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Onset of three-dimensionality in supersonic flow over a slender double wedge
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We investigate the onset of three-dimensionality in a Mach 5 slender-double-wedge
flow as the turn angle at the compression corner increases. Beyond a critical angle,
the two-dimensional flow destabilizes to three-dimensional perturbations and results in
growth of spanwise periodic flow structures. We carry out global linear stability analysis
to identify the critical turn angle and the nature of the associated three-dimensional
instability. At the critical angle, an unstable mode is present in the separation bubble
and the reattached boundary layer. The mode is associated with streamwise streaks in
wall temperature downstream of the corner. The existence of the unstable mode and its
growth rate are confirmed with direct numerical simulations. It is found from budget
analysis that streamwise deceleration of the recirculating flow plays a dominant role in
the three-dimensional instability. Wave-maker analysis suggests that the instability does
not have a centrifugal origin. Linear stability analysis of the steady-state flow at an angle
beyond bifurcation is also carried out. The spanwise wavelength of the most unstable mode
obtained at this turn angle compares well with experimental observations.
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I. INTRODUCTION

High-speed flow over a double wedge is a canonical case of shock—-boundary-layer interaction
[1]. Flow deflection at the compression corner can cause the laminar boundary layer to separate
due to inviscid pressure rise. This is associated with a separation-reattachment shock system. A
strong turn angle at the corner can cause an incoming laminar boundary layer to become turbulent
post reattachment [2]. Experiments of supersonic and hypersonic flow on compression ramps and
double wedges exhibit three-dimensionality in the form of streamwise striations or streaks in wall
temperature near reattachment, which persist downstream. Streamwise vortical structures associated
with these streaks result in heat transfer with large local peaks in the span. The three-dimensional
flow structures have a destabilizing effect on the boundary layer and play a role in the transition
process [3.,4].

Streamwise streaks are observed in compression corner experiments over a range of Mach
numbers, turn angles, and wall temperatures [2,5-9]. The presence of streaks near reattachment is
not restricted to compression ramps [3]. For example, they also appear in axisymmetric geometries
such as the hollow cylinder flare [10] and oblique shock—boundary-layer interaction [11]. The
wavelength associated with the streamwise streaks is usually on the order of twice the boundary-
layer thickness at reattachment [2,12]. De Luca et al. [13] and de la Chevalerie ef al. [14] studied
the role of the unit Reynolds number and the leading edge to corner distance on the spanwise
wavelength of the streaks on a Mach 7 15° compression ramp. The wavelength was found to
decrease with increasing unit Reynolds number and with decreasing flat-plate length. Roghelia et al.
[2] found that increasing the radius of curvature of the flat-plate leading edge for a Mach 8 15° ramp
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increases the wavelength of the streaks on account of the thicker boundary layer. This suggests that
the wavelength of the streamwise vortices scales with the local boundary-layer thickness.

The observed streaks are often attributed to Gortler-like vortices [15] that arise from destabilizing
centrifugal forces near reattachment where the streamline curvature is highly concave. Gortler
instability implies a role of upstream perturbations [16] in the formation of streaks. Therefore, some
studies have proposed leading edge imperfections as the origin of streamwise streaks. However,
Matsumura et al. [17] studied streamwise vortices on a scramjet forebody geometry and mentioned
that streamwise streaks appear on HyperX even with a high-quality leading edge. Roghelia et al.
[18] demonstrated a similar spanwise heat flux pattern on two different 15° ramps in two different
experimental facilities. Zhuang et al. [19] visualized a Mach 3 turbulent boundary-layer turning
on a 25° compression ramp using nanotracer planar laser scattering and found that Gortler-like
streamwise vortices are present not only at the reattachment but in the entire separation bubble.
Priebe and Martin [20] and Priebe et al. [21] analyzed a Mach 2.9 turbulent boundary-layer turning
at a 24° corner and conjectured the presence of a global instability associated with the observed
streamwise vortices. Brown er al. [22] carried out three-dimensional simulations of a Mach 11
cylinder flare and reported that the three-dimensionality in the separation bubble can result in the
formation of heat flux streaks near reattachment independently of the Gortler instability of the
reattaching shear layer. Therefore, instabilities in the separation bubble and their connection to
streamwise streaks post reattachment merit attention.

Literature on high-speed compression ramp flow instabilities is scarce. Inger [12] first explained
the presence of three-dimensional counterrotating vortices at reattachment as a steady neutral
perturbation that can exist in reattaching flow idealized as a Hiemenz-type stagnation point flow.
The work is similar to the Gortler-Hammerlin analysis [23,24], where the stability of flat-plate
stagnation flow is investigated with respect to three-dimensional perturbations. Fletcher et al. [25]
and Cassel et al. [26] used the unsteady supersonic triple-deck equations to discover the presence
of a two-dimensional instability in the recirculation region beyond a critical ramp angle.

Several studies have focused on three-dimensional instabilities in oblique shock—boundary-layer
interaction. Oblique shock interaction is similar to compression ramp interaction, although a major
difference is the presence of an impinging shock in the former case. The inviscid flow turns once on
the compression ramp, but twice in the presence of an oblique shock impinging on the wall. Dwivedi
etal. [27] used adjoint-based optimization to obtain streaklike perturbations that can rapidly amplify
post reattachment. However, the analysis was restricted to the reattached boundary layer and did not
consider reversed flow in the separation bubble. Global stability methods [28] that can account for
flow recirculation have also been applied to oblique shock—boundary-layer interaction. Global linear
stability considers the linear stability of small-amplitude perturbations superposed on a steady base
flow state without assumptions on the spatial variation of the base flow and the directionality of
perturbation waves. This makes global analysis suitable for investigating the stability of separated
flows. Robinet [29] and Hildebrand et al. [30] have applied global stability analysis to study the
bifurcation of the nominally two-dimensional interaction to three-dimensionality in Mach 2.15 and
Mach 5.92 interactions, respectively. In the Mach 5.92 case [30], corrugation in the impinging shock
foot was found to play a role in the physical mechanism sustaining the three-dimensional instability.
Global stability analysis has also been used in the past to study the onset of three-dimensional
instability in an incompressible separation bubble [31-33], backward facing step [34], and open
cavity flows [35]. In these stability analyses, when the strength of the two-dimensional recirculation
increases beyond a critical value, a three-dimensional instability causes topological changes in the
flow [31].

We apply global stability analysis to shock—boundary-layer interaction on a slender double
wedge. Experimental visualization of regularly spaced streaks on a nominally two-dimensional flow
field over a double wedge suggests the existence of an unstable spanwise periodic perturbation.
Since the streaks are not related to finite span effects [4], the physical system presents itself as an
ideal candidate for global stability analysis where perturbations are assumed to be periodic in the
span. We consider slender double wedges where the flow turn angle at both ramps is small, close to
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10°. This is important for two reasons. First, the inviscid shock structure changes from Edney type
VI to Edney type V/IV/IVr [1] with increasing turn angle. Therefore, small- and large-turn-angle
regimes involve fundamentally different inviscid-viscous interaction. Second, on double wedges
with large first ramp turn angle, the two-dimensional boundary layer can be susceptible to large
three-dimensional perturbation growth prior to separation [36,37]. In the double-ramp experiments
by Caljouw [36], this growth is visualized via oil flow and temperature-sensitive paint as streaks
upstream of the interaction. The physical system then may no longer be simply hypothesized to
have originated from a globally unstable mode of the steady-state two-dimensional flow field. The
boundary layer undergoing separation in such a case is already three-dimensional due to the growth
of external perturbations and results in a recirculation bubble different from a two-dimensional
steady recirculation.

Moreover, if the two-dimensional steady-state flow is unstable to two-dimensional perturbations
[38,39], it is nontrivial to compute it from a numerical standpoint. Therefore, we investigate
the intrinsic three-dimensionality [40] in the slender-double-wedge flow and the associated wall
temperature streak patterns. Perturbations originating upstream of the separating boundary layer are
absent in this analysis and Gortler-like instability at separation or reattachment is not considered.
The low-pass spatiotemporal amplification properties of the recirculation bubble with respect
to extrinsic perturbations have been investigated in the case of oblique shock—boundary-layer
interaction by Sansica et al. [41,42] and in the slender-double-wedge interaction by Dwivedi et al.
[43].

