902-2562]

simulations. These two numbers, commonly used to characterize the shape of rising gas bubbles
in water [30], indicate that the rising droplet remains spherical throughout its ascension, thereby
avoiding the ellipsoidal bubble regime. All the subsequent results are presented for two-dimensional
and three-dimensional test cases.

A. Rising droplet in the absence of particles (S1)

First the terminal velocity of a rising droplet in a periodic domain is validated (simulation set S1).
There are no particles in the system. The input parameters used in simulation set S1 are shown in
Table I. In the Stokes regime, i.e., at low droplet Reynolds and Eötvös numbers, the spherical droplet
only slightly deforms during its rise. This allows us to compare the simulated droplet terminal
velocity Usim

b = ∫
φBu dx/

∫
φB dx with its theoretical counterpart Uth

b [31,32]. The derivation of
the theoretical terminal droplet velocity is described in Appendix E. Previous experimental and
numerical data have shown that, up to a Reynolds number Reb < 2, the drag coefficient of a
spherical rising droplet is within the well-known drag curves for solid spheres and inviscid spherical
bubbles, respectively Cd = 24/Reb and Cd = 16/Reb [33]. In the present investigated regime, the
rising droplet remains fairly spherical. The Eötvös droplet number, Eob < 1, and the Reynolds
droplet number, Reb < 2, are set to low values. It is therefore fair to compare the data with a laminar
stokes drag, which we corrected due to the periodicity imposed on each side of the domain. Figure 4
shows the error in the droplet terminal velocity as a function of the fluid density ratio.
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FIG. 4. Error in the terminal velocity of a rising spherical bubble in the absence of particles. Periodicity is
enforced on all side boundaries of the domain.
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FIG. 5. Short-range capillary force Fsr
cap calculated as a function of the normalized particle separation

distance rij . The two particles are pinned and immersed in the fluid constituent A. The repulsive force −∇Uij

is also shown.

It is seen that a good agreement is achieved for ρA/ρB > 10. An error of about 6% is achieved
in a two-dimensional and a three-dimensional domain. Note that the error is also dependent on the
interfacial thicknesses ξ , ξA, and ξB [21]. Although it not shown here, the deformation of the droplet
was also found to compare qualitatively well with the data of Hysing et al. [34] at higher capillary
numbers.

B. Rising droplet in the presence of particles

1. Calculation of the short-range capillary force (S2)

At this stage the short-range capillary force Fsr
cap is still unknown. Hence a second of set of

simulations S2, in which two pinned particles are immersed in the host fluid constituent A, is
performed. As seen in Table I, the depth of the potential wall ε is arbitrarily set to a constant value
throughout the subsequent simulations. Figure 5 shows the evolution of the short-range capillary
force calculated as a function of the particle separation distance rij − 2rs .

It is seen that the short-range capillary force decays exponentially with the separation distance.
This finding is in line with previously reported data [17]. The magnitude of the repulsive force
−∇Uij , derived from the Lennard-Jones potential in Eq. (9), is also shown.

2. Suppression of the clustering effect (S3)

The effect of the corrected collision force Fcol = −(Fsr
cap + ∇Uij ) on a multiparticle system is

here briefly tested in simulation set S3. At the initial time t = 0, the particles are randomly placed
in the host fluid constituent A, and the droplet is placed at the center of the domain. The particles
have the same density as that of the host fluid, i.e., ρS/ρA = 1. Figure 6 shows the effect of the
corrected collision force on a multiparticle system.

−1.0
−0.8
−0.6
−0.4
−0.2
0.2
0.4
0.6
0.8
1.0

ψ

FIG. 6. Effect of the corrected collision force in a multiparticle system. In panel (a) clustering occurs as
opposed to panel (b). The solid lines correspond to the reference particle radius rs . In panel (c) the ratio of the
interfacial thickness to the particle radius is decreased. The simulations are performed with NS = 23 particles.
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FIG. 7. Snapshot of the three-dimensional rising bubble in a multiparticle system: (a) low particle
concentration; (b) high particle concentration.

