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The dominant polarity of the magnetic field in rapidly rotating spherical dynamos is
the axial dipole. Studies of the onset of magnetoconvection in the limit of vanishing
Ekman number have proposed that the dipole is favored over other polarities because
its equatorial symmetry generates kinetic helicity that would be otherwise absent in
nonmagnetic convection. This study explores the effect of the magnetic field in the selection
of the axial dipole in rapidly rotating, supercritical dynamos. The strength of convection
is such that the axial dipole grows from a starting seed field in the nonlinear dynamo
but fails to grow in the kinematic dynamo at the same parameters. The magnetic field is
shown to excite convection over a range of length scales larger than the energy injection
scale and at the same time extract energy from smaller scales through the Lorentz force in
order to feed itself. This leads to substantial helicity generation in a range of length scales
and helicity loss in smaller scales, both relative to nonmagnetic convection. The crossover
point between the helicity surplus and deficit regions is displaced to smaller length scales
as the rotation rate is increased (by decreasing the Ekman number). The helicity deficit
occurs in the region of the spectrum where the Lorentz force approximately balances the
Coriolis force in the vorticity equation, so that energy may be drawn from these scales
via vortex stretching. The timescale for the increase in convection intensity relative to the
nonmagnetic state approximately coincides with the timescale for the formation of the axial
dipole, which indicates that the Lorentz force has an important role in polarity selection.
Crucially, the dipole forms from a chaotic state well before the saturation of the dynamo,
implying that planetary dynamos choose their polarity during their nonlinear growth phase.
The generation of the toroidal part of the dipole field is primarily through the classical Ω

effect, although the pattern of the zonal flow switches from spherical harmonic degree l = 1
to l = 3 in the presence of the magnetic backreaction.

DOI: 10.1103/PhysRevFluids.3.093801

I. INTRODUCTION

Planetary dynamos are driven by convective motion in their fluid cores. Considerable progress
has been made in modeling thermochemical convection in rapidly rotating spherical shells and their
consequences for dynamo action; see, for example, recent reviews [1,2]. Studies of convection-driven
dynamos show that different polarities of the magnetic field may be generated, such as the axial dipole,
quadrupole [3,4], and the equatorial dipole [5,6]. However, the axial dipole dominates a wide range
of the parameter space where the nonlinear inertial term is negligible in the equation of motion [7].
Estimates of the core flow velocity [1] suggest that inertia is important only at very small length
scales where magnetic diffusion is rapid, so it is plausible that the axial dipole structure is supported
by relatively larger length scales where inertia is small. Recent simulations of strongly driven and
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rapidly rotating spherical dynamos [8,9] lend credence to the view that the axial dipole would be
favored in the Earth-like parameter regime of low Ekman number E and low magnetic Prandtl
number Pm.

The long-time structure of the convection in spherical geometry is that of columns parallel to
the rotation axis (e.g., Refs. [10,11]). While the presence of differential rotation and meridional
circulation in the flow may promote dynamo generation of magnetic fields containing an axial
dipole [12], it is not certain that the preference for the axial dipole in nonlinear dynamos is due to
purely kinematic processes. Rotating kinematic dynamo models at low Ekman nuber (E = 10−8)
and low magnetic Prandtl number (Pm = 0.005) [13] favor quadrupolar modes over dipolar modes,
even though the z velocity has the same equatorial symmetry as that for convection-driven flow in
rotating spherical geometry. Sreenivasan and Jones [14] examine the differences in the patterns of
magnetoconvection with dipolar and quadrupolar fields. The presence of an axial dipole gives rise to
enhanced velocity gradients ∂uz/∂z above and below the equator via the z-vorticity equation, and the
in-phase relation between the velocity and vorticity produces enhanced helicity compared with that
found with quadrupolar fields or in nonmagnetic convection. The presence of helicity in columnar
convection is thought to be an important ingredient for dynamo action, and its relation to the α