Although the present work investigates the flow on a slender double wedge, the findings in this
paper also apply to a flat-plate compression ramp. This was demonstrated in Ref. [40], where the
experiment of Bleilebens and Olivier [9] on a heated flat-plate compression ramp was considered.
Here we focus on a double wedge because the reference experiment [7] incorporated a long test
time of 7 s, which is relevant to the asymptotic stability of the shock—boundary-layer interaction.

The paper is organized as follows. In Sec. II we linearize the compressible Navier-Stokes
equations in conserved variables and present a finite-volume-based discretization for the linearized
equations. In Sec. III we construct the linear stability eigenvalue problem corresponding to
the geometry and flow conditions corresponding to the experiment [7] conducted in the High
SuperSonic Tunnel at the University of Manchester on a 12°-22° double wedge. We demonstrate the
bifurcation of the two-dimensional steady-state flow to three-dimensionality via a global instability
as the turn angle at the second ramp is gradually increased. The results from global linear stability
analysis are corroborated with direct numerical simulations and a simplified physical mechanism of
the instability is presented. In Sec. IV we compare the predictions from global linear stability with
the experiment. Verification of the linearized equations is presented in the Appendix.

II. NUMERICAL METHODOLOGY FOR LINEAR ANALYSIS

We analyze the stability of the slender-double-wedge flow by investigating the associated
small-perturbation dynamics. The governing equations for small perturbations are linear after terms
involving higher powers of perturbation quantities are neglected.

Linear stability of compressible flows involves transport of two thermodynamic perturbation
variables in addition to the flow perturbation variables. Previous global stability analyses linearize
the governing equations in primitive variable sets such as (p, u;, T) [29] and (p, u;, s) [30] or the
conserved variable set (p, u;, E) [35]. We linearize the equations in the conserved variable set as its
validity and accuracy in the presence of shocks has been studied in the past [44,45]. Also, compress-
ible base flow calculations typically solve for the conserved variable set. Employing linearization in
the conserved variables is therefore relevant. We construct a global linear stability solver that is fully
unstructured and uses a finite-volume discretization for the linearized compressible Navier-Stokes
equations. The unstructured methodology is expected to make global stability analysis of high-speed
flows of complex geometry configurations more convenient.
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Later, in Sec. II B, we discuss the specific discretization employed for the present work. Our
methodology discretizes the linearized compressible Navier-Stokes equations. An alternate method
is to linearize the discretized nonlinear equations as is done via numerical differentiation by Mack
and Schmid [46], for example. The two methods have been compared by Hall et al. [47] for
conserved variable perturbations.

A. Conserved-variable-based linearization
The compressible Navier-Stokes equations in the conservation form are
U, OF,  OF)

=0, 1
ot an 8x_,« M

where U is the vector of conserved solution variables, F; = F;(U) is the inviscid flux vector, and
Fj is the viscous flux vector:

P pU; 0
pou puu; + pédy; o1
U=|pv |, Fj=|pvu;+ps;| F;= 07 . (2)
pw pwu ; + p(Sg,j 03
E (E+pu; oijui +g;

Here E = Eiy + puiuyi /2 is the total energy and Ejy is the internal energy of the gas. The viscous
momentum flux is 0;; = —u(S;; — 2/385kd;;) and the molecular heat diffusion is g; = —«9;7T. In
addition, §;; is the strain rate tensor. The viscosity of air is computed using Sutherland’s law of
viscosity u = u(T). Conductivity « for air is evaluated corresponding to a Prandtl number Pr =~
0.72. The conserved flow variables are decomposed into the base and small-fluctuation components
U = U + U’ such that |U’|| < ||U||. The prime denotes the perturbation quantities and the overbar
denotes the base flow variables. The convective flux can be expanded using a Taylor series about U
as

17 aFj / 72
F;U)=F;U)+ —| U+ 0U"). 3)
U |g

The viscous flux involves spatial gradients in the primitive variable set VI = (p,u,v,w, T) and
can be written in the form [48]

0
F'=M;—V 4
J Jkaxk 4

and decomposed into the base-state viscous flux and perturbation flux as
v v YT ™M 0 'z Py
F,U)=F;U)+M;—V +M, V. (5)
Bxk J

The matrices M;; contain the transport coefficients and can be found in the Appendix. We neglect
the terms that consist of viscosity perturbation p’ due to perturbation in temperature. Including these
terms increases the computational cost of factoring the sparse matrix, but as is observed from direct
numerical simulations (DNSs) later in the paper, their contribution to the instability growth rate is
negligible. For the freestream conditions considered in our study, we find from DNS that u’ terms
are relevant only in the region of shock-shock interaction and are at least an order of magnitude
smaller in the separation bubble and the boundary layer. The term M;/D is a rank-1 tensor and
arises from linearization of the viscous dissipation o;;u; term. Subtracting the governing equations

for the base flow state U from Eq. (1), we obtain the governing equations for small compressible
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perturbation
F] S B - OF; . — 9 —vD\—
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Since perturbations are small, the conserved variable set U" and the primitive variable set V' can be
linearly transformed. Here the matrix N is the transformation matrix such that V' = NU’. The use
of conserved perturbation variables results in a conserved form of linear governing equations.

B. Unstructured finite-volume discretization
The conserved form of linearized Navier-Stokes equations can be discretized spatially using a
finite-volume framework. The semidiscrete form of Eq. (6) can be expressed as

] ey
o +VC;[(Aj+Aj)SjU]f.=O, (7

where the subscript ¢ refers to the cell and f refers to the face. Further, Sy is the face normal vector
scaled with the face area. We apply the modified Steger-warming-type flux splitting [49] to the
inviscid linearized flux

_ _ B _ U/- + U/ _ _ U/ _ /
AU, ~ AU, +A U, = AffLTfR +(AF - A;)%, (8)
where U’f ;. and U’f r indicate, respectively, the left and the right reconstructed conserved pertur-
bation values at the face and Af = Aj S; is evaluated using (ﬁfL + UfR )/2. Writing (A}' - AJZ)
as |A|, the dissipative portion of the linearized perturbation flux can be expressed as |1_&|(U’f L=
U/f #)/2 and on the lines of the low-dissipation flux methodology of Subbareddy and Candler [50], it
may be selectively activated at shocks and contact discontinuities by convolving the expression with
an appropriate sensor «. High-order polynomial interpolation for U’f . and U/f g using neighboring
cell and gradient values may be used to increase the spatial order of accuracy [51].

While solving the compressible Navier-Stokes equations, second- and higher-order spatially ac-
curate solutions require limiting in the nonsmooth regions to ensure the total-variation-diminishing
(TVD) property of the solution. Although perturbation variables do not develop shocks, while
propagating through the shock, the perturbation characteristics encounter a discontinuity in wave
speed. Therefore, higher-order spatial discretization of the perturbation equations requires limiters.
A one-dimensional analog is linear wave propagation in heterogeneous media, where the application
of limiters results in nonoscillatory solution at the interface [52-54]. However, perturbations may
be accurately propagated through a normal shock without the use of limiters, with violation of the
TVD property. For example, a third-order upwind method predicts the transmission coefficient of
an acoustic perturbation wave incident on a normal shock within 5% for an M = 3 normal shock
(Fig. 24 in Appendix).

It must be noted that the approach followed in this work involves linearizing the governing
equations and applying the limiters to the discretized linear equations as a numerical treatment
for accurate solution. An alternate approach is linearization of the discretized compressible Navier-
Stokes equations, which involves linearization of the limiters themselves. In this work we do not
use limiters as we solve the temporal eigenproblem and do not numerically propagate perturbations
in time. For the slender-double-wedge problem considered, the oblique shock angles are small and
we find that the second-order symmetric inviscid perturbation flux (U, = Uy, U’ = Uk, and
a = 0) suffices for obtaining physical solutions to the eigenproblem, without the use of limiters on
the perturbation variables. Zero numerical dissipation also avoids damping the eigenvalues of the
normal perturbation modes, ensuring physically accurate asymptotic temporal behavior.
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FIG. 1. Illustration of the 2D stencil for linearized viscous flux computation.