In case (a), the collision force is too weak to overcome the short range capillary force, hence
particle clustering occurs. In case (b), the clustering is suppressed. As expected the particles are
eventually collected at the fluidic interface of the rising droplet. After the rising droplet is completely
armored, the surrounding particles suspended in the host fluid constituent A were found to move
around and avoid the rising particle-droplet aggregate. In case (c), the ratio of the interfactial
thickness to the particle radius is decreased. A convergence study (Appendix F) showed that for
a ratio below ξs/rs < 0.4 the results become grid independent.

3. Effect of particle concentration (S4)

In simulation set S4, the number of particles suspended in the domain is varied. Figure 7 shows
the three-dimensional rising droplet at low total solid fraction [Fig. 7(a)] and at high solid fraction
[Fig. 7(b)]. See the Supplemental Material [35] for a typical animation of a droplet rising across a
particle cloud.

The fluidic interface of the droplet is defined as the isosurface ψ = 0. The mean bubble velocity
and its deviation are then calculated as a function of the number of particles. The statistics are
averaged over two flow-through times, with one flow-through time being the time it takes for the
droplet to traverse the domain height. Figure 8 shows the terminal velocity of the rising droplet as a
function of the solid concentration in the host fluid.

The concentration of the solid constituent suspended in the host fluid, which essentially is a
conversion of the number of particles suspended in A, is calculated as 〈φS〉 = ∫

φS dx/
∫
φA dx. It

is found that the terminal velocity Ub of the droplet decreases exponentially with increasing solid
concentration. This decrease is backed up quantitatively by the recent numerical and experimental
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FIG. 8. Effect of the solid concentration in the host fluid on the terminal velocity of a rising bubble in
the Stokes regime. The standard deviation of the mean bubble velocity is about as large as the symbols. The
semiempirical expression, obtained with λ0 = 4 and λ1 = 12, is extrapolated beyond its range of validity.
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observations [36,37]. For illustration purposes, an exponential fit was added to the figure. The
exponential fit takes the form Ub/U 0

b = 1 − α(1 − e−〈φS〉/β ), where α and β are two best-fit values,
and U 0

b equates the terminal velocity of the droplet in the absence of particles. With the present
best-fit function, the droplet velocity ratio equals unity for 〈φS〉 = 0. With higher solid fraction,
i.e., for 〈φS〉 → 1, the droplet terminal velocity converges to the constant value Ub/U 0

b = 1 − α.
In the present simulations, α equates to a value close to unity. It may, however, take a greater
value, should the bubble move downwards because of the gravity. A direct comparison with data
taken from the literature is difficult because the few available studies considered the rising of highly
deformable air bubbles in water [37]. The simulations are here performed with a smaller density
ratio. Based on a the rheological model of Hooshyar et al. [36], we derive semiempirical values for
the terminal droplet velocity rising across a suspension of particles. In the semidilute regime, i.e.,
for 〈φS〉 < 0.25, the apparent viscosity of the suspension A/S takes the polynomial form

ηAS

ηA
= 1 + λ0〈φS〉 + λ1〈φS〉2, (11)

where 1.5 < λ0 < 5 and 7.35 < λ1 < 14.1 [38]. In the dilute regime, restricted to 〈φS〉 < 0.02,
the above equation simplifies to the well-established analytical expression ηAS/ηA = 1 + 2.5〈φS〉
[39]. By substituting the viscosity of the host fluid in Eq. (E1) with the apparent viscosity ηAS,
a semiempirical terminal velocity can be estimated. While this semiempirical value does not take
into account the particle attachment to the fluidic interface of the rising droplet, it does confirm the
exponential decay presently observed.