effect that generates the poloidal magnetic field from the toroidal field is well known [15,16]. The
enhancement in axial strain rate by the magnetic field is clearly visible in rotating dynamo simulations
at moderate Ekman number (E = 3×10−4), although its effect is not a global enhancement in helicity,
but an asymmetry in the helicity between cyclonic and anticyclonic vortices that form in rotating
convection [17]. The effect of the Lorentz force in extracting energy from cyclonic vortices to
feed the magnetic field—while not significantly changing the anticyclonic flow—can partly explain
why dynamo models have not shown much global enhancement in helicity over the equivalent
nonmagnetic states [18]. The possible exceptions are dynamo models with stress-free boundaries
[14], where the magnetic field produces more coherent columnar (s, z) helicity in the dynamo than
that in nonmagnetic convection, an effect that seems to diminish with large Prandtl numbers as well as
with no-slip boundaries. The important question that arises here is whether the dynamo magnetic field
in general promotes helical fluid motions in regions that are quiescent in nonmagnetic convection.
Plane layer linear magnetoconvection with spatially varying mean magnetic fields [19] offers some
insight: Convection is excited in regions where the field is strongest, even when the field intensity
is small and the length scale of the flow at onset is viscously controlled. Although the analysis of
linear magnetoconvection is restricted by its two length scales—namely the length scale of the field
variation and the length scale of convective onset—the above result has the wider implication that the
field can substantially promote convection at length scales where the primary balance in the equation
of motion does not include the Lorentz force. Recent studies [20,21] indicate that the Lorentz force
balances the ageostrophic part of the Coriolis force only at small length scales (or large spherical
harmonic degrees) of the dynamo. That having been said, the effect of the magnetic field on helicity
production at length scales in the neighborhood of the energy injection scale cannot be ruled out.
The present study explores this idea by studying columnar flow and its helicity across length scales
in rapidly rotating dynamo models. At sufficiently low Ekman numbers, one would expect the range
of scales at which helicity is generated and the range of scales at which helicity is attenuated to be
clearly delineated.

While considering the role of magnetic backreaction in the selection of the axial dipole, it is
essential to know if the changes in the convection pattern are only produced near the point of
nonlinear saturation of the dynamo, where the average field strength measured by the Elsasser
number is often O(1) or higher, or with much weaker fields that exist prior to dynamo saturation.
This point is addressed by tracking the flow pattern as the dynamo field grows from a small initial
seed, the precise structure of which does not affect the final structure of the field.

The magnetic field in strongly supercritical dynamos contain nondipolar harmonics whose
cumulative strength would likely be substantially higher than the dipole even if the structure of
the field at the core-mantle boundary is dipole dominated. It is not clear from previous analyses
that the equatorially antisymmetric, nondipole part of the field would modify the kinetic helicity
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distribution in the dynamo. The present study partly addresses this issue by looking at the Lorentz
force contribution from the axial dipole and nondipole parts of the field in the vorticity equation.

Finally, this study looks at the generation of the toroidal part of the dipole field and how it is
modified by the magnetic field in nonlinear dynamos.

II. NUMERICAL DYNAMO MODEL

We consider an electrically conducting fluid between two concentric, corotating spherical surfaces
that correspond to the inner core boundary (ICB) and the core-mantle boundary (CMB). The ratio
of inner to outer radius ri/ro is chosen to be 0.35. For simplicity, it is assumed that that the fluid
is subject to a thermal buoyancy-driven convection, although the governing equations may also be
used to study thermochemical convection using the codensity formulation [22]. The other body forces
acting on the fluid are the Lorentz force, arising from the interaction between the induced electric
currents and the magnetic fields, and the Coriolis force, originating from the background rotation of
the system.

The governing equations considered are those in the usual Boussinesq approximation [23]. Lengths
are scaled by the thickness of the spherical shell L, and time is scaled by the magnetic diffusion time
L2/η, where η is the magnetic diffusivity. The velocity field u is scaled by η/L, and the magnetic
field B is scaled by (2�ρμη)1/2, where � is the rotation rate, ρ is the fluid density, and μ is the
magnetic permeability. The scaled magnetic field, known as the Elsasser number �, is an output
derived from our dynamo simulations as a root mean square (rms) value, where the mean is a volume
average.

The nondimensional magnetohydrodynamic (MHD) equations for velocity, temperature, and
magnetic fields are

EPm−1

[
∂u
∂t

+ (∇ × u) × u
]

+ ẑ × u = −∇p∗ + Pm Pr−1RaT r + (∇ × B) × B + E∇2u, (1)

∂T

∂t
+ u · ∇T = Pm Pr−1∇2T , (2)

∂ B
∂t

= ∇ × (u × B) + ∇2 B, (3)

∇ · u = ∇ · B = 0. (4)

The modified pressure p∗ in Eq. (1) is given by p + 1
2EPm−1|u|2. The dimensionless parameters

in Eqs. (1)–(3) are the Ekman number, E = ν/2�L2 that measures the ratio of viscous to rotational
forces, the Prandtl number, Pr = ν/κ that gives the ratio of viscous to thermal diffusivities, the
magnetic Prandtl number, Pm = ν/η that gives the ratio of viscous to magnetic diffusivities, and
the “modified” Rayleigh number (product of classical Rayleigh number and Ekman number) Ra =
goα�T L/2�κ , where go is the gravitational acceleration acting radially inward, α is the coefficient
of thermal expansion, �T is the superadiabatic temperature difference between the boundaries, and κ