The gradient operator in the viscous Jacobian A'/’- is evaluated using a deferred correction ap-

proach [55]. The cell center gradients are computed using weighted-least-squares methodology [56]

0 | _ 99 09 99
oxe , ijsJSk + ™ 8xjsjsk 9
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ceN(R) ceN(L) celN(L)UN(R)]
(10)

where ¢ is any physical quantity. As illustrated in Fig. 1 for a two-dimensional stencil, s; denotes
the face normal vector, L and R are the cells sharing f, and N'(R) is the set of cells consisting
of R and its immediate neighbors. The face gradient d;¢| s is expressed as a linear combination
of the ¢ values in the cell stencil N'(L) U N (R) with the weight coefficient associated with cell ¢
denoted by d! . The coefficient d.[LS (e)] corresponds to the gradient at cell e evaluated using the
weighted-least-squares method outlined by Shima ez al. [56], while d.[N(f)] corresponds to the
gradient at face f evaluated using ¢, and ¢ along the face normal s;. This form of face gradient is
consistent with the viscous flux used for base flow computation in the compressible finite-volume
code US3D [57].
To compute spanwise periodic global eigenmodes, we seek perturbation solutions of the form

U(x,y,z,t) = Uy (x, y)expl—i(w, + iw)t +i2mwz/2,], (11)

where X is the wavelength of the perturbation mode and w; is the growth rate. Substituting this
perturbation form in the linear system of equations (7) results in a generalized eigenvalue problem
for Ujp, which we solve using the shift-invert approach with the software PARPACK [58] and
SuperLU [59].

III. BIFURCATION TO THREE-DIMENSIONALITY

In this section we study the global linear stability of the two-dimensional high-speed flow on a
slender double wedge with respect to three-dimensional perturbations. A range of wedge turn angles
is considered. For all interactions, the flow is globally stable to two-dimensional perturbations. In
this case, constraining the DNS to remain two dimensions allows us to evaluate steady-state solution
to the compressible Navier-Stokes equations. Beyond a certain turn angle, the two-dimensional
steady-state solution is unstable with respect to three-dimensional perturbations. Using global
stability analysis, we identify the critical turn angle at which the flow first supports an unstable
mode. The spatial structure of the unstable mode is also obtained from the analysis. We verify
this three-dimensional instability by carrying out three-dimensional direct numerical simulations.
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Freestream conditions

M 5.0

Uso 792.35 m/s
Poo 1.22 kPa
T 62.5 K

Uso/Veo 13.6 x 105 m~!

FIG. 2. Slender-double-wedge geometry and freestream conditions.

Further, we analyze the physical mechanism of the instability and demonstrate that streamwise
deceleration of the separated flow plays an important role in the emergence of three-dimensionality.

A. Flow configuration and computational setup

The slender-double-wedge geometry we consider corresponds to the experiments of Yang et al.
[7]. Figure 2 shows the geometry and the freestream conditions considered in this work.

The two-dimensional steady-state flow on the double wedge is computed using the finite-volume
compressible flow solver US3D [57]. The second-order-accurate modified Steger-warming fluxes
using MUSCL limiters are employed. The numerical method for computation of the base state has
been validated with hypersonic double-wedge and double-cone experiments in the past [60]. The
solutions are time marched to steady state implicitly using the method with Courant-Friedrichs-
Lewy (CFL) number ramping. Since the enthalpy and temperature encountered in the flow field
are low, we do not consider real gas effects in this study and consider a calorically perfect gas that
follows the ideal gas law. An adiabatic wall boundary condition is imposed to match the conditions
in the experiment where the test times last as long as 7 s. For a grid with 105 K cells, the streamwise
grid resolution in the separation zone is 0.08 mm and the wall-normal transverse grid spacing in
the shear layer region is approximately 0.04 mm. In the Appendix we show that this resolution is
sufficient for global mode analysis. Increasing the resolution further has no appreciable effect on
the resulting mode shapes or associated eigenfunctions.

Figure 3 shows the Mach contours and the recirculation bubble streamlines at the compression
corner. The boundary layer separates 12.15 mm upstream of the corner, forming a separation
shock. The 899 thickness of the boundary layer at separation is L =1 mm. The separated
shear layer reattaches 11.4 mm downstream of the corner and is associated with a reattachment
shock. The separation, corner, and reattachment points associated with the two-dimensional (2D)

(a) (b)

Mach number

HE

FIG. 3. (a) Mach number field on the 12°-20° slender double wedge at the freestream conditions mentioned
in Fig. 2 and (b) 2D streamlines visualizing the recirculation region marked with the separation (S), corner (C),
and reattachment (R) points.
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FIG. 4. (a) Schematic showing the variation of the turn angle via rotation of the second ramp about the
compression corner and (b) associated bifurcation of the 2D steady flow on the slender double wedge.

steady-state flow field are marked as S, C, and R in the figures that follow. In the forthcoming
sections, we will use the boundary-layer thickness at separation L as the reference length scale for
nondimensionalization.

B. Global stability analysis

In order to investigate the onset of three-dimensionality, we evaluate the stability of the 2D flow
to spanwise periodic perturbations of the form in Eq. (11). The spanwise wavelength of the pertur-
bation is denoted by A, and the wave number is defined by g = 27 /A,. The resulting eigenvalue
problem is solved for a set of the least stable eigenvalues w. The imaginary part of the eigenvalue
w; corresponds to the growth rate of the perturbation and the real part corresponds to the frequency.

We carry out stability analysis for several base flows at different turn angles at the same
freestream conditions. As shown in Fig. 4(a), we vary the turn angle 6 by rotating the second
wedge about the corner point while the angle of the first wedge is held constant to approximately
preserve the state of the boundary layer prior to separation. Increasing 6 increases the strength of
the recirculation.

The boundary conditions on the perturbations for linear stability analysis are implemented in
the form of sponge zones upstream near the leading edge, downstream on the shoulder of the
slender double wedge, and in the wall-normal direction near the freestream. The sponge zone is
implemented using a blending function 8 (x, y) that varies from O in the interior to 1 in the boundary
sponge zones. The global matrix entry A; ; is obtained from the sponge-free nondimensional system
matrix A;; as

. 08;;
Aj=A;1-0)+—L, e=10"".
€

The function 6 consists of a tanh-based sigmoid function of the type tanh[(x — x¢)/l;] as an
indicator of where the perturbations must decay to zero. In the present case, the left and the right
boundary 6 functions are centered at xo = 3.5 and 82.0 mm, respectively, with [, = 1 mm. The
modes reported in this study are found to be insensitive to the strength and location of the sponge,
provided they are away from the recirculation region.

For the geometry and conditions considered in this study, we find that the least stable eigenvalue
is three-dimensional and nonoscillatory, i.e., w, = 0 and 8 # 0. Figure 5 shows the eigenvalue
spectrum at A, ~ 6.28 for 6 at 7.5° (black) and 8° (red). The spectra for the two turn angles show
that an increase in 6 increases the growth rate w; associated with the least stable mode and beyond
the critical angle the 2D flow becomes unstable to 3D perturbations with w; > 0.
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Eigenvalue spectrum for \. /L = 6.28
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FIG. 5. Growth rate vs angular frequency: shift in the eigenvalue spectrum at the least stable A, with an
increase in turn angle at bifurcation.

The analysis is repeated for different perturbation spanwise wavelengths A, and it is found that
the growth rate w; peaks at a specific spanwise wavelength, selected by the base flow. With respect
to perturbations with very large and vanishingly small wavelengths, the base flow is found to be
stable for all turn angles (Fig. 4).

Figure 6 shows the 2D cross section of the perturbation variables corresponding to the most
unstable eigenmode and the three-dimensional visualization of w’ and T’ isosurfaces. All the
perturbation variables are real, except w’, which is 90° out of phase and is purely imaginary.
While the spanwise perturbation velocity is confined to the separation bubble, the perturbation
in temperature is present well within the reattached region of the boundary layer. The pressure
perturbation field exhibits periodicity in the streamwise direction with a wavelength that is
approximately equal to the separation bubble length. We also note that the velocity perturbation
components u#’ and v are in phase with respect to spanwise variation. The pressure component in
the upstream half of the separation bubble is 180° out of phase with u’. The w’ component is 90°
out of phase with u’ and p’.

To illustrate the role of the three-dimensional instability on the topology of the recirculation, we
superpose the unstable mode on the base flow with the three-dimensional velocity field obtained
as u; = il; + eu}. Here u; denotes the normalized perturbation velocity field and the parameter
€ denotes the amplitude of the perturbation. The perturbation velocity field is normalized by the
L? norm of the nondimensional perturbation vector. Freestream base-state values are used for
nondimensionalization. The resulting three-dimensional flow field is therefore a function of the
amplitude of the eigenmode imposed. Small amplitude causes a small deviation from the two-
dimensional state but changes the flow topology. As shown in Fig. 7, the flow inside the recirculation
bubble organizes into 3D cells of spanwise length X,/2. These cells are bounded in the spanwise
direction by xy planes where w = 0. Because no flow can cross these planes, fluid elements
belonging to a cell never leave it. Within a cell, however, fluid elements follow three-dimensional
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/ g / v

FIG. 6. Unstable eigenmode at A,/L = 6.28: 2D slices and 3D isosurfaces of different perturbation
variables.

paths. One edge of each cell coincides with the spanwise location of maximum recirculation bubble
strength, while the other edge coincides with the location of minimum recirculation strength. The
cell pair repeats across the span.

To understand the three-dimensional flow within a cell, we consider the flow’s critical points, in
a manner similar to the analysis of Theofilis et al. [31]. In each xy plane, one critical point can be
found at the center, or core of the recirculation bubble. A critical point in a plane is defined as the
point where the in-plane velocity vector is zero. Because of the three-dimensional nature of the flow,
this critical point can be a stable spiraling focus, an unstable spiraling focus, or a center. At the edge
of the cell that corresponds to maximum recirculation strength, the core critical point is an unstable
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(a) Flow (b)

g

cell
%
“f.

A\

A\

FIG. 7. (a) Topology of the 3D bubble reconstructed with u; = i; + €u;, ¢ = 2. The streamlines on the top
are red (1; > 0) and those at the bottom are blue (x; < 0). (b) Simplified model of the 3D bubble structure with
foci marked as squares (red denotes unstable and blue denotes stable).

cell

focus, while at the opposite end of the cell, coinciding with minimum recirculation strength, the core
critical point is of stable spiraling focus type. The flow expelled at the unstable focus spirals towards
the stable focus along an outer corkscrew-type trajectory. Flow movement towards the stable focus
is strongest at the outer periphery of the recirculation cell. As the outer flow approaches the plane
of minimum recirculation, it is attracted back into the core. In the core, flow travels in span in the
opposite direction, making the flow in the cell self-contained in the span. Figure 7(b) illustrates the
topology of this three-dimensional flow pattern. In the core of the recirculation bubble, the flow
from the stable focus to the unstable focus transports spanwise vorticity from regions of minimum
to the regions of maximum recirculation, reinforcing the instability.

We can also understand the flow topology by considering no-slip critical points along the wall,
as shown in Figs. 8(a)-8(c). In this view, the separation line is an attractor where streamlines from
the oncoming flow meet those of the recirculating flow downstream. Conversely, the reattachment

)

////////g////////////

/|

FIG. 8. The 3D bubble reconstructed with u; = it; + €u; with increasing mode amplitude € =5 (left
column), € = 10 (middle column), and € = 20 (right column): (a)—(c) critical points on the wall streamlines
(circles denote nodes, stars denote saddle points, and squares denote foci; red denotes unstable and blue denotes
stable), (d)—(f) volume streamlines colored with 7’ (red is positive and blue is negative), and (g)—(i) the vortex
tube passing through the stable foci.
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TABLE 1. List of DNS runs for GLSA verification.

Run no. 0 L, (mm) L,/A, Initial condition Verification

1 8.0 14.0 2 Up flow becomes three-dimensional

2 7.5 14.0 2 Uxp flow remains two-dimensional

3 8.0 28.0 4 Up A, with the highest growth rate

4 8.0 14.0 2 Uyp + €U growth rate

5 8.0 7.0 1 Uyp + €U wall streamline topology near nonlinear saturation

line is a repulsor where flow impinging on the wall splits and turns both upstream and downstream.
The three-dimensional perturbation imparted by the global mode forms an alternating series of
saddle and stable-node critical points along the separation line and a series of saddle and unstable-
node critical points along the reattachment line. For the compression ramp, we observe that the
stable nodes along the separation line align with the unstable nodes along the reattachment line
downstream. This is the same pattern as that observed for incompressible separation bubbles [32],
but is different from the pattern observed for oblique shock—boundary-layer interactions. In the latter
case, the stable and unstable nodes were 180° out of phase [30].

As the amplitude of the perturbation is increased, although the basic structure of the 3D cell
remains the same, the flow structure evolves. Increasing € and its effect on critical points at the wall
is shown in Figs. 8(a)-8(c). In addition to the critical points in the separation and reattachment lines,
critical points appear within the separated flow region beyond a certain perturbation amplitude. The
stable foci move closer to the wall with increasing € and eventually attach to the wall. This may be
understood physically by visualizing a straight vortex line along the z axis in the two-dimensional
base flow. As can be seen in Figs. 8(g)-8(i), the vortex line develops spanwise undulations that
grow as a result of the instability. Beyond a certain critical amplitude, the vortex line splits and
attaches to the wall, connecting with its image. Also, Figs. 8(d)-8(f) show that T’ is positive at
the foci and negative away from them. The velocity field reconstructed with a large-amplitude
perturbation (€ > 0) reveals interesting flow features. The counterrotating streamlines on the wall
are similar to those observed due to corner vortices in oblique shock—boundary-layer interaction
with a turbulent incoming boundary layer [61]. Similarly, the spanwise tornadoes shown in Fig. 8(f)
have been observed earlier via particle image velocimetry in the work of Dussauge et al. [62].

C. Direct numerical simulations

In this section, we use DNSs to verify the existence of the three-dimensional instability and
dominant spanwise wavelength, independently of linear analysis, the growth rate of the linearly
unstable eigenmode by introducing the mode obtained from GLSA into the DNS, and the appear-
ance of late-time wall-streamline pattern as predicted from linear analysis. We use low-dissipation
second-order spatially accurate kinetic-energy-consistent fluxes in the US3D hypersonic flow solver
to perform DNS. Crank-Nicolson implicit time marching is employed with a CFL number of 5,
which we found to be low enough such that lowering it yet further did not change the evolution of
the three-dimensional perturbations. A 3D grid created by spanwise extrusion of the 2D grid used
for the steady base flow calculations is used. Periodic boundary conditions are applied in the span.
In all DNS runs, the spanwise resolution is fixed at 32 grid points per wavelength corresponding to
the most unstable perturbation mode.

The set of DNS cases considered in this study are listed in Table 1. As a first check, we
first consider two DNSs (run 1 and run 2) corresponding to 6 = 8.0° and 7.5°, respectively.
According to global stability analysis, the former should remain stable to 3D perturbations while
the latter should be unstable. While we do not initialize either simulation with three-dimensional
perturbations, numerical round-off error provides an extremely-low-level three-dimensional forcing
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FIG. 9. Spanwise perturbation velocity w’ in DNS run 3 at approximately tU,,/L = 6000 (a) on the z
plane (GLSA mode overlaid for comparison) and (b) from the top view of near-wall planes.

—
=2

in both cases. After running the simulation for a long time, we observe that three-dimensional flow
structures emerge in the 6§ = 8° flow, but the & = 7.5° run for the same amount of time remains
two-dimensional. This confirms that the global stability analysis does indeed predict the onset of
three-dimensionality in double-wedge flow and that DNS is consistent with the stability analysis.

Furthermore, we observe that the three-dimensional flow structures in the case of & = 8° have
spanwise wavelength A, corresponding to the wavelength associated with the highest growth rate
predicted from linear stability analysis [see Fig. 4(b)]. To check that this A, is independent of the
spanwise length of the computational domain, we perform a third DNS (run 3) at 6 = 8° but with
a computational domain having twice the spanwise width. This simulation resulted in structures
having the same spanwise wavelength as the first simulation, run 1 [run 1 captured two spanwise
wavelengths, while the simulation with the double spanwise domain captured four, as can be seen in
Fig. 9(b)]. This demonstrates that, besides predicting the onset of three-dimensionality, the global
stability analysis predicts the spanwise wavelength of the three-dimensional flow structures that
emerge from the 2D flow.

Figure 9(a) shows a comparison of the mode shape predicted by global stability analysis and
a slice through the three-dimensional flow that develops in run 1. The qualitative agreement is
remarkable, indicating that global stability analysis accurately captures the essential flow physics of
the predicted three-dimensional double-wedge instability. A quantitative comparison of the profiles
is shown in Fig. 10. The w profiles in the figure are lifted and more amplified downstream in
comparison to the linear stability results. This is not a surprising result. As the instability grows,
it affects the upstream boundary layer and the separation shock, resulting in modifications to the
nominally two-dimensional state. We must emphasize that Fig. 10 does not serve as a verification
exercise for linear analysis.

To further verify the global stability results, we measure the growth rate of the three-dimensional
perturbation in the DNS. We run the 6§ = 8° case initialized with the linearly unstable global mode

(a)

7 (1073 m)

10* v’ /Uss 10* w' /Uss 10* v’ /Uss

FIG. 10. Profiles of w from run 1 at late times compared with w’ of the most unstable eigenmode of the
2D steady-state flow for (a) §/L =8, (b) §/L =13, and (c) §/L = 18.
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overlaid on the base flow. To save computational resources, we choose a smaller spanwise domain
width such that only one spanwise wavelength is contained within the domain. As can be seen in
Fig. 11(a), after a brief transient, the perturbation grows exponentially at the rate predicted by the
global stability analysis.

After a very long run time, the global mode in the DNS grows enough that the stable foci in the
bubble core attach to the wall [Fig. 11(b)]. When this happens, we observe the foci to form in the
wall streamlines just as predicted from global stability analysis (see Fig. 8). While the perturbation
eventually undergoes nonlinear saturation in the DNS, it is interesting to note that the predictions
of wall-streamline patterns obtained from linear analysis hold true even after timescales on the
order of 400 flowthrough times. However, we do not simulate the three-dimensional flow field to its
asymptotic state as the small growth rate of the instability results in large computational cost.

D. Physical mechanism of instability

In the previous sections we have demonstrated the presence and investigated the evolution of the
three-dimensional instability using global linear stability analysis and direct numerical simulations.
In this section we analyze the physical mechanism driving the instability. This is important because
the least stable eigenmode is structurally similar, below and above the critical turn angle 6,.
However, while the mode decays at 8 < 6., it is amplified for 6 > 6,. Specifically, we identify
the imbalance in the modal dynamics that causes growth.

The transport equations for the perturbation quantities p’, u;, p’, and T’ can be written in the
form

Transport 7 Production P Linearized Lagrangian source S Viscous V

——
ap’ ap’ ap o\
LU R (UA Y (12)
ot a)Cj J 8)Cj 8Xj
u; u; ) 0t 19p 197,
Qi g, 0 _(ou) 9 13p L Lo (13)
ot 0x; o 0x;j p 0x; p 0x;
ap’ _ ap' L 9p u;\ du; g,
— i— = —u',— - — -D|lui—+—]), 14
ar Mo, T Mok Y\Pox; =Dl i T, (14
aT’ T’ T dui\ y—1( du; dq;\
4 g =y = — (v —1 ' Ti— +—L], 15
ot T ij " 8)Cj (]/ )< 8Xj> + pcy ( J 8xj + ij) (15

where we have categorized the terms into transport 7, source S, production P, and viscous V terms.
The transport terms arise due to advection of the perturbation by the mean velocity. The production
terms, which can be positive or negative, arise from the nonlinear advective term with «; acting on
the mean flow gradients. The source terms correspond to the perturbation component of the inviscid
material derivative of the perturbation. For example, in Eq. (12), the source term is (—pV - u;)’
which when linearized, is o'V - &; + pV - u.

In general, any term in one of the four categories mentioned above can amplify or suppress the
perturbation locally. If we quantify the perturbation at a point in space using an energy norm, each
term may then be identified as an amplifier or a suppressor by its contribution to the energy norm.
We choose the Chu energy norm Ecg [Eq. (16)] proposed in Ref. [63] to evaluate the contribution
budget. The Chu energy norm ensures that the time evolution of perturbation energy norm is
independent of term involving p’V - u’. This takes into account the kinetic-energy—thermal-energy
exchange within the perturbation dynamics and avoids unphysical growth in perturbation energy
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(a) (b)
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FIG. 11. (a) Comparison of the growth rate (for 1,/L = 6.28) of the unstable eigenmode between DNS
and global linear stability analysis and (b) appearance of foci on near-wall streamlines in the DNS flow field

(for run 5 with tU, /L ~ 2.3 x 10%). Near-wall streamlines are in white and volume streamlines and the wall
are colored by temperature.

norm evolution [64]:

1 PP\ Em [T\
Ecg = —pulu, + (2 S 16
CE 2pu,u,+2(ﬁ> + ) T ( )
QEcE+T =P+S+V, (17)

where
T =B/P)P DTy + pw;/2)Ty + (Eint/ T )T /2) Ty,
P = (p/p)p /2Py + b} /2)Pu; + (Ein/T>)(T'/2)Pr,
S = (p/P )P 1Sy + pu;/2)Sy; + (Eint/ T )T /2)Sy
= —3i(p'u}) — poit:[(p'/p)* + (T'/T)],
V= pW;/2)Vy + (Eie/T*)T'/2)V7.

The terms that correspond to the four categories for the perturbation energy are obtained by
contracting Eq. (13) with pu;, Eq. (12) with pp’/p?, and Eq. (15) with EinT'/T? and adding them
together. This results in Eq. (17). It is important to note that the term categorization is dependent
only on perturbation dynamics [Eqgs. (12)—(15)] and not the definition of the perturbation energy
norm [Eq. (16)]. For example, the transport term 7 for Chu’s energy is different from i ;9; Ecg. The
norm chosen in this study therefore does not have any physical implications in the budget analysis
other than the weighting of the different perturbation components.

To evaluate the contribution budget along the streamwise direction &, we integrate the term
associated with each category in the wall-normal direction . Here the 2D separation point marks
& = 0 such that the streamwise coordinate values are £/L ~ 12 at the compression corner and
&/L ~ 24 at the 2D reattachment point,

L
F(0,Ece)=F(§) = /0 0, Ece(&, n)dn.
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FIG. 12. (a) Wall-normal integrated rate of perturbation energy Ecg plotted along surface co-ordinate &
for the stable and the unstable turn angle and (b) budget of contribution from individual terms F (0, Ecg) for
0 = 8°; Bezier fits are plotted. Asterisks indicate the corner (§/L = 12.2) and base flow reattachment point
(§/L = 23.6); the separation point £ /L = 0 is outside the plot range.

Figure 12(a) shows the wall-normal integrated contribution F associated with the perturbation
energy Ecg. The integrated amplification factor F (9, Ecg) is negative for a stable wedge turn angle
and is positive for an unstable turn angle.

The budget plot [Fig. 12(b)] shows that the production term dominates in the separation bubble,
while the transport term is the dominant destabilizing term in the reattached boundary layer
downstream of the bubble. The difference in the two angles is that the stronger interaction (larger
turn angle) increases the magnitude of the contribution associated with each term. Past the critical
turn angle, the amplifying terms surpass the suppressor terms in magnitude and the net result is that
the perturbation mode is amplified in time. We should note that the production term is itself a sum
of multiple terms involving streamwise and wall-normal velocities and derivatives. For example,
within the production term for streamwise velocity perturbation energy u’g /2, the amplification

factor of —M’éagﬁg is the largest. Here u; denotes the streamwise velocity component. In the
discussion that follows, we will denote the local streamwise velocity component u; by u and the
local wall-normal velocity component u,, by v for readability.

The budget analysis provides us with information about how and where the perturbation mode is
primarily amplified. We show that the driving mechanism behind the growth of the eigenmode
can be traced to a local exponential instability. We begin by tracking the growth of spanwise
velocity which causes flow three-dimensionality. By examining the magnitude of the terms in the
spanwise velocity perturbation equations, we find that the term involving p’ provides the largest
amplification. Therefore, growth of w’ is attributed to development of spanwise pressure peaks and
valleys. Similarly, examining the evolution equation for p’, we find that the peaks and valleys are
produced by u’ perturbations. However, the mechanism of p’ amplification in the upstream half
and the downstream half of the bubble is different. In the upstream half, pressure perturbations are
amplified by u’ acting against the mean adverse pressure gradient, while in the downstream half,
dilatation of the perturbation V - u’ is the primary destabilizer. The largest term constituting V - u’
is dzu’ involving streamwise velocity perturbation. After w’ and p’, we then scrutinize the terms in
the u’ equation. The production term —u’d# is found to be the primary amplifier term. Streamwise
deceleration in the recirculating flow 9 < O results in local u" evolution of the form 1’ ~ ku’,
where k is a positive real number. This is an exponential growth equation.

Figure 13 shows that the base flow deceleration amplifies u’ inside the recirculation bubble. The
physical intuition behind this inviscid instability may be invoked from rapid distortion theory where
compression of mean flow leads to growth of perturbations, while straining of the mean flow makes
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Contribution of base flow deceleration
to growth of perturbation mode

—ululoiu; >0

Base flow streamlines
Separation streamline in blue

FIG. 13. Lines colored on a white-red scale mark the region where the contribution of the mean flow
deceleration term to the perturbation energy is positive; mean flow streamlines are plotted in gray for
comparison.

the perturbations decay. The dominant physical mechanism driving the growth of spanwise flow
structures may therefore be described in the schematic shown in Fig. 14.

The n-z plots in Fig. 14 show one spanwise wavelength of the perturbation. The w’ = 0 planes
are seen to contain the two cells mentioned in Sec. III B. In the upstream half of the bubble, the
spanwise movement of fluid in the bubble is towards the center (stable node at separation; see
Fig. 8), while in the downstream half of the bubble, it is away from the center (unstable node at
reattachment). We had earlier visualized the streamline topology associated with this perturbation
field using blue colored streamlines in Fig. 7(a). As fluid moves from the high- to the low-pressure
region, p’ and w’ can be seen to be 90° out of phase.

Previously, we traced the cause of growth in w’ to growth in u’. Similarly, by following the
dominant amplifying terms, we can identify the driver mechanism of 7’ streaks. Temperature
perturbation is produced primarily by wall-normal velocity perturbation v” working against the base
wall-normal temperature gradient 3,7 in the reattaching shear layer. The primary amplifier term for
v’ is found be u'9: v. Separately, in the entirety of the bubble, V - u’ also amplifies 7’. Therefore,
like w’, growth of T’ is indirectly driven by u’.

Although we have postulated a simple local model for the physics that drives the exponential
growth of the perturbation mode, the global nature of the instability involves all terms actively
operating together, particularly the transport terms. The transport of perturbations and the global
nature of the perturbation mode are physically synonymous.

E. Structural sensitivity

In the preceding section we identified the physical mechanism that drives the instability. Here we
leverage the adjoint linearized Navier-Stokes equations to identify the regions in the flow where
the unstable eigenmode is most sensitive to perturbations. The adjoint mode corresponding to
the unstable mode (or the direct mode) corresponds to the perturbations that optimally initiate or
external perturbation inputs that optimally trigger the unstable perturbation eigenmode in response
[65]. We obtain the adjoint mode corresponding to the direct mode (perturbation eigenmode
discussed in Sec. III B) by computing the adjoint eigenvalue problem associated with the discretized
direct linear system (7). Figure 15(b) shows the adjoint mode corresponding to the spanwise
momentum and is denoted by a plus sign superscript. The (pw)™ mode may be contrasted with the
(pw) component of the direct mode. While the direct mode is present primarily in the separation
bubble and the reattached boundary layer, the adjoint mode is present in the upstream half of the
separation bubble and all the way upstream in the incoming boundary layer. Physically, the modulus
of the adjoint map in the plot represents the spatial region in which the linearly unstable direct
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FIG. 14. Dominant mechanism of instability in the recirculation region: (a) mechanism in the upstream
half of the bubble (£/L = 8) and (b) mechanism in the downstream half of the bubble (£/L = 17); & goes
into the plane. The compression corner is at £/L = 12. The z axis is stretched by a factor of 1.5 for clarity of
illustration.

mode is most receptive to external spanwise momentum forcing or the initial spanwise momentum
perturbation.

In supersonic flow past compression corners, the presence of streamwise streaks near reattach-
ment is often associated with Gortler-like vortices arising from centrifugal instabilities due to strong
mean flow curvature. To understand whether the three-dimensional instability originates in the
region of high streamline curvature, we compute a spatial sensitivity map of the eigenvalue w of
the direct mode using the method of Giannetti and Luchini [66]. The map helps locate the core of
the three-dimensional instability by evaluating the strength of the local feedback of the unstable
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FIG. 15. (a) Direct mode corresponding to spanwise momentum perturbation and (b) the corresponding
adjoint mode.

mode onto itself. The core therefore has high sensitivity as well as large perturbation response
from the mode. At the core, a local modification to the structure of the global eigenvalue operator
produces the greatest change in the eigenvalue or, equivalently, the growth rate of the eigenmode.
For oscillator-type instabilities, the region is often referred to as the wave maker. The eigenvalue
drift [dw| caused by a spatially localized feedback of the form f = §(x; — x; 9)U can be shown [66]
to be bound by the wave maker A (x; ),

[U* G UG

Alxi) =
() =" g vay

(18)

Here U’ and U™ correspond to the direct and the adjoint eigenmodes associated with the eigenvalue
w. Further, V is the domain and 6 represents the Kronecker delta function. The instability mechanism
resides in the region where the direct and the adjoint modes overlap and is strongest where A is
maximum. The growth rate of the unstable eigenmode is most sensitive at that specific location to
a change in the two-dimensional base flow. In the case of the current unstable mode, Fig. 16(a)
shows that A peaks near the core of the separation bubble. Interestingly, this location coincides
approximately with the location where production of Ecg peaks. The wave-maker analysis therefore
establishes the instability mechanism at the core of the separation bubble.

Separately, we compute the Rayleigh coefficient A [Eq. (19)] and plot it alongside the eigenvalue
sensitivity field A in Fig. 16 to compare the regions associated with centrifugal instability and the
unstable global mode. A negative value of A is an inviscid criterion for the existence of short-wave
centrifugal instabilities [67]. The Rayleigh discriminant is defined as

A =2/uiuiw, /R, (19)

where R is the radius of curvature of the local streamline. The Rayleigh criterion is satisfied around
the separation and reattachment regions, indicating that the wave maker associated with the global
instability and the regions with A < 0 are spatially decorrelated.

*S
FIG. 16. (a) Contours of receptivity to spatially localized feedback A in blue superimposed on the

separation bubble streamlines (gray) and (b) regions with A < 0 (red) plotted alongside the region with
A > 0.1A. in blue.
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FIG. 17. (a) Growth rate of unstable perturbation modes vs spanwise wavelength A, for 6 = 10° and
(b) eigenvalue spectrum corresponding to the most unstable spanwise wavelength A,/L = 2.3 mm.

IV. COMPARISON TO EXPERIMENTAL OBSERVATIONS

Experimental visualization of wall temperature via temperature-sensitive paint measurements
has been reported for the present geometry and freestream conditions at a turn angle & = 10° in the
work of Yang et al. [7]. The value of 10° is beyond the bifurcation point in the turn-angle parameter
space. Nevertheless, we evaluate the global linear stability of the two-dimensional steady-state flow
on this configuration to test the linear predictions against an experiment.

The validity of the two-dimensional steady flow on & = 10° as a base state may be justified from
an initial condition perspective. In the experiment, the flow sets up from rest Uo, = 0 m/sto Uy, =
792 m/s within a timescale on the order of milliseconds. Beyond the critical Re, when the flow
becomes unstable to three-dimensional perturbations, the experimental flow does not move towards

*R
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/// B4 (Im) _“/ B5

FIG. 18. Spanwise component of the perturbation velocity w’ for different unstable mode branches
identified in Fig. 17 with blue denoting negative and red denoting positive values. Here (Re) and (Im) refer
to real and imaginary components, respectively. The w’ fields correspond to normalized eigenvectors of the
nondimensional linear system.
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(a) Top view of Tan from experiment [7] (b)
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FIG. 19. (a) Streaks in wall temperature on the second ramp and (b) isosurface of temperature perturbation
corresponding to the unstable eigenmode at A, /L = 2.2 for 6 = 10°. The reattachment point corresponds to the
2D steady-state solution with adiabatic wall boundary conditions. The scales along the horizontal and vertical
directions in (a) are the same [7].

the equilibrium three-dimensional flow state and then onward as would be the case in numerical
continuation. Before the three-dimensional instability of the marginally unstable 2D steady flow sets
in, the freestream velocity increases. Therefore, if the flow that initially sets up in the experiment is
the 2D steady state, the associated three-dimensional instabilities can be physically relevant.
Figure 17(a) shows the unstable modes obtained for 6 = 10° on a w;-A, plot. The two-
dimensional steady-state flow is stable to two-dimensional perturbations. Here the nondimensional
length scale L = 0.001 m is kept unchanged from previous sections for consistency but does not
represent the base flow boundary-layer thickness at separation for 8 = 10°. In contrast to the 8 = 8°
case, several unstable modes are obtained, including unsteady modes (shown in red). The modes are
tracked by the spatial signature of the eigenvector and are divided into several mode branches. The
most unstable mode is a stationary mode, similar to the 8° case, albeit with a smaller wavelength
than in the 8° case. Investigation of the spatial map of the eigenvector reveals that this mode is
structurally different from the mode that was most unstable at the bifurcation angle. We refer to this
new mode branch as B2, while the mode branch that destabilizes the flow at 8° is labeled as B1.
Figure 18 shows the w’ component associated with the different mode branches. The difference in
B2 and B1 is clearly observed. In B2, w’ is localized near the core of the separation bubble, slightly
downstream of the corner, whereas in B1, w' is present in the entirety of the separation bubble. The
wavelength from the experimental temperature-sensitive paint (TSP) visualization can be seen to
compare well with the most unstable wavelength predicted by global linear stability analysis. This

wr — A\, —w; plot (6 =10°)

0.04
0.03
wil/Uss 0.02
0.01

0.00

FIG. 20. Loci of the eigenvalues in the growth-rate—frequency—spanwise wavelength space. Projections on
the w;-w, and X;-w, planes are shown in gray.
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makes the unstable stationary global mode B2, a potential source of streamwise wall temperature
streaks observed in the experiment. The T’ isosurface associated with B2 is plotted next to the TSP
images from the experiment for comparison (Fig. 19).

In addition to the stationary branches, two unstable oscillatory mode types, B4 and BS5, are
observed [shown in red in Fig. 17(a)]. Branch B4 forks into B3 and B2 as the wavelength A,
is decreased. In the eigenvalue plane w;-w,, the two conjugate eigenvalues associated with B4
come closer to the w; = 0 axis, merge (at the junction), and then move away from each other
along the w; = 0 axis, forming B2 and B3, respectively. Figure 20 helps visualize this movement
in the w,-A,-w; three-dimensional space. The angular frequency w, associated with the mode B4
changes with perturbation wavelength A,. The real and the imaginary part of the B4 eigenmode in
Fig. 18 are found to resemble the steady mode branches B2 and B3, respectively, indicating that the
unsteadiness is associated with the perturbation oscillating between the two stationary instabilities.

The oscillatory mode B3, in contrast to B4, has a constant angular frequency independent of A,
with the nondimensional value w, = 0.1. The eigenvalue is identified in the spectrum in Fig. 17(b).
The real part of the w’ component (Fig. 18) exhibits streamwise periodicity in the upstream half of
the separation bubble, an indication of traveling spanwise oblique perturbations that are associated
with the temporal oscillations.

The purpose of global stability analysis at & = 10° in this paper is to establish physical relevance
of the most unstable mode computed using the linearized flow dynamics. The spanwise wavelength
of late-time wall temperature variation in the experiment is found to be similar to the most unstable
wavelength predicted by the asymptotic stability analysis. The mode branches uncovered in this
process require further analysis to understand the three-dimensionality and unsteadiness in high-
speed flow on double wedges. The analysis of instabilities at larger turn angles is beyond the scope
of the present work.

V. CONCLUSION

Mach 5 flow on a 12°-20° double wedge was shown to be intrinsically three-dimensional in the
absence of upstream perturbations. The three-dimensionality in the flow was shown to arise from
a linear instability of the two-dimensional recirculation bubble. As a consequence of the resulting
three-dimensional recirculation, a streamwise streak pattern in wall temperature was observed. The
streaks begin near the reattachment region and persist downstream on the second ramp, similar to
those observed in experiments. More specifically, prediction of the streak spanwise wavelength from
linear analysis was found to compare well with the wavelength deduced from temperature-sensitive
paint images on a 12°-22° double-wedge experiment. The current results provide an explanation for
the origin of streaks in addition to the centrifugal instability in the vicinity of flow reattachment.
It is not clear which mechanism operates when or whether both mechanisms can operate together.
However, our analysis shows that in the absence of external disturbances, the three-dimensionality
in the separation bubble results in the longitudinal heat flux streaks.

A global analysis which evaluates stability with respect to spanwise periodic small perturbations
was considered to investigate the three-dimensional linear instability of the two-dimensional steady-
state double-wedge flow. Equations for small perturbations in conserved variables were discretized
using a second-order spatially accurate finite-volume scheme. The temporal eigenvalue problem
resulting from the linear system of equations for the base flow was then solved to assess its
asymptotic stability. We started with a 12°-12° double wedge with no recirculation and gradually
increased the turn angle at the second ramp by rotating it about the compression corner. The
recirculation region increased in strength and at the 12°-20° double wedge the flow became unstable
to three-dimensional perturbations. Direct numerical simulation of the flow on this geometry
confirms the instability and presence of three-dimensional recirculation.

The dominant destabilizing mechanism on a 12°-20° double wedge was identified by analyzing
the spatial fields of the individual terms in the unstable eigenmode dynamics. The analysis reveals
that the mean gradients are responsible for the growth of the perturbation in the separation bubble,
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while growth in the reattached boundary layer arises from downstream convection from the bubble.
The exponential growth of the globally unstable mode is traced to an inviscid local instability
in which streamwise deceleration of the two-dimensional flow results in exponential growth of
streamwise velocity perturbation. Spanwise undulation of the streamwise velocity perturbation
results in a pressure perturbation peak and valley in the span driving three-dimensionality. By
identifying the wave maker or region where the instability exhibits highest sensitivity, we confirmed
independently that the instability core lies in the separation bubble and not in the separation or
reattachment regions, which can potentially host centrifugal instabilities.

Separately, beyond bifurcation, linear stability of the steady-state flow on a 12°-22° double wedge
reveals several unstable mode families. The most unstable mode is a three-dimensional stationary
mode, the wavelength of which is close to that of experimentally observed wall temperature streaks.
Interestingly, this mode is distinct from the unstable mode observed on the 12°-22° geometry.
While the role of perturbation modes at this turn angle requires further detailed analysis, the results
give credence to the physical importance of three-dimensional instabilities in the recirculation
region. Additionally, the presence of unstable low-frequency oscillatory modes can also provide
insight into unsteadiness in shock-wave-boundary-layer interaction. Improved understanding of
three-dimensional structures in high-speed laminar compression-corner flow can contribute towards
transition prediction on technologically relevant geometries.
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APPENDIX

1. Viscous flux matrices

In Sec. II the viscous flux is written in the form Fj =Mj; %V. The viscous flux matrices M;;

have entries that contain the velocity components #; and transport coefficients p, A, and k and can
be written in the form

0O O 0 0 0
0 an ap a3z O
Mjj=—|0 a1 an a3 0 [, (A1)
0 a3 axn ax O
0 b] b2 b3 K(Sij

TABLE II. Comparison of the eigenvalues (w;, ®,) with the reference values from the literature.

Shear layer

Eigenmode Reference Current method

1° (0.127,0.000) (0.127,0.000)

2 (—0.040, 0.396) (—0.040, 0.396)

3b (—0.028, 1.479) (—0.029, 1.476)

Boundary layer

M, (a, B) Reference Current method
0.5 (0.1,0.0) (0.0022,0.0291) (0.0022,0.0289)
2.5 (0.06,0.1) (0.0006,0.0367) (0.0005,0.0361)
1.0 (0.1,0.1) (0.0013,0.0380) (0.0008,0.0395)
6.0 (0.08,0.08) (0.0010,0.0724) (0.0007,0.0705)

2Corresponds to the shear mode.
bCorresponds to the acoustic mode.
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FIG. 21. Linearly unstable global mode for Re, = 60 and M = 0.1 flow past a circular cylinder.
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2. Verification of linear system

We compare unstable eigenvalues of the 1D compressible flow temporal stability problem
with the values from the literature. The reference values for the compressible shear layer with
My, = 0.5, vorticity thickness § = 0.1, and Res; = 1000 are taken from Mack and Schmid [46].
The corresponding eigenvalues obtained using the present formulation are reported in Table II. The
reference values for compressible boundary-layer cases are taken from Malik [68] and Theofilis
and Colonius [69]. The results at various Mach numbers and different streamwise-spanwise wave
numbers (o and B) are shown in Table II. Slight discrepancies in the values for My, = 1.0 and
6.0 are observed due to different viscosity and gas properties used for the base flow profiles in the
reference.

Next we move to a 2D problem and compute the linearly unstable eigenmode for subsonic flow
past a cylinder of diameter D. The eigenmode for the case Rep = 60 is shown in Fig. 21. At this
Re, the cylinder wake is unstable and results in vortex shedding. The nondimensional eigenvalues
for this particular case are found to be w; = 0.05 and w, = 0.76, which compare closely with those
reported in the literature [70].

For verification with linear stability analysis of 2D laminar shock—boundary-layer interac-
tion, we investigate the impinging oblique shock configuration at M = 5.92 [30]. The most
unstable eigenmode is obtained for B = 0.25 with w;/2m = 3.1 x 107>, This is close to the
value of w;/2m = 3.6 x 1075 obtained in Ref. [30]. The two-dimensional steady base flow
and the spanwise velocity component of the most unstable perturbation eigenmode are plotted
in Fig. 22.

Additionally, we also report the most unstable eigenmode obtained for an impinging oblique
shock configuration at M = 2.15 [29]. At an impingement angle of 33°, the flow is predicted

FIG. 22. Least stable global mode with wave number 8 = .25 obtained for oblique shock—boundary-layer
interaction at M = 5.92 [30].

e
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e

FIG. 23. Least stable global mode with wave number L., = 0.8 obtained for oblique shock-boundary-
layer interaction at M = 2.15 [29].

to be unstable in Ref. [29], with the spanwise wavelength of the dominant mode being 0.8,
when nondimensionalized by the freestream velocity and separation length. We obtain an unstable
stationary (zero-frequency) perturbation eigenmode at that wave number with a nondimensionalized
growth rate of 0.12. However, this value is not consistent with the growth rate reported in Ref. [29].
The discrepancy is most likely due to inadequate grid resolution in Ref. [29] (5 K points) compared
to 140 K cells used for the present study. The two-dimensional steady base flow and the spanwise
velocity component of the most unstable perturbation eigenmode for this case are plotted in Fig. 23.

The discretized linear system for small perturbation in the presence of shocks is also investigated
(Fig. 24). The transmission coefficient of planar acoustic perturbations interacting with a normal
shock are compared with the analytical result [71]. A second-order symmetric scheme does not work
in this problem as it involves numerical time integration. We therefore use a third-order upwind
method for spatial discretization and a strong-stability-preserving Runge-Kutta method SSPRK2
for time marching the discretized linear equations. Note that no limiters are employed. The results
compare fairly for normal shocks up to Mach 3.

3. Grid refinement

A grid refinement study is carried out for the eigenvalues presented in the paper. For each grid,
a different base flow is computed and the corresponding global eigenvalue problem is solved. This
is more strict than a grid refinement study of the eigenvalue problem with a base flow at fixed
resolution. The normalized velocity and temperature profiles for & = 8° base flow are plotted in
Fig. 25. The values for max(—u)/ucqee and max(—pu)/pucqee at & = 8° are 0.108 and 0.036,
respectively. The figure shows profiles of fields on three grids with increasing sizes N = 105, 155,

(a) (b) Acoustic perturbation amplitude ratio
Acoustic wave =
— E 15 ¢
z E 10 - b
’ 5 r 7
Py P2
o 3rd order upwind --m--
-~ Analytical ----------
0 1 1 1

1 2 3 4 5

M- 1

FIG. 24. (a) Schematic of the acoustic perturbation—normal shock interaction and (b) comparison of
analytical transmission coefficient with that computed using third-order upwind discretization of linearized
Euler equations in conserved variables.
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FIG. 25. Nondimensional velocity (red) and temperature profiles (blue) on three grids of increasing
resolution (dotted line, 105 K; dashed line, 155 K; and solid line, 185 K); £ is the coordinate along the surface
with & = 0 at separation.

and 185 K cells. We find that the length of the recirculation bubble does not vary with increasing
grid resolution. The maximum difference between the velocities predicted by the finest grids is
within 10% at the compression corner, §/L = 10. The quantity of interest, i.e., the growth rate
corresponding to the most unstable spanwise wavelength X, is grid converged (Fig. 26) for both
cases § = 8° and 10°.

In the 6 = 8° case, we evaluate two methods of increasing the grid resolution: increasing
streamwise & and wall-normal n resolution simultaneously and increasing the streamwise &
resolution only, at a fixed wall-normal 7 resolution. The base grid size is N = 105 K grid cells.
The N = 105 K grid has 200 points in the wall-normal direction, with An = 2 um at the wall
and An = 1 mm in the freestream. Consider Fig. 26(a). The N = 57 and 165 K grids correspond
to simultaneous change in & and 5 resolution by a factor of 1.25. Separately, the N = 80, 155,
and 185 K grids demonstrate the sensitivity of the eigenvalues to the streamwise spacing at a fixed
wall-normal resolution. We note that with increasing grid resolution, the most unstable eigenvalue
can increase or decrease depending on A,. Perception of an unusual trend where eigenvalues of
high-spanwise-wave-number modes converge faster than low-wave-number modes is merely a
consequence of this result.

' ' 57K —mimbrme ' ' ' 5TK —x——
’ 80K ——>— 0.045 TSK ----#---- o
0.002 [RE QIR - S
L6SI oo
8 0.035 | ]
=) 0.001
~
~
3 0.025 | 1
0.000
0015 F oo
_0001 1 Il 1 1 Il 1 1 Il
4 6 8 2.0 2.2 2.4 2.6 2.8
A-/L /L

FIG. 26. Grid convergence of the growth rates for the (a) 0 = 8° and (b) 6 = 10° cases.
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