IV. CONCLUSIONS

A diffuse interface model is suggested to directly simulate the dynamics of a rising droplet in the
presence of large particles. An advantage of the method lies in the fact that the capillary effects and
the three-phase flow hydrodynamics are resolved. An appropriate repulsive interparticle collision
force has been suggested to counteract the short-range capillary attraction caused by the depletion
layer adjacent to the particle boundary. This short-range capillary attraction, even though its effect
can be diminished with a finer grid resolution, is inevitable when employing a diffuse interface
model. In a second stage the effect of the particle concentration on the terminal velocity of a rising
fluid droplet is investigated. We have found that, in the Stokes regime, the bubble terminal velocity
decreases exponentially with the particle concentration. Further work will include an appropriate
extension of the current model to achieve large density and viscosity ratios similar to those observed
in industrial air-water systems.
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APPENDIX A: FREE ENERGY DENSITY

The free energy density is here given by

f = fb + ξ 2

2
|∇(φA − φB)

∣∣2 + ξ 2
A

2
|∇(φA − φS)|2 + ξ 2

B

2
|∇(φB − φS)|2, (A1)

where fb = −A(φS)ψ2/2 + B(φS)ψ4/4 [19,20]. The two polynomial expressions A(φS) and
B(φS) are derived from a fourth-order expansion of the logarithmic expression fb = φA ln(φA) +
φB ln(φB) + χφAφB, where χ is a parameter describing the affinity between the two fluid con-
stituents. The three tunable interfacial length scales ξ , ξA, and ξB preceding the gradient terms are
introduced to control the particle wettability.
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APPENDIX B: SMOOTH PARTICLE PROFILE

The following mathematical function is used to represent the spherical shape of the sth particle:

φs (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if|�s | < rs − ξc

2

0 if|�s | > rs + ξc

2
1
2 tanh

(
rs−|�s |
ξs/2

) + 1
2 elsewhere

, (B1)

where rs is the particle radius, �s (x) = x − Xs the distance vector from the center of mass Xs of the
sth particle to the spatial coordinate x, and ξc the cutoff length.

APPENDIX C: DENSITY AND VISCOSITY FIELDS

The volume fractions φA and φB do not actually appear in our implementation, since we
introduced the order parameter ψ (x, t ). Since we define ψ = φA − φB and φA + φB + φS = 1, the
two volume fractions are given by φA = (1 + ψ − φS)/2 and φB = (1 − ψ − φS)/2. In this way,
the total density field is recast as

ρ(ψ, φS) =
(

ρA + ρB

2

)
+

(
ρA − ρB

2

)
ψ +

(
ρS − ρA + ρB

2

)
φS. (C1)

In the absence of a particle, i.e., φS = 0, the density reduces to ρ(ψ = 1, 0) = ρA in the fluid A
and to ρ(ψ = −1, 0) = ρB in fluid B. While inside the particle, i.e., φS = 1, the density reduces to
ρ(ψ = 0, 1) = ρS. Across an interface, the density smoothly transitions. Similar conclusions can
be drawn for the density.

APPENDIX D: NUMERICAL METHOD

The numerical method is briefly described. For a more complete description the reader is referred
to our previous work [19–21]. Let ψn be the order parameter at the time tn. The field ψn+1 is first
advanced in time using a forward Euler method as

ψn+1 = ψn −
∫ tn+1

tn
∇ · Jndt, (D1)

where Jn = ψnun − M (I − nn
S ⊗ nn

S) · ∇μn. The position of each center of mass Xs along with the
quaternion Qs associated with the sth solid particle is then updated in time as

Xn+1
s = Xn

s +
∫ tn+1

tn
Vn

s dt, (D2)

Qn+1
s = Qn

s + 1

2

∫ tn+1

tn
An

s · Qn
s dt, (D3)

where As (�s ) is a 4 × 4 orthogonal matrix function of the particle rotational velocity [20]. After
updating all the solid volume fractions φn+1

s∈S [Eq. (B1)] and the summation φn+1
S [Eq. (3)], the

density field ηn+1 and the viscosity field ρn+1 can be advanced in time using Eq. (C1). A fractional
step approach is employed here to solve the momentum equation (4). An intermediate velocity is
first calculated as

u∗ = un +
∫ tn+1

tn

{
− (un · ∇)un + 1

ρn+1

[∇ · (−p∗I + σ n
v

) − ψn+1∇μn+1
]}

dt, (D4)

where p∗ is an intermediate pressure calculated by solving a Poisson equation ∇ · u∗ = 0 and σ n
v =

ηn+1[∇un + (∇un)
] is the viscous stress tensor. A successive over-relaxation method is employed
here to solve the Poisson equation. Note that this solver along with some of the discretization
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schemes used in the modified Cahn-Hilliard equation are not optimal. The implementation of a
more advanced numerical procedure [40] is, however, well involved. The translational and rotational
velocities of the each particle are then updated in time as

Vn+1
s = Vn

s + 1

ms

∫ tn+1

tn

(∑
F
)
dt, (D5)

�n+1
s = �n

s + I−1
s ·

∫ tn+1

tn

(∑
T

)
dt. (D6)

The hydrodynamic force and torque are derived by assuming a momentum conservation between the
particle and the binary fluid. Since the hydrodynamic and the capillary contributions are accounted
for in the calculation of the intermediate velocity, the following two time integrals are given by

∫ tn+1

tn
(Fhyd + Fcap)dt =

∫
V

ρn+1(δu∗
s ) dx, (D7)

∫ tn+1

tn
(Thyd + Tcap)dt =

∫
V

ρn+1�n+1
s × (δu∗

s ) dx, (D8)

where δu∗
s = φn+1

s (u∗ − u∗
s ) and u∗

s = Vn
s + �n

s × �n+1
s . Finally the velocity field of the entire

Lagrangian particle cloud is enforced onto the total fluid velocity field as

un+1 = u∗ +
∫ tn+1

tn

(
− 1

ρn+1
∇pS + φSfS

)
dt, (D9)

where the pressure pS is obtained from the incompressibility condition ∇ · un+1 = 0. The time
integral of the force density field is calculated as

∫ tn+1

tn
φSfS dt = φn+1

S

(
un+1

S − u∗), (D10)

where φn+1
S un+1

S = ∑
φn

s (Vn+1
s + �n+1

s × �n+1
s ).

APPENDIX E: THEORETICAL TERMINAL BUBBLE VELOCITY

The theoretical terminal velocity U th
b of a spherical bubble with radius rb rising in a cubic periodic

domain is calculated as

U th
b |3D

|Fext|/(6πηArb )
= 1 − 1.7601c1/3 + c − 1.5593c2, (E1)

where c = ∫
φB dx/

∫
dx is the fraction of space occupied by the bubble volume and Fext = (ρB −

ρA)g
∫
φB dx is the external buoyancy force [31]. In a two-dimensional periodic square domain, the

theoretical terminal velocity is given by

U th
b |2D

|Fext|/(4πηAL0)
= −0.5 log(c) − 0.738 + c. (E2)

The above expressions are valid for c < 0.25 [32].
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FIG. 9. Effect of the interfacial-length-to-particle-radius ξAB/rs on the terminal velocity of a rising droplet.
The two-dimensional convergence study was performed with NS = 22 particles.

APPENDIX F: CONVERGENCE STUDY (S5)

We first recall that the field ψ , associated with the A/B interface, varies over the interfacial length
[20],

ξAB =
√

4ξ 2 + ξ 2
A + ξ 2

B

χ − 2
, (F1)

and each solid fraction φs over the distance ξs . These two interfacial lengths here have equal values,
i.e., they are set to ξAB = ξs = 3�, where � is the grid spacing. In the following convergence study,
the ratio of the interfacial length to the particle radius ξAB/rs is gradually decreased to approach
the sharp interface limit. For each simulation in set S5, we set the droplet Reynolds number to
Reb = 0.98 and the Etövös number to Eob = 0.23. As seen in Fig. 9, below a ratio ξAB/rs < 4, the
terminal velocity is no longer affected by the grid density. In the simulations presented in the paper,
we chose a grid resolution of N = 1602 in two dimensions and N = 1603 in three dimensions, since
it reached a good trade-off between computational cost and result accuracy.
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