is the thermal diffusivity. The basic-state nondimensional temperature distribution is a conventional
basal heating To(r ) = β/r , where β = riro. The velocity, temperature, and magnetic fields satisfy
the no-slip, isothermal, and electrically insulating conditions respectively at the boundaries.
Equations (1)–(4) are solved by a dynamo code that uses spherical harmonic expansions in (θ, φ)
and finite differences in r [24]. The radial points are located at the zeros of a Chebyshev polynomial
and are therefore dense near the boundaries. In this way, the Ekman boundary layers are adequately
resolved using a fewer number of radial points than would otherwise be possible with an equispaced
grid.
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FIG. 1. Time-averaged energy spectra for the nonlinear dynamo simulations, showing the variation of kinetic
(Ek) and magnetic (Em) energies with spherical harmonic degree l. The red lines show Em and the blue lines
show Ek .

III. RESULTS

Three parameter regimes are analyzed in this study. For the Ekman numbers E = 1.2×10−6 and
E = 3×10−7, Pr and Pm are chosen to be unity, whereas for the relatively higher E = 1.2×10−5,
low nonlinear inertia is ensured by choosing Pr = Pm = 5 (e.g., Ref. [7]). The Rayleigh number Ra
needs to be sufficiently supercritical in order to bring out the effect of the magnetic backreaction
in the dynamo process (see below). Figure 1 gives the time-averaged kinetic and magnetic energy
spectra in the saturated dynamo state for the three parameter regimes. The saturated state is averaged
over approximately 0.3 magnetic diffusion times for E = 3×10−7 and 2 magnetic diffusion times for
higher E. Table I summarizes the nonlinear dynamo simulations performed and their key parameters.
Apart from the dimensionless parameters described above, the mean spherical harmonic degrees for
convection and energy injection, denoted by lC and lE respectively, are given by [17,25]

lC =
∑

l l Ek (l)∑
l Ek (l)

; lE =
∑

l l ET (l)∑
l ET (l)

, (5)

where Ek (l) is the kinetic energy spectrum and ET (l) is the spectrum obtained from the product of
the transform of urT and its conjugate.

For each dynamo run, a nonmagnetic calculation at the same E, Ra, and Pr serves as the reference
state. The dynamo calculation is started from a seed axial dipole-dominated magnetic field of Elsasser
number � = 0.01 similar to that in Ref. [14] sitting in a velocity field obtained from the reference
nonmagnetic state. The growth of the magnetic field and the accompanying changes in the velocity
field are studied. For each nonlinear dynamo run, an equivalent “kinematic” run is performed where

TABLE I. Summary of the nonlinear dynamo simulations considered in this study. Here, E is the Ekman
number, Ra is the modified Rayleigh number, Rac is the critical Rayleigh number for onset of convection, Pr
and Pm are the thermal and magnetic Prandtl numbers, lmax is the maximum spherical harmonic degree, Nr

is the number of radial grid points, � is the Elsasser number based on the volume-averaged magnetic field in
the spherical shell, �D denotes the dipole Elsasser number computed from magnetic energy contained in the
harmonics BP

10 and BT
20, Rm is the magnetic Reynolds number, lC is the mean harmonic degree of convective

motion, and lE is the mean harmonic degree at which energy is injected by buoyancy. The values given within
brackets are those for the kinematic calculations where the Lorentz force is zero.

E Pr, Pm Ra Ra/Rac lmax Nr � �D Rm lC lE

1.2×10−5 5 220 ≈4.5 100 120 0.70 0.34 102.4 (123.5) 21 (28) 20 (29)
1.2×10−6 1 400 ≈7.8 220 220 0.83 0.41 206.8 (265.6) 38 (43) 31 (49)
3×10−7 1 540 ≈6.6 320 360 1.56 0.52 216 (358) 54 (64) 48 (70)
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FIG. 2. (a) Evolution in time (measured in units of the magnetic diffusion time) of the axial dipole (BP
10)

Elsasser number in nonlinear (red line) and kinematic (blue line) dynamo simulations at E = 1.2×10−5,
Pr = Pm = 5, and two Rayleigh numbers.

the Lorentz force is set to zero in the equation of motion, as in some previous studies [6,26]. For
low-moderate Ra above critical, the poloidal part of the axial dipole field (BP

10) shows a monotonic
increase in the kinematic case and an increase followed by saturation in the nonlinear case. In such
a situation, one might conclude that the role of the Lorentz force is essentially in dynamo saturation.
However, if Ra is sufficiently large, the kinematic run shows no significant increase in BP

10, whereas
the nonlinear run shows a clear growth of this component. This indicates that the Lorentz force has an
important role in the selection of the dipole itself apart from the eventual saturation of the dynamo.
To bring out this effect of the Lorentz force, Ra is chosen such that BP

10 evolves very differently in
the nonlinear and kinematic runs.

