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Dielectric heating occurs in situations where an alternating electric field is applied on
an insulating dielectric material. This effect can produce thermal convection in dielectric
fluid through the thermoelectric coupling by the dielectrophoretic (DEP) force. The onset
and the flow properties of the convection are investigated in a spherical gap geometry.
The thermoelectrohydrodynamical equations often adopted in the modeling of the DEP-
force-driven thermal convection are extended by an additional source term arising from the
dielectric heating in the energy equation. Three-dimensional direct numerical simulations
are performed, under microgravity conditions and without any imposed temperature
gradient to highlight the effects of dielectric heating. In the conduction state, dielectric
heating creates a parabolic temperature profile with a maximum in the interior of the
spherical gap. In the convection state, the temperature distribution is more homogeneous
with a lower maximum temperature. Numerical results are compared with interferograms
from the GeoFlow II experiment performed on the International Space Station to validate
the model. For the comparison, a numerical interferogram is applied to temperature fields
obtained in the simulation. The onset of convection and basic spatial properties of the
resulting internally heated convective zone are in good agreement with the experiment.
The computed velocity fields reveal strong downdrafts which lead to recognizable fringe
patterns in the interferograms.

DOI: 10.1103/PhysRevFluids.3.093501

I. INTRODUCTION

Heating materials by applying an electric field or by irradiating an electromagnetic field is a
common practice in industry. The Ohmic effect and the dielectric loss are often used to generate
heat energy inside materials. In the glass industry, electric glass furnaces are more frequently used
because of the high efficiency, the smallness of apparatus, and the eco-friendliness [1]. Electric fields
of 10–103 Hz in frequency are applied to glass materials (soda lime and sodium borate glasses) to
melt by Ohmic heating. The heating generates temperature gradients to produce the convective
motion in the melt. This convection is often modeled as thermal convection driven by the thermal
Archimedean buoyancy force. The velocity and temperature fields of the melt are coupled with
each other through an Ohmic heat generation term in the energy equation as well as in the thermal
variations of fluid properties.
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FIG. 1. Sketch of the convection experiment GeoFlow in a spherical geometry performed on the ISS.
Red arrows depict the heating circuit and blue arrows the cooling circuit. Interferograms to visualize the
temperature field are recorded in the region spanning from the north pole to the equator (yellow area). The
depicted temperature field represents a typical convection zone induced by dielectric heating.

Dielectric heating plays an important role in many industrial and chemical applications where
materials are thermally processed [2]. The most common application would be the domestically
used microwave stove. While the physical process itself has been known since the late 19th century,
it has become important with the work of von Hippel [3], which provides a database of properties of
dielectric materials. This database was extended in the second half of the 20th century especially for
many biological substances which are used in biochemistry and process engineering. The dielectric
properties of important aqueous fluids were reviewed in Ref. [4] and more recently for biofuels (e.g.,
alcohols and their mixtures) in Ref. [5]. Dielectric heating is generated by a high-frequency electric
field acting on a dielectric material. The field polarizes nonmotile charges in the material. There are
two known types of polarization: (i) induced polarization due to the displacement of electrons inside
atoms or molecules and (ii) orientation polarization due to permanent molecular dipoles aligned
along the applied field. Heat energy is generated through the second type of polarization when the
dipoles cannot respond to the temporal variation of an applied field with a phase delay.

The manifold influence of electric field on a fluid is a subject of thermoelectrohydrodynamics
(TEHD). We refer to Refs. [6–9] for the theoretical background. Several laboratory experiments in
the scope of TEHD have been reported in the literature. These experiments often use the dielec-
trophoretic (DEP) force to induce flows under microgravity conditions [e.g., on the International
Space Station (ISS) or on parabolic flights]. The GeoFlow experiment (see Fig. 1) on the ISS
represents such an experiment in the absence of earth’s gravity field (see Ref. [10]). The main
objective of the GeoFlow experiment was the investigation of thermal convection in the spherical
gap, which is an analog of convection in planets or stars, under an imposed temperature gradient.
However, the experimental setup also allows the study of dielectric heating and the influence of this
process on thermal convection.

The investigation of convection induced by dielectric heating has been the object of many
experimental and numerical works. Microwave-driven convective flows have been analyzed by
different authors. Ayappa et al. [11] investigated water in a squared cavity and analyzed the
uniformity of heating as a function of the power distribution. Detailed numerical simulations of
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the coupled Maxwell and hydrodynamical equations have been performed by Zhang et al. [12] and
Ratanadecho et al. [13]. More recently, Cherbański and Rudniak [14] investigated dielectrically
driven convection in water. They showed with three-dimensional (3D) numerical simulations that
dielectric heat-driven convection is not able to homogenize the temperature field, but produces
temperature peaks. In the present paper, however, dielectric heat-driven convection is investigated
in spherical gap geometry.

Natural convection in spherical gap geometries has been studied recently for the GeoFlow
project, where centripetal gravity fields are simulated by the DEP force. We refer to Refs. [15,16] for
details about the GeoFlow experiment. Theoretical and numerical investigations on the fundamental
aspects of the DEP force-driven convection have been performed by Yoshikawa et al. [17], Fogaing
et al. [18], Mutabazi et al. [19], Kang et al. [20], and Travnikov et al. [21] in different geometries.
This paper extends these works by including the effects of dielectric heating and explains the
occurrence of atypical convective patterns observed in the GeoFlow experiments.

The paper is organized as follows. The theoretical background of dielectric heating and extended
TEHD equations are presented in Secs. I A and I B, respectively. The properties of the considered
dielectric fluid and the experimental setup of GeoFlow are also given. Section II A is devoted to
the basic conductive state of the system. The full set of TEHD equations is numerically treated
in Sec. II B. A comparison between experimental interferograms and the numerical simulations is
given in Sec. III. This paper ends with a detailed discussion and a summary.

A. Dielectric heating

Dielectric materials are electrical insulators with or without permanent molecular dipoles. In the
case in which the material is placed in an electric field E, permanent or induced dipoles are aligned
along the electric field lines and can yield a macroscopic body force. In a dielectric fluid, the DEP
force is induced by the application of an electric field. The force is proportional to the field squared
and to the gradient of the permittivity ε:

FDEP = − 1
2 E2∇ε. (1)

The permittivity of a dielectric fluid is given by ε = ε0εr , where ε0 = 8.854 × 10−12 F/m is the
vacuum permittivity and εr is the relative permittivity. The permittivity ε is in general a decreasing
function of the fluid temperature, so a temperature gradient in a fluid leads to a DEP force. A high
voltage and a strong thermal variation of ε are needed for a DEP force to be comparable to the
gravitational force on earth. If a fluid in a spherical capacitor is subjected to a radial temperature
gradient, the resulting DEP force is also radial and enables one to investigate thermal convection in
a central force field.

Among other fluid properties, the permittivity has the most important influence on TEHD
processes. The effects of fluid polarization in an alternating electric field can be treated conveniently
in terms of the complex permittivity, which depends on the field frequency as well as on the fluid
temperature:

εr = ε′ − iε′′. (2)

The real part Re[εr ] = ε′ is called dielectric constant. The imaginary part Im[εr ] = ε′′ represents the
loss rate according to the conductance of the fluid. In an ac electric field E the electric displacement
field is given by D = ε0E + P = ε0εrE for a linear isotropic dielectric, with P = (εr − 1)E the
polarization. The polarization current density is Jpol = ∂D

∂t
. Dielectric heating occurs in situations

where the displacement D has a nonzero phase lag δ to the applied electric field E. The tangent of
δ, called the energy dissipation factor, is expressed as the ratio of the imaginary to real part of the
permittivity

tan δ = ε′′

ε′ . (3)
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The power dissipation due to the dielectric loss per unit volume is

P = 2πf ε0ε
′ tan δ|E|2, (4)

where f is the frequency of the electric field. For a given dielectric the energy loss depends mainly
on the electric field strength and the frequency. For convenience, we define the rate of dielectric
heating SDH = P/ρCp, with Cp the specific-heat capacity at constant pressure:

SDH = 2πf ε0ε
′ tan δ|E|2

ρCp

. (5)

The rate of dielectric heating SDH must be included in the law of energy conservation in order to
simulate the influence of dielectric heating on a fluid.

B. Theoretical model

An electric field, applied on a dielectric fluid, induces three force densities

F = ρV E︸︷︷︸
FC

+∇
[

1

2
ρ

(
∂ε

∂ρ

)
T

E2

]
︸ ︷︷ ︸

Fes

+FDEP. (6)

The first term, called electrophoretic force, represents the Coulomb forces on free charges in the
fluid. In an ac electric field with a frequency higher than all other characteristic frequencies involved
in the flow dynamics, this force has no net effect on the fluid motion, since the force averaged over a
period of field variation vanishes [17]. The second term is the electrostrictive force density Fes. This
force is a gradient force, so it has no effect on the motion of incompressible fluids with no mobile
boundary. In the case of free surfaces or moving walls this force has to be taken into account. The
dielectrophoretic force density FDEP [see Eq. (1)] remains as the prevailing force field. It is radially
inward oriented and can be compared with a gravitational field. The TEHD equations governing the
spatial and temporal evolution of the velocity field u, the electric field E, and the temperature field
T are [19]

∇ · u = 0, (7)

∂u
∂t

+ (u · ∇)u = −∇� + ∇ · τ + ρ−1
0 FDEP, (8)

∂T

∂t
+ (u · ∇)T = κT ∇2T + SDH, (9)

∇ · E = 0, (10)

where we have adopted the electrohydrodynamic Boussinesq approximation [22]. Equation (7) is
the mass conservation for incompressible flows. Equation (8) is the Navier-Stokes equation, with
τ being the viscous stress tensor. The electrostrictive force Fes is lumped with the pressure [19],
resulting in an effective pressure term � = 1

ρ0
[P − 1

2ρ( ∂ε
∂ρ

)T · |E|2]. Equation (9) is the energy
equation, which describes the evolution of temperature, with κT the thermal diffusion coefficient.
The rate of dielectric heating Ssh is included in this equation for examining the effects of dielectric
heating on the flow field. Equation (10) is the Gauss equation. We have assumed that the free charge
density of the dielectric is negligible. We have also neglected the thermal variation of the permittivity
in the Gauss equation. In a geometry with a large curvature, as considered in the present work, the
spatial variation of the electric field arises primarily from the geometry curvature.

The governing equations (7)–(10) are completed by the equation of state for the permittivity ε.
For a small temperature deviation from a reference value T0, it is given by

ε = εref [1 − αE (T − T0)], (11)
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where αE is the dielectric expansion factor and εref is the permittivity at T = T0 [15,17,19]. We
apply Eqs. (7)–(11) to a dielectric fluid in the gap of two concentric electrodes. Each electrode is
maintained at a constant temperature and a high-frequency ac electric voltage is imposed over the
gap. The temperature field in the conduction state is given [19] by

Tb(r ) = T2 + η(T1 − T2)

1 − η

(
R2

r
− 1

)
, (12)

where (R1, T1) and (R2, T2) are the radius and the temperature of the inner and outer electrodes,
respectively. The radius ratio is defined by η = R1/R2. In an electric voltage of a frequency higher
than the reciprocal of the viscous timescale, only the time-averaged component of the DEP force
can affect the fluid motion. This component can be calculated from the effective electric field, which
is given in the conduction state [19] by

Eb(r ) = − ηVrms

R2 − R1

B

ln(1 − B )

(
R2

r

)2[
1 − B

Tb(r )

�T

]−1

er , (13)

where B = αE�(T1 − T2) is the thermoelectric parameter, Vrms = V0/
√

2 is the effective voltage,
and er is the radial unit vector. In the present work, we will focus on the case where no temperature
gradient is imposed, i.e., B → 0, and in the electrode geometry of η = 0.5 (R2 = 2R1). The
effective electric field is then given by

E = R1R2

R2 − R1

V0√
2

1

r2
er . (14)

Neither temperature nor the velocity field influence the electric field (14) in this model. In the case
of strong temperature-dependent permittivity or low curvatures η > 0.7 the coupling between the
momentum, energy, and Gauss equation has to be taken into account. The effects of the DEP force
are comparable to those of the thermal Archimedean buoyancy force in earth’s gravity field. The
wording electric gravity has been established for the effective acceleration of the dielectric origin,

ge = αE

ρ0αT

∇
(

ε0ε
′E2

2

)
. (15)

Further, this motivates the electric Rayleigh number as given in [19],

Ra = αT �T ge(R2 − R1)3

νκT

, (16)

with ν the kinematic viscosity and �T a representative value of the temperature variation inside the
fluid.

The governing TEHD equations are analyzed in two ways. First, we focus on the conductive
base state for a given electric field E in the spherical capacitor. This gives a rough estimate about
timescales and the spatial temperature profiles. Second, the equations are solved numerically in
three-dimensional space. Both issues require detailed information about the experimental setup, the
geometry, the resulting parameter space, and the fluid properties. These properties are presented in
the following.

C. Fluid properties and flow conditions

The present investigation is performed for the flow conditions realized in the GeoFlow ex-
periments, which can provide results for comparison. The GeoFlow experiments were performed
in the Fluid Science Laboratory of the Columbus module on the ISS between 2008 and 2017.
Two missions have been accomplished. The first mission GeoFlow I (2008) was performed using
the isoviscous silicon oil M5, which is a nonpolar liquid. Hence, the fluid is not susceptible
for dielectric heating. The second mission GeoFlow II (2011–2017) examined the effects of the
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TABLE I. Properties of 1-Nonanol for two reference temperatures at a frequency of 1.0650 × 104 Hz.

Property T0 = 293.0 K T0 = 303.5 K

Energy dissipation factor tan δ 6.12 × 10−2 7.45 × 10−2

Relative permittivity ε ′ 9.3 8.44
Density ρ (kg/m3) 8.29 × 102 8.22 × 102

Specific-heat capacity Cp (J/K) 2.47 × 103 2.47 × 103

Thermal diffusivity κT (m2/s) 7.94 × 10−8 7.76 × 10−8

temperature-dependent viscosity on convection with adopting 1-Nonanol as the working fluid. The
molecules of the 1-Nonanol have a strong dipole moment due to a hydroxyl group. This makes
the fluid susceptible to dielectric heating. All relevant fluid properties are listed in Table I. They
are based on measurements of the electrical properties provided by Airbus Defense and Space
(formally EADS Astrium). The experiment consists of two concentric shells, which can rotate
around a central axis. The inner and outer spherical electrodes have radii of R1 = 0.0135 m and
R2 = 0.027 m (radius ratio is η = 0.5), respectively (see Fig. 1). Electrodes are maintained at
constant temperatures. The temperature at the outer shell was considered as the reference value T0,
adjusted to either 293.0 K or 303.5 K. Electric voltage is limited by a maximum value V0 = 6500 V.
The peak value of the electric gravity is reached at the inner sphere, where ge ≈ 13 m/s2. The lowest
value is measured at the outer sphere where ge ≈ 0.3 m/s2. The Rayleigh number is varied over five
magnitudes, 5.6 × 102 < Ra < 1.43 × 107.

For a given fluid, control parameters are the temperature difference T1 − T2 between the
electrodes, the applied voltage V0, and the rotation rate �. In the present investigation, we consider
only initially isothermal experimental runs (T1 = T2) with no rotation of the electrodes (� = 0). In
the GeoFlow II experiment, the maximum electric field strength varies between 1.9 × 105 V/m for

D
H

FIG. 2. Radial profiles of the dielectric heating rate SDH [Eq. (5)] for 1-Nonanol at different values of the
electric voltage. The fluid properties are listed in Table I. Thin lines correspond to T0 = 293.0 K, and thick
lines to T0 = 303.5 K. The highest heating rate is found for V0 = 6500 V at the inner shell.
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FIG. 3. Temporal evolution of the maximum temperature in the conduction state for T0 = 293.0 K(thin
lines) and for T0 = 303.5 K(thick lines). The inset depicts the saturated maximum temperature as a function of
the voltage for both reference temperatures.

V0 = 1800 V and 6.9 × 105 V/m for V0 = 6500 V. Figure 2 depicts SDH, calculated from Eqs. (5)
and (13), for various voltages and reference temperatures examined in the experiment. A maximum
of 0.085 K/s is obtained for V0 = 6500 V at the inner electrode. The resulting temperature profile is
obtained by solving Eq. (9) under the boundary condition of constant temperatures at the electrodes.

II. NUMERICAL SIMULATIONS

A. Conductive state

In the conduction state (u = 0), the energy equation (9) reads

∂T

∂t
= κT

(
∂2T

∂r2
+ 2

r

∂T

∂r

)
+ SDH(ε′(T ), V0, r ). (17)

The calculation of the source term SDH(ε′(T ), r ) is based on the thermal variation of the permittivity
and the energy dissipation factor measured in the laboratory (Sec. I C),

ε′(T ) = −0.511 03T + 97.467 + 7.1429 × 10−4T 2, (18)

tan δ(T ) = −4.606 × 10−1T + 47.37 − 1.594 × 10−6T 3 + 1.488 × 10−3T 2, (19)

where the temperature is given in kelvins. Equation (17) has been solved by a simple, explicit
finite-difference scheme. To guarantee a stable solution a Courant-Friedrichs-Lewy number of 0.25
was chosen for 100 cells. Both reference temperatures T0 = 293.0 and 303.5 K, and five values of
V0 have been tested. The boundaries are kept at the reference temperature T1 = T2 = T0. In contrast
to the heating rate plotted in Fig. 2, the maximum temperature is not obtained at the inner shell.
Within the first thermal timescale τ = (R2 − R1)2/κT = 2603 the temperature profile becomes
stationary. This is shown for both reference temperatures in Fig. 3, where the difference of the
maximum temperature Tmax and the reference temperatures is plotted over the thermal timescale.

093501-7



FLORIAN ZAUSSINGER et al.

FIG. 4. Radial temperature profiles in the spherical gap with dielectric heating. The conductive solution
obtained from Eq. (17) (thin lines) and latitude- and longitude-averaged temperature profiles computed from
the 3D simulations (thick lines) are shown for T0 = 293.0 K. The black long-dashed line connects temperature
maxima. The profiles for V0 = 1800 V coincide.

The conductive case reveals a paraboliclike temