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Viscous fingering of a draining suspension
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The liquid drainage is a commonplace process that affects a wide array of industrial
applications ranging from medical procedures and manufacturing processes to food pro-
cessing. While many drainage-related applications involve the complex fluids comprising
solid particles, the effects of suspended particles on the liquid drainage have not been
considered, leaving simple fundamental questions on the suspension drainage unanswered.
In this paper, we experimentally investigate the effects of particles on drainage by
withdrawing suspensions from an air-filled Hele-Shaw cell in a radial sink flow. As
expected, viscous fingering arises as air invades a draining viscous suspension. Despite
numerous studies on viscous fingering, only a few have studied this “inward” viscous
fingering for pure liquids and none for suspensions. We find that, while the overall behavior
of fingering remains unchanged from the pure liquid case, suspended particles are shown to
delay the onset of fingering but also to accelerate its growth rate. This surprising dual effect
of particles results in the increase of the total drainage time and in the amount of drained
suspension as a function of particle concentrations. In addition, the particle entrainment
into the thin film of wetting oil causes particles with select sizes to remain on the channel
walls instead of draining, which closely follows our simple theoretical prediction.
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I. INTRODUCTION

Draining is a commonplace process that is present in all aspects of life. It can be as innocuous as
water draining down a sink or can have serious medical implications in the case of draining excess
fluid from the chest cavity [1,2] to treat pleural effusion [3,4]. Efficient and complete drainage also
affects a plethora of industrial applications that range from plant biotechnology techniques [5] and
biomedical manufacturing [6,7] to food processing. For instance, cleaning food production lines
requires the complete drainage of various food items which are often emulsions or suspensions
[8,9]. The drainage of suspensions is also found in the inkjet-based direct writing of biological cells
[10]. Here, the bioink suspension is ejected from a chamber and deposited onto the substrate [11,12];
other types of bioink for 3D printing may include mammalian cells [7] or bacteria [6]. Hence many
of the relevant applications of today involve the drainage of complex fluids, or suspensions.

Despite the ubiquity and diversity of problems that are associated with draining, fundamental
fluid mechanics research on drainage remains relatively limited. Progress has been made in three
distinct types of draining flows: liquid drainage from a tank through a small orifice [13–15], dip
coating of viscous fluid [16–20], and oil drainage from a confined 2D channel [21]. Despite their
differences, the focus of all three studies lies in the dynamics of the evolving fluid-fluid interface,
whether it is the deformation of the receding free surface [13–15,21] or the deposition of the thin
film on the solid surface upon liquid withdrawal [16–20].
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In this paper, we focus on the drainage of viscous liquid from an air-filled 2D channel, in which
a less wetting and less viscous fluid (air) displaces a more viscous fluid that preferentially wets
the channel. Under this circumstance, the fluid-fluid interface is unstable and leads to the onset
of viscous fingering during drainage [22]. In particular, Paterson [21] experimentally observed
that when the oil withdraws from air in a radial sink flow, the oil-air interface becomes unstable
and starts fingering towards the center hole. The analogous fingering behavior was also investi-
gated theoretically by calculating the interfacial shapes of a 2D circular drop subject to suction
[23–27]. The most striking observation here is the direct coupling between the fingering dynamics
and drainage stoppage: the oil drainage comes to a halt when the fastest growing finger reaches
the center orifice. Hence the evolution of the receding interface is the key factor in determining the
complete versus incomplete drainage of given fluid, which can affect the host of drainage-related
applications. However, compared to extensive works on viscous fingering both in rectilinear and
radial source flows [21,28–31], the study of “inward” viscous fingering remains sparse even for
pure liquids and nonexistent for more complex fluids, such as suspensions.

Given the prevalence of suspensions in draining processes and the coupled dynamics of fingering
and drainage, we presently consider the viscous fingering of a draining suspension and its effect on
draining efficiency. Despite the identical setup, our work is distinct from that of Paterson [21], due
to the complex particle dynamics especially near the draining interface. A recirculation flow near
the interface renders the particle migration inherently three dimensional, which invalidates the use
of depth-averaged theoretical tools (i.e., Darcy’s law) in our present problem. The importance of
3D effects in fingering phenomena was previously demonstrated in miscible fingering in porous
media [32–37], as well as in setting the onset of miscible fingering in a Hele-Shaw cell [38–41].
Specifically, we experimentally test the effects of neutrally buoyant particles on the dynamics of the
fastest growing finger that directly controls the total amount of drained oil, as suspensions withdraw
from a Hele-Shaw cell. The present study also adds to a growing body of work that demonstrates
the effects of suspended particles on interfacial dynamics. The previous work in this topic includes
the pinch-off of a suspension droplet [42–47], free-surface, particle-laden flows down an incline
[48–56], particle-induced viscous fingering [57–60], and emergence of various interfacial patterns
upon the injection of air into a suspension [61–65].

The experimental results in Sec. III reveal that the finger grows faster with particle concentrations
φ0, while the total drainage time and the amount of oil drainage also increase with φ0. These
contradictory results allude to the dual effects of suspended particles to delay and to accelerate
fingering. In addition, particles of select sizes are observed to coat the channel surfaces and not
drain, reminiscent of colloidal assembly in dip coating [66]. The summary and future work are
included in Sec. IV.

II. EXPERIMENTAL SETUP

We conduct the suspension drainage experiments in a Hele-Shaw cell that consists of two parallel
plexiglass plates (30.5 × 30.5 × 3.8 cm). The plates are separated by a gap thickness h = 1.39 ±
0.015 mm; the bottom plate has a small hole drilled in the center through which the suspension
is drained [Fig. 1(a)]. The suspension of the particle volume fraction, φ0, is prepared by mixing
neutrally buoyant polyethylene particles (density ρp = 1.00 g/cm3, diameter d = 130 ± 15 μm;
Cospheric) with a PMMS silicone oil (density ρl = 0.96 ± 0.01 g/cm3 and dynamic viscosity ηl =
0.096 ± 0.01 Pa s) in a syringe. The value of φ0 is varied between 0.05 and 0.2 with an increment
of 0.01.

We first inject the suspension into the Hele-Shaw cell to the radius of R0 ≈ 10 cm [Fig. 1(b)].
Notably, the maximum value of φ0 is set at 0.2 to prevent the inhomogeneous distribution of
particles and miscible fingering upon initial injection, as previously observed by Xu and colleagues
[59]. The suspension is then withdrawn from the center at a fixed flow rate Q (i.e., Q =
4.5 ± 0.25, 5.7 ± 0.15, 6.1 ± 0.2, 6.8 ± 0.35, and 9.2 ± 0.4 ml/min). A high resolution camera
(1920 × 1080 pixel images, FOV 60◦) records the suspension drainage experiments from directly
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FIG. 1. (a) Schematic of the experimental setup: suspensions are drained through the center of the Hele-
Shaw cell. Time-elapsed images are taken by the camera placed directly above. (b) Initial circular shape of
the suspension with φ0 = 0.1 and radius R0 ≈ 10 cm. (c) R(t, θ ) is defined as the distance from the center
to each point of the interface at given time, t , while s is the distance between the finger tip Rmin and R0, or
s(t ) = R0 − Rmin(t ). (d) Time-evolution images of a φ0 = 0.1 suspension that is drained at Q = 6.8 ml/min.
A finger initiates after t = 150 s and grows until it reaches the center. A(t ) is defined as the instantaneous area
of the draining suspension.

above the Hele-Shaw cell. The instantaneous radius R(t, θ ) corresponds to the distance from the
center to each point on the interface at an angle θ and is obtained using MATLAB image processing
tools [Fig. 1(c)]. We also extract the instantaneous area of the draining suspension A(t ) based on
A(t ) = (1/2)

∫ 2π

0 R2(t, θ )dθ [Fig. 1(d)] and its time rate of change Ȧ(t ). For given Q, Ȧ(t ) is
approximately constant in time but surprisingly varies with φ0, which will be addressed later in the
text. We hereby define q̄ that corresponds to the value of |Ȧ(t )| averaged over φ0 for given Q, so
that the characteristic time scale of the draining suspension is given by t̄ ≡ πR2

0/q̄.

III. RESULTS

Various physical phenomena emerge when a suspension, instead of pure oil, drains from air
in a radial sink flow. For instance, as evident in the images in Fig. 1(d), some particles are left
behind on the plates and provide pinning sites for the retracting air-suspension interface, which
can lead to complex interfacial morphologies. In some cases, particle accumulation or depletion
is observed near the retracting interface. Despite such added complexities, the most critical aspect
of inward fingering experiments [21,67] appears intact: the drainage of suspension stops when the
finger reaches the center hole, which is the focus of our present work. To ensure that the interfacial
shape is not determined by pinning, we only consider experimental data in which no pinning of the
retracting interface is observed during drainage.

Notably, only one finger emerges during the entire drainage process in our experiments, which
may be due to the range of the capillary number Ca ∼ O(10−3), as well as the size of perturbations
that are inherent to our current setup. Here, Ca ≡ η(φ0)q̄/(γ 2πR0), where η(φ0) corresponds to
the effective viscosity of a suspension, while γ is surface tension. Note that η(φ0) is replaced
with ηl when we refer to Ca from previous studies with pure liquids. Previously, multiple inward
fingers were observed when a viscous fluid drains from a less viscous fluid [21,67], but these studies
were conducted at moderate values of Ca. The inward viscous fingering in the multifinger regime
[Ca ∼ O(10−1)] was also numerically considered by Chen and colleagues [27]. The range of Ca
in the present study is consistent with the numerical simulations by Kelly and Hinch [23] who
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FIG. 2. (a) Time evolution of dimensionless deviation, s/R0, for two different initial particle concen-
trations, φ0 = 0.06 and 0.2, with Q = 4.5 ml/min. The inset image of the suspension for φ0 = 0.2 with
Q = 4.5 ml/min shows an example of fingering onset at tf = 237 s. (b) The fingering growth rate, b, is
extracted by fitting the s − t curve with the exponential function, s ∝ exp (bt ), for t > tf ; the resultant b is
then normalized by πR2

0/q̄ and plotted as a function of φ0. The inset plot shows that the dimensionless speed
of the retracting interface, |hȦ/Q|, increases with φ0.

observed one inward finger in a similar flow configuration. However, it is important to acknowledge
that the current fingering mode could also be influenced by the perturbations in our system, as the
experiments appear sensitive to the actual setup (see the next paragraph). Despite uncertainty in its
origin, the emergence of a single finger is a uniquely simple limit of an inward fingering problem.
We will presently take advantage of this simplicity and focus on the onset and growth of a single
finger only in this study.

In Fig. 1(d), the time-evolution images of the suspension of φ0 = 0.1 illustrate the typical
suspension drainage experiment set at Q = 6.8 ml/min. From the start of drainage (i.e., t = 0 s),
the suspension-air interface starts retracting towards the center; the interface moves asymmetrically
as the displacement of a viscous liquid by air is inherently unstable [21,28,31]. In our experiments,
the location of incipient symmetry breaking and fingering is observed to strongly depend on the
inherent imperfections (i.e., slight unevenness) of the plates. This is evidenced by the fact that
the fingering location changes when the plates are rotated. Hence, to keep the conditions between
the experiments consistent, we have used the identical plate configuration for all the experiments
reported here, which somewhat artificially fixes the location of symmetry breaking as a result. Going
back to Fig. 1(d), the interface becomes flat on one side at t = 150 s and starts to finger inwardly.
Accordingly, the onset of a viscous finger is defined as the moment of transition in the interfacial
shape from convex to concave and is given by tf = 165 s. Upon its formation at t = tf , the finger
continues to grow towards the center and the drainage ceases once the fingertip reaches the center
at tc = 195 s. Hence the dynamics of the finger must directly determine the total amount of drained
suspension.

A. Finger growth speed

The evolution of the growing finger is quantified by extracting the deviation of the minimum
distance to the interface Rmin(t ) from the initial radius R0, such that s(t ) = R0 − Rmin(t ). In
Fig. 2(a), the plot of s versus t at Q = 4.5 ml/min shows that the draining stops, or s(t )/R0 → 1,
at an earlier time for φ0 = 0.06 than for φ0 = 0.2. However, it is difficult to determine the fingering
growth rate from this s − t curve directly since the finger does not occur from the beginning of each
experiment. Therefore, we first extract the time of the fingering onset tf from each experiment; the
inset image of Fig. 2(a), for instance, shows that the finger forms at tf = 237 s for φ0 = 0.2 and
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FIG. 3. (a) Dimensionless time of completion of drainage, t∗
c = tcq̄/(πR2

0 ), increases with the effective
capillary number, Ca ≡ η(φ0)q̄/(γ 2πR0). Notably, t∗

c is analogous to the dimensionless volume of the drained
suspension. The inset figure shows that dimensional tc increases with φ0 for Q = 4.5 ml/min. (b) The
dimensionless time of fingering onset, t∗

f = tf q̄/(πR2
0 ), also increases with Ca; the top left inset shows the

considerably improved collapse in t∗
f as a function of modified capillary number, Caf ; the corresponding

dimensional plot of tf versus φ0 is included in the bottom right inset for Q = 4.5 ml/min.

Q = 4.5 ml/min. Then, the dimensional growth rate b is obtained by empirically fitting the s − t

curve to the exponential function, s ∝ exp (bt ), only for t > tf .
The resultant value of b is normalized by q̄/(πR2

0 ) and is plotted as a function φ0 in Fig. 2(b). At
given Q, b increases with φ0, which can be rationalized by considering the effect of suspended
particles on the overall viscosity, η(φ0). Here, η(φ0) is given by η(φ0)/ηl = 1 + 2.5φ2

m(φm −
φ0)−1 + 0.1φ2

0 (φm − φ0)−2 [68], where φm ≈ 0.62 is the maximum packing fraction. An increase
in φ0 corresponds to a higher viscosity difference between the suspension and air, or η(φ0) − ηair,
and must lead to a faster growing finger. Hence the increase of b with φ0 and, by extension, η(φ0)
qualitatively agrees with the numerical simulations of Kelly and Hinch [23] who found the fingertip
velocity to increase with the capillary number in the case of a draining liquid. Notably, Kelly
and Hinch [23] introduced an initial offset between the center of liquid and the point of drainage,
which differs from our initial condition. However, they found that the finger geometry and speed
are insensitive to the offset, which helps justify the qualitative comparison between our current
experiments and their simulation results.

B. Total time of drainage completion

From the standpoint of drainage efficiency in various applications, the most important result
to consider is the total time of drainage tc, which directly corresponds to the total volume of the
recovered suspension, or Vt = Qtc. Surprisingly, despite the increase in the fingertip speed with φ0,
tc also increases with φ0, as clearly shown in the inset of Fig. 3(a) for Q = 4.5 ml/min. This is
also evident in the s − t curve in Fig. 2(a). The counterintuitive correlation between the fingertip
speed and the drainage time demonstrates that the onset of finger formation must be delayed with
increasing φ0. Accordingly, the time of fingering onset tf is shown to increase with φ0 in the bottom
right inset of Fig. 3(b).

This delay in the fingering onset cannot be explained by simply considering the effect of particles
on the effective viscosity alone. In the pure liquid counterpart, fingering is expedited when the
viscosity ratio between the invading and defending fluids is increased [40,41]. This is in direct
contrast with the behavior of a draining suspension, in which the increase in η(φ0) increases the

094001-5



YUN CHEN, FRANK MALAMBRI, AND SUNGYON LEE

FIG. 4. (a) Normalized total volume of suspension left on the plate, V ∗
p , increases with φ0 at h = 1.39 mm,

Q. (b) Bottom: the schematics of the side view of suspension in the Hele-Shaw cell. There exists a recirculation
flow near the interface, where hs0 is the point of flow reversal and connects to the stagnation point on the
meniscus, hs. Here, h∞ is the thin flim coating the plate. Top left: the plot of streamlines of the fountain
flow near the interface based on the simplified analytic solution. Top right: normalized radial velocity, ur/ū,
is plotted as a function of z∗ at various values of r∗ from the interface. The distance from the wall at which
ur = 0 is computed to be hs0 ≈ h/5.

viscosity ratio between the suspension and invading air but clearly delays the onset of fingering.
Further studies are required to elucidate the complex role of suspended particles to delay the start
but to accelerate the inward fingering once it is formed.

The results for varying φ0 and flow rates are summarized in the plot of the dimensionless
completion and onset times, t∗c = tc/t̄ and t∗f = tf/t̄ , where t̄ = πR2

0/q̄, as a function of Ca in Fig. 3.
While t∗c exhibits a reasonable collapse across all flow rates, the plot of t∗f versus Ca suggests that
t∗f may increase linearly with the capillary number but with the slope that varies with the flow rate.
Interestingly, the collapse in t∗f is shown to improve considerably when it is plotted as a function
of the modified capillary number, Caf = η(φ0)q̄/[γ 2πRf (φ0)], in the top left inset of Fig. 3(b); no
significant change is noted for t∗c and is hence not reproduced. Here, Rf = Rmin(tf ), or the distance
between the fingertip and the injection hole at the onset of fingering [see the inset image of Fig. 2(a)].
Hence Caf incorporates both the effects of particles in modifying the effective viscosity [i.e., η(φ0)]
as well as in setting the fingering onset [i.e., Rf (φ0)]. While the choice of Caf is somewhat ad hoc
and lacks the physical insight, this further illustrates one key fact: the effect of particles in modifying
the viscosity alone does not sufficiently capture the full complexity of the current experiments.

C. Particle drainage versus entrainment

Another unexpected result is found in the dimensionless speed of the retracting interface,
|hȦ/Q|, that increases with φ0, as shown in the inset of Fig. 2(b). To explain this, we must consider
how the suspension area A(t ) is coupled to the amount of suspension that is left behind on the plate
surfaces Vp, or A(t ) = A(t = 0) − [Qt + Vp(t )]/h. Hence, at given Q, the increase in |Ȧ| with φ0

must result in the greater final volume of suspension left on the surface Vp(tc), as confirmed by the
plot of V ∗

p (tc) = Vp(tc)/(tcQ) as a function of φ0 in Fig. 4(a).
Then what causes some particles to be left behind on the plates, instead of draining into the sink?

As the air-suspension interface retracts towards the center hole, there exists a recirculation flow near
the interface as shown in the schematics in Fig. 4(b). Particles are entrained into thin films of oil
(thickness h∞) coating the plates owing to this recirculation flow and remain on the plate surfaces.
Here, r∗ = r/h and z∗ = z/h are the dimensionless coordinates with the origin at the center of the
interface. Particle entrainment into thin films of viscous liquid has been previously studied in the
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FIG. 5. (a) Plot of V ∗
p versus h/d for φ0 = 0.05, 0.1, and 0.2 shows that V ∗

p strongly depends on the
channel gap thickness, h, relative to the particle diameter, d , at Q = 6.8 ml/min. (b) A snapshot shows different
patterns of particle deposition upon the draining completion for Q = 6.8 ml/min and h = 0.94 mm. In region
I, no particles deposited on the plate. In region II, the striped pattern of particles is observed, while in region
III this periodic pattern transits to uniform deposition. Here, R0 is the initial radius of the interface.

context of dip coating of colloidal suspensions [66,69–72]. In particular, Colosqui and colleagues
[66] found that, as the plate is pulled from the bath of suspensions, particles entrain into the thin
film only when they are small enough to fit inside the shear flow region near the plate. In this line of
thought, the criterion of the particle entrainment in the present experiments is d < hs, where hs is
the stagnation point on the meniscus that separates the local shear flow from the bulk flow [66] [see
the schematic in Fig. 4(b)].

Computing hs involves resolving the local interfacial speed and shape of the meniscus coupled
to the film thickness h∞, which can be quite challenging. However, one can obtain a reasonable
estimate for hs by considering the simplified recirculation flow near the meniscus, also known as
the “fountain flow” [73]. The stream function ψ for the fountain flow [74] corresponds to

ψ = −Qz∗

4π
(1 − 4z∗2)[1 − exp (r∗√6)]. (1)

Note that ψ neglects the effect of particles on the flow itself and does not account for the shape
of the evolving meniscus and the film thickness h∞. Despite its limitations, Eq. (1) qualitatively
captures key flow characteristics for |r∗| > 0.5, or the boxed region in the schematic of Fig. 4(b).
The corresponding streamlines within the range −1.5 < r∗ < −0.5 on the top left of Fig. 4(b)
reveal the flow reversal near the wall that may redirect particles towards the meniscus. To further
quantify this reverse flow, the dimensionless radial component of velocity, ur/ū, is computed based
on ur = −(1/r )(∂ψ/∂z), where ū is the mean velocity of the interface. As shown in the top right of
Fig. 4(b), the distance from the wall hs0 at which ur = 0 corresponds to h/5 and separates the back
flow towards the meniscus (i.e., ur/ū < 0) from the draining flow (i.e., ur/ū > 0). As hs0 eventually
connects to the stagnation point on the meniscus, it works as a reasonable estimate for hs. Hence
particles whose diameter d is less than hs0 are likely to be trapped in the meniscus and entrained
into thin wetting films on the plates.

Consistent with this leading order entrainment criterion of d < hs0 ≈ h/5, the value of V ∗
p

plotted in Fig. 5(a) exhibits a steep drop from O(10−1) to O(10−2) when h/d is lowered
from 6 to 4, independent of φ0. Here, the value of h/d is varied by modulating h (i.e., h =
0.52, 0.76, 0.94, 1.15, 1.39 mm), while the particle diameter d remains fixed at 130 μm. For
h/d > 5, the value of V ∗

p is shown to diverge with varying φ0 in Fig. 5(a). In addition to the V ∗
p
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dependency on φ0, we also observe different patterns of particles that are left behind the retracting
interface (see the images in Fig. 5). While the quantitative analysis is beyond the scope of the present
study, we hereby qualitatively describe and rationalize this nonuniform distribution of particles on
the plates based on the scaling argument.

According to the seminal works on the dynamics of thin coating flows [16,66,75,76], hs/h

must scale with Ca2/3
i , where Cai ≡ μUi/γ and Ui is the time-dependent speed of the retracting

interface, not the average value that was previously used. This time-dependent nature of hs leads to
the time-dependent particle deposition and hence nonuniform distribution of particles on the plates,
as illustrated in Fig. 5(b). For instance, even when h/d > 5 (leading order criterion for entrainment),
no particles may be deposited onto the plates initially if d > hs ∼ hCa2/3

i , as evident in region I of
Fig. 5(b) with h/d ≈ 7. As hs increases close to d with increasing Ui, particles become entrained
into the thin coating film of oil in “chunks,” in agreement with the simulations of multiparticle
interactions [66] when d is slightly greater than hs. This physical picture is consistent with the
striped pattern of particles that are deposited on the plates in Fig. 5(b), region II. When d < hs

with the further increase in Ui, the periodic particle deposition transitions to uniform deposition, as
observed in region III of Fig. 5(b). Alternatively, even when h/d < 5 (no particle entrainment), we
often observe a small amount of particles that are left on the plates very close to the injection hole
where Ui and hence hs are the largest.

IV. DISCUSSION

In summary, we experimentally investigate the effect of neutrally buoyant particles on the
interfacial dynamics of a draining suspension and its influence on drainage efficiency, which are
relevant in various biotechnology and manufacturing processes. Our results show that the finger
grows and reaches the sink faster with higher φ0 that corresponds to an increase in the effective
capillary number Ca. This result qualitatively agrees with the numerical simulations by Kelly and
Hinch [23], who predicted a faster finger growth rate with Ca for a draining fluid. Despite the
increase in the fingertip speed, we find that the total time of drainage and the total volume of
drained suspension also increase when more particles are added. Hence the addition of particles can
potentially enhance the drainage efficiency of the suspension. However, the quantitative relationship
between the number of fingers and Ca as well as the finger geometry have not yet been established.
For instance, the wavelength of the maximum growth rate currently does not match the theoretical
prediction by Paterson [21]. Similarly, Chevalier et al. [63], who injected air into a dilute suspension,
found the finger width to be larger than liquid with the equivalent viscosity for h/d � 10. Currently,
no explanation is available to rationalize this deviation between the suspension and the pure liquid
counterpart and warrants further systematic investigation. One conjecture is that the nontrivial
particle dynamics normal to the plates must render our current system three dimensional, distinct
from the mostly 2D nature of immiscible fingering in a Hele-Shaw cell.

In addition, particle entrainment into the thin film of oil causes some particles not to drain but
to remain on the plates. This gives rise to nonzero V ∗

p , or the volume of suspension left on the
plates. Based on an analytic solution of the “fountain flow” downstream of the retracting interface
[73,74], we derive the particle entrainment criterion to be h/d > 5, which closely matches the
experimental results. In turn, the amount of V ∗

p directly influences the speed of the retracting
interface, as |hȦ/Q| is found to increase with V ∗

p and, thereby, φ0. Furthermore, for h/d > 5, we
observe that particles are deposited onto the substrates in a nonuniform fashion. We qualitatively
rationalize this observation by considering the stagnation point on the meniscus that increases with
the time-dependent speed of the retracting interface.

Overall, understanding the effects of suspended particles on fluid-fluid interfaces applies to
diverse engineering processes that go beyond the aforementioned applications. In particular, aspects
of the current research (i.e., particle entrainment) are directly relevant to the dip coating with
suspensions [66,69–72], evaporation of complex drops, such as blood, [77] that yield coffee-ring
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effects [78], and even nanoparticle printing [79,80]. However, despite the growing interest in
the interfacial dynamics of suspensions, many unanswered questions persist and the continuum
level description of suspensions appears to fall short. For instance, the counterintuitive correlation
between the drainage time and fingertip speed in the present study indicates that the onset of
fingering must be delayed with increasing φ0. The delay in fingering onset cannot be explained
with the increasing effective viscosity ratio between the suspension and air alone [i.e., η(φ0)/ηair],
as fingering initiates sooner with the increasing viscosity ratio in the pure liquid case [40,41]. The
effect of particles to delay the onset of fingering yet to accelerate it upon formation may require the
grain-scale understanding of the suspensions and remains the topic of future investigation. Lastly,
our present study takes an initial step towards quantifying the effect of noncolloidal particles on the
formation and dynamics of a single finger. The future work requires considering a wider parameter
space (i.e., particle sizes, channel geometry, and capillary numbers) to investigate the effect of
particles on multiple fingers, which is of interest in many biotechnology and industrial applications.
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