A. Selection of the axial dipole

For E = 1.2×10−5, both the nonlinear and kinematic dynamo runs at Rayleigh numbers Ra =
2.5–3×Rac show an increase for BP

10 (Fig. 2). For Ra = 125, this field component grows identically
in the two runs until ≈3 magnetic diffusion times, after which the nonlinear field deviates from the
kinematic field and saturates. For Ra = 140, the two runs overlap only until ≈0.6 diffusion time. At
these Ra, it is found that the radial magnetic field at the outer boundary retains its dominant dipole
structure in both the nonlinear and kinematic runs. As the aim of this study is to identify the effect
of the Lorentz force on the growth phase of the dynamo, the Rayleigh number needs to be set to a
sufficiently high value (Ra = 220) so that there is no kinematic growth of BP

10 from the starting seed
field [Fig. 3(b)]. Likewise, for the lower Ekman number (E = 1.2×10−6), the choice of Ra = 400
ensures that BP

10 clearly increases in the nonlinear run but fails to pick up strength in the kinematic
run [Fig. 3(c)]. Here, the kinematic growth of the dynamo is entirely from the growth of the nondipole
part of the magnetic field, consistent with the video Br_kin.avi in the Supplemental Material [27]
that shows the radial magnetic field at the outer boundary.

Figure 4 shows the radial field Br on the core surface (outer boundary) in the nonlinear dynamo
simulations, and the snapshots in Figs. 4(a)– 4(e) and 4(f)–4(j) being marked on the Elsasser number
plots in Fig. 3(a). As the field grows from its initial seed dipole state, it loses its dipole character but
subsequently regains it well before the saturated phase. It is notable that Figs. 4(d) at E = 1.2×10−5

and 4(i) at E = 1.2×10−6, representing the times at which the axial dipole symmetry is regained,
are situated in the rising phase of the magnetic field in Fig. 3(a). That is, the selection of the axial
dipole occurs well before dynamo saturation, when the Lorentz force exceeds a threshold value.
The video Br_nl.avi in the Supplemental Material [28] that accompanies this paper shows the
evolution of Br in the nonlinear run at E = 1.2×10−6. Starting from a seed axial dipole, the early
loss and subsequent restoration of the dipole symmetry is evident from this video. The axial dipole
forms immediately after the time marked by the red vertical line on the Elsasser number plot in the
video, well before saturation. In contrast, the video Br_kin.avi [27] shows the absence of dipole
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FIG. 3. (a) Evolution in time (measured in units of the magnetic diffusion time) of the Elsasser number
in nonlinear dynamo simulations at E = 1.2×10−5, Pr = Pm = 5, Ra = 220 (red line) and E = 1.2×10−6,
Pr = Pm = 1, Ra = 400 (blue line). The alphabet labels represent the snapshots in time given in Fig. 4 below.
(b) Comparison of the axial dipole (BP

10) Elsasser numbers for the nonlinear (red line) and kinematic (blue line)
dynamo runs at Ra = 1.2×10−5, Ra = 220, Pr = Pm = 5. (c) Comparison of the axial dipole (BP

10) Elsasser
numbers for the nonlinear (red line) and kinematic (blue run) dynamo runs at Ra = 1.2×10−6, Ra = 400,
Pr = Pm = 1.

symmetry in the kinematic run at E = 1.2×10−6, in line with the fact that BP
10 does not gain in

strength in this run.
When the onset of convection occurs near the inner core boundary, uz and us are of the same

order of magnitude in the E → 0 limit, whereas uφ is O(E1/9) smaller [14]. As the Lorentz force
is expected to further damp the azimuthal motions, the backreaction of the magnetic field and its
scale dependence is measured by first calculating the z and s kinetic energy densities as a function
of the spherical harmonic degree l for the nonlinear dynamo. Although the saturated dynamo phase
is taken for the purpose of computing time averages, the results are useful in understanding the
magnetic backreaction in the growth phase of the dynamo. A similar average over thermal diffusion
time is performed for the equivalent nonmagnetic calculation, where the magnetic field is set to
zero. It must be noted that the time-averaged z and s energies are taken from the saturated dynamo
(or nonmagnetic) states, and therefore it is understood that columnar structures exist on the long
timescales. The possible role of wave motions in establishing these structures from the point when
energy is injected by buoyancy is not considered in this study. From Fig. 5, we find that 1

2 u2
s and 1

2 u2
z

are higher for the dynamo run compared with the nonmagnetic run for a range of small-moderate
l, while the dynamo energies fall below the nonmagnetic values above a value of l. The difference
between the dynamo and nonmagnetic energies, separately shown in Figs. 5(b) and 5(d), indicates
that the crossover from positive to negative z-energy difference occurs at l = 30 for E = 1.2×10−6

and l = 46 for E = 3×10−7. (For E = 1.2×10−5, this crossover occurs at l = 18.) It is notable that
the crossover points are close to the mean harmonic degrees of energy injection (lE) for these cases
(see Table I). Evidently, the energy addition by the dynamo field is extended to higher l (smaller
length scales) as the rotation rate is increased. The azimuthal (φ) energy in the dynamo runs, however,
is consistently lower at all scales compared with that for the nonmagnetic runs, which suggests that
the magnetic field via the Lorentz force simply damps the azimuthal energy. The analysis in this
paper is hence focused on the effect of the field on the s and z flows.

The variation in z-kinetic energy over l, noted in Fig. 5, is supported by snapshots of the axial
velocity uz in the growth phase of the dynamo simulation at E = 1.2×10−6. The ranges l � 30
[Figs. 6(a), 6(c) and 6(e)] and l > 30 [Figs. 6(b), 6(d) and 6(f)] are shown separately. For l � 30,
a progressive enhancement of the convective motion with time is seen, whereas scales of l > 30
experience attenuation. The addition of z energy into the flow at small-moderate l and the extraction
of z energy from the flow at large l accompany the growth of the magnetic field and occur well
before saturation of the dynamo [see Fig. 3(a)]. The magnetic field thus acts in ways that enhance
the energy of the columnar flow [14] and draw energy from the small scales through the Lorentz
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(a) (f)

(g)

(h)

(i)

(j)

(b)

(c)

(d)

(e)

FIG. 4. Shaded contours of the radial magnetic field at the outer boundary in nonlinear dynamo simulations
at two parameter regimes. The times, measured in units of the magnetic diffusion time, are taken from points
on the Elsasser number plots in Fig. 3(a).

force. Interestingly, the structure of uz does not change much after td ≈ 0.32, which indicates that
the timescale for the growth of convection intensity in the dynamo approximately coincides with the
timescale for the formation of the axial dipole in the run (see video Br_nl.avi [28]).

B. Kinetic helicity

The variation in the z and s kinetic energies relative to their nonmagnetic values is further reflected
in the kinetic helicity u · ω, with ω being the vorticity. In the rapidly rotating limit of E → 0, the
dominant contributions to the helicity are from uzωz and usωs [14]. As the Ekman boundary layers
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FIG. 5. (a) & (c): Variation over spherical harmonic degree l of the time-averaged kinetic energy density
in the non-magnetic (dashed lines) and nonlinear dynamo (solid lines) calculations. The z-energy is shown in
red and the s-energy is shown in blue. (b) & (d): The difference in z-energy density between the dynamo and
non-magnetic runs (red) and the respective difference in s energy density (blue). The parameter regime (E, Ra)
considered is given above the panels.

are sources of vorticity in spherical shell models, the helicity generated in these layers needs to be
filtered out in order to reveal the effect of the magnetic field on the helicity distribution in the interior
(Fig. 7). We find that usωs and uzωz are higher for the dynamo run compared with the nonmagnetic
run for small-moderate l, while the dynamo helicities fall below the nonmagnetic values above a
certain value of l. The difference between the dynamo and nonmagnetic helicities, separately shown
in Figs. 7(b) and 7(d), indicates that the crossover from positive to negative z-helicity difference
occurs at l = 30 for E = 1.2×10−6 and l = 46 for E = 3×10−7. (For E = 1.2×10−5, the crossover
is at l = 18.) Thus, the helicity generation by the dynamo field is extended to higher l as the rotation
rate is increased. The approximate equality between the s and z dynamo helicities is predictable
from linear magnetoconvection in the limit E → 0 [14] and indicates that the dynamo simulations
are in the regime of rapid rotation. The decrease in helicity for l > 30 (E = 1.2×10−6) and l > 46
(E = 3×10−7) relative to the nonmagnetic calculations is a consequence of the transfer of energy
from the flow at these scales into the magnetic field via the Lorentz force. The variation in z helicity
over l is also seen in the time average at a section (Fig. 8). For E = 3×10−7 and Ra = 540, the
z helicity shows contrasting behaviors for two ranges of l: For l � 46, saturated dynamo has a
considerably higher density than that in the equivalent nonmagnetic run, whereas for l > 46, the
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FIG. 6. Top panels [(a), (c), (e)]: Snapshots in time (measured in units of the magnetic diffusion time) of the
isosurfaces of uz (contour level ±80) for l � 30 in the nonlinear dynamo simulation. Bottom panels [(b), (d),
(f)]: uz (contour level ±150) at the same times, but for l > 30. The parameters used are E = 1.2×10−6, Pr =
Pm = 1, Ra = 400.

dynamo helicity is considerably sparse. The peak values themselves are not significantly different
between the dynamo and nonmagnetic runs. These results confirm that the helicity generation in the
dynamo is confined to the relatively large scales, while smaller scales experience loss of helicity due
to the extraction of energy by the Lorentz force.

C. Balance of terms in the vorticity equation and implications for helicity

On time and volume average, the curl of the momentum equation takes the form

∇ × (∇ × B) × B︸ ︷︷ ︸
M

+ qRa∇ × (T r )︸ ︷︷ ︸
A

+ ∂u/∂z︸ ︷︷ ︸
C

−EPm−1 ∇ × (ω × u)︸ ︷︷ ︸
I

+E∇2ω︸ ︷︷ ︸
V

= 0, (6)

where ω = ∇×u and q = Pm Pr−1. Here the letters M, A, C, I, and V represent the magnetic (Lorentz
force), Archimedean (buoyancy), Coriolis, nonlinear inertial, and viscous diffusion terms.

Figure 9 presents the time-averaged M, A, and C terms in the z-vorticity equation for the saturated
nonlinear dynamo at E = 1.2×10−6 and Ra = 400. The Lorentz (M) force term is calculated
separately based on the axial dipole and nondipole parts of the magnetic field, the dipole contribution
being, e.g., [29]

MAD = ∇ × [(∇ × BP
10

) × B
]
.

The nondipole part of the M term is essentially derived from equatorially antisymmetric harmonics
of BP other than BP

10. The I and V terms are not shown in the figure because these are much smaller
than M, A, and C for the parameters chosen, except near the truncation wave number (also see
Ref. [17]). To obtain the distribution of the terms across scales, their root mean square (rms) values
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FIG. 7. [(a), (c)] Variation over the spherical harmonic degree l of the time-averaged kinetic helicity in
the lower hemisphere in the nonmagnetic (dashed lines) and nonlinear dynamo (solid lines) calculations. The
z helicity is shown in red and s helicity is shown in blue. [(b), (d)] The difference in z helicity between the
dynamo and nonmagnetic runs (red) and the respective difference in s helicity (blue). The parameter regime
(E, Ra) considered is given above the panels.

are given as a function of the harmonic degree, l. For l � 30, the dominant balance is between C
(shown in red circles) and A (green line) terms. However, there is a slightly weaker contribution
from M based on the nondipole field (blue line). The buoyancy term A peaks in the neighborhood
of the energy injection wave number lE and decreases steeply at small and large wave numbers. For
l > 30, a nearly exact balance exists between C and the nondipole part of M. The dipole part of M
(black line) is significantly smaller than the nondipole part in both ranges of l, which is not entirely
surprising given that the dipole field strength (measured by �D) is substantially smaller than the total
field strength for the Rayleigh numbers considered (Table I). As we see below, the M-C balance for
l > 30 causes vortex stretching, essential to the extraction of energy from these scales [see Fig. 5(b)].

To visualize the nature of the M-C balance, we first look at time-averaged contour plots of the
C term ∂uz/∂z, interpreted as a strain rate, over two ranges of l (Fig. 10). The plots are shown
on a cylindrical (z, φ) surface. For l � 30, the saturated dynamo shows a global increase in the
strain rate over the nonmagnetic case, consistent with the excitation of convection in regions that
were quiescent in the nonmagnetic state [Figs. 6(a), 6(c) and 6(e)]. For l > 30, on the other hand, the
magnetic backreaction produces bands of positive strain rate above and below the equator [Fig. 10(d)].
The magnitude of ∂uz/∂z is higher in Fig. 10(d) compared with Fig. 10(c), because of which these
banded structures would be present if the C term were computed using the full range of l [17]. By
computing C over two ranges of l, we find that the bands of positive strain rate occur only in the
range l > 30 where the M and C terms balance (see Fig. 9). Furthermore, the nondipole part of the
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FIG. 8. Time-averaged z helicity on the section z = 0.3 parallel to the equator. The parameters used in
the dynamo model are E = 3×10−7, Ra = 540, and Pr = Pm = 1. Panels (a) and (b) compare the respective
helicities in the nonmagnetic and dynamo calculations for spherical harmonic degrees l � 46; panels (c) and
(d) give the same comparison for l > 46.

M term [Fig. 11(b)] is in approximate balance with the C term [Fig. 10(d)] in the saturated dynamo,
while M derived from the axial dipole field [Fig. 11(a)] does not contribute to this balance. It may
thus be inferred that the bands of positive strain rate above and below the equator are produced by
the equatorially antisymmetric harmonics of the field other than the axial dipole.

FIG. 9. Plots of the magnetic (M), buoyancy (A), and Coriolis (C) terms in the z-vorticity equation as a
function of spherical harmonic degree l for the saturated nonlinear dynamo at E = 1.2×10−6, Ra = 400, and
Pr = Pm = 1. The line styles used are the following: C (red circles), A (green line), M based on the axial dipole
field only (black line), and M based on the nondipole field (blue line).
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FIG. 10. Contour plots of the time-averaged Coriolis (C) term in the z-vorticity equation shown on a cylinder
of radius s = 1.1. The parameters used in the dynamo simulation are E = 1.2×10−6, Ra = 400, Pr = Pm = 1.
Two ranges of the spherical harmonic degree are considered: [(a), (b)] l � 30; [(c), (d)] l > 30. The upper panels
(a) and (c) represent nonmagnetic convection and the lower panels (b) and (d) represent the saturated dynamo.

A consequence of the generation of bands of positive strain rate C is the marked asymmetry
between cyclones and anticyclones [17], which does not exist in nonmagnetic convection at small
Rossby number. Since ∂uz/∂z > 0 in anticylones and < 0 in cyclones in the neighborhood of the
equator [16], the generation of positive ∂uz/∂z by the damping Lorentz force substantially weakens
cyclonic vortices. By considering scale dependence of the kinetic helicity, the picture obtained from
earlier studies (e.g., Ref. [17]), which do not consider scale-dependent dynamics, is now further
refined: In the range l � 30, the dynamo helicity is enhanced in both cyclones and anticyclones
relative to the nonmagnetic helicity; for l > 30, however, the cyclonic helicity in the dynamo is
preferentially attenuated relative to its nonmagnetic value, producing a vortex asymmetry (Fig. 12).

D. Toroidal field generation

The mechanism of generation of the toroidal part of the axial dipole (BT
20) may be understood by

calculating the integral energy contribution to this component (e.g., Ref. [30]),

�T
20 =

∫
V

BT
20 · ∇ × (u × B)dV, (7)

where (u×B) can have contributions from (uT ×BP ), (uP ×BT ), (uT ×BT ), and (uP ×BP ).
Denoting the harmonic indices of u, B, and BT

20 by α, β, and γ , respectively, the harmonic selection
rule [31] prescribes mα = mβ for mγ = 0, which simplifies the evaluation of (7). From Fig. 13(a), we
note that (uT ×BP ) makes the dominant positive contribution to �T

20, and this contribution essentially
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FIG. 11. Contour plots of the time-averaged Lorentz (M) term in the z-vorticity equation shown on a cylinder
of radius s = 1.1. The parameters used in the dynamo simulation are E = 1.2×10−6, Ra = 220, Pr = Pm = 1.
Panels (a) and (b) show the M term based on the axial dipole and nondipole parts of the field respectively.

comes from the m = 0 components of both uT and BP . Further, (lα, lβ) can have the combinations
(1,1), (3,1), (2,2), and (4,2). [Note, for example, that (2,1) is not possible as lα + lβ + lγ is odd.]
From the energy matrices of ∇×(uT ×BP ) for mα = mβ = 0 at two times in the growth phase of the
field [Figs. 13(b) and 13(c)], we note that lα switches from 1 to 3 while lβ = 1. At the first of these
times, td = 0.414, the radial field at the outer boundary is chaotic [Fig. 4(c)]; at td = 0.522, the dipole
structure appears [Fig. 4(d)]. The effect of the magnetic backreaction is visible in the comparison of
the time-averaged zonal flows of the nonmagnetic and saturated dynamo states [Figs. 14(a) and 14(b)]:

FIG. 12. Upper panels [(a), (c), (e), (g)] show isosurfaces of the time-averaged anticyclonic (A) and cyclonic
(C) z helicity for nonmagnetic convection. Lower panels [(b), (d), (f), (h)] show the respective plots for the
saturated (nonlinear) dynamo. Two ranges of the spherical harmonic degree are considered: (a)–(d) l � 30,
shown at contour levels ±2×104, and (e)–(h) l > 30, shown at contour levels ±2×105. The parameters used in
the dynamo model are E = 1.2×10−6, Pr = Pm = 1, and Ra = 400.

093801-13



BINOD SREENIVASAN AND SUBHAJIT KAR

FIG. 13. (a) Volume integral of induction term dotted with BT
20. The line colors are red, ∇×(uT ×BP ); blue,

∇×(uP ×BT ); black, ∇×(uP ×BP ); magenta, ∇×(uT ×BT ); and green, ∇×(uT
m=0×BP

m=0 ). Panels (b) and (c)
give the energy matrix for ∇×(uT

m=0×BP
m=0) at two different times, td = 0.414 and td = 0.522 respectively,

shown by dashed vertical lines in panel (a). The parameters used in the simulation are E = 1.2×10−5, Ra = 220,
and Pr = Pm = 5.

The Y 0
1 pattern in the nonmagnetic state gives way to the layered Y 0

3 pattern in the saturated dynamo,
thus localizing strong anticyclonic vortices in the polar regions.

IV. CONCLUSION

This paper investigates the scale dependence of the magnetic backreaction and its likely role in
the selection of the axial dipole in rapidly rotating spherical dynamos. The motivation for the present
study stems from the dipole dominance of planetary magnetic fields such as Earth’s, although changes
in convection strength can cause interruptions to this axial dipole state (e.g., Refs. [32,33]). The
Rayleigh number for convection is chosen such that the axial dipole grows from a starting seed field in
the nonlinear dynamo, but does not pick up strength in the kinematic dynamo at the same parameters.
At the lower Rayleigh numbers (e.g., Ra = 2.5–3×Rac at E = 1.2×10−5), the equatorial symmetry
of the velocity field that arises from rotation ([ ur, uθ , uφ ](r, θ, φ) = [ ur, −uθ , uφ ](r, π − θ, φ))
is exact, so that the symmetry of the starting magnetic field determines its subsequent evolution. Here,
the dipole component BP

10 grows from its small seed value (� = 0.01) in both the nonlinear and
kinematic runs (Fig. 2). For a pure quadrupole seed field start, the magnetic energy simply decays
in time in both the nonlinear and kinematic runs since the z velocity is zero on the equatorial plane
where Bφ is maximum. Even if the initial seed field consists of a mix of 99.99% quadrupole and
0.01% dipole components, the eventual state is an axial dipole, although a longer time is needed
to attain that state. Having understood that the polarity of the starting seed field determines the

FIG. 14. Meridional plots of time and azimuthally averaged φ velocity in the calculation at E = 1.2×10−5,
Ra = 220, and Pr = Pm = 5. (a) Nonmagnetic state; (b) saturated nonlinear dynamo.
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evolution of the dynamo at low Ra, we move to still supercritical convection, which is the focus
of this paper. In this regime, the polarity of the starting field has no bearing on the final polarity,
which is characterized by the axial dipole. Although a starting field of mixed polarity does not
alter the final state of the dynamo, an axial dipole is chosen as the initial state so that its evolution
with and without the magnetic backreaction may be followed. For the case of highly supercritical
convection (Ra � Rac) not considered in this paper, a seed field may grow into a chaotic field with
no well-defined polarity [14]. However, early Earth’s dynamo is thought to have been powered solely
by thermal convection arising from secular cooling of the core [34], so that the early growth of the
geomagnetic field probably occurred under moderately supercritical convection.

As the field grows from its initial seed dipole state, it loses its dipole character in the early stages of
evolution where the Lorentz force is weak, but subsequently regains it well before dynamo saturation.
The backreaction of the field produces a substantial variation in the intensity of convection across
length scales, relative to the reference nonmagnetic state. As a result, the large-scale region of the
spectrum has helicity generation, whereas the region of relatively small scales from which energy is
drawn by the Lorentz force has helicity deficit. Decreasing E from 1.2×10−5 to 3×10−7 displaces the
crossover point between the two regions to smaller length scales. In other words, helicity is generated
at progressively smaller scales as the Ekman number is lowered, indicating the influence of rotation
on these scales. Given that the timescale for the growth in convection intensity [Figs. 6(a), 6(c) and
6(e)] roughly coincides with the timescale for the formation of the axial dipole, it is reasonable to
suppose that the dipole field is aided by the field-induced helicity.

One aspect in which supercritical dynamos differ from near-critical dynamos is that the nondipole
part of the field is much stronger than the dipole part, so that the Lorentz force based on the nondipole
field makes the main contribution to the M-C balance in the small-scale region of the dynamo spectrum
(e.g., l > 30 in Fig. 9). These scales may be important for the generation of slow magnetostrophic
waves in the Earth’s core [35]. The fact that the magnetic field can set up convection at the relatively
large length scales where the Lorentz (M) force is weaker than the A and C forces is reasonable
in view of the onset of plane magnetoconvection under spatially inhomogeneous weak fields [19].
However, since stationary onset models reproduce only the long-time columnar structure of the
convection, one needs to reinstate the time derivatives of the velocity and the induced magnetic
field to know whether fast inertial waves weakly modified by the Lorentz force [35,36] can excite
convection during the growth phase of the dynamo.

This study also examines the generation of the toroidal part of the dipole, BT
20. Here, the classical

Ω effect holds, where the axial dipole field is sheared by differential rotation. At near-critical Ra,
the zonal flow has a Y 0

1 pattern in both the kinematic and nonlinear regimes, which implies that the
Lorentz force is not strong enough to produce a backreaction. At progressively higher Ra, the zonal
flow switches from the Y 0

1 to the Y 0
3 pattern as the magnetic field grows in time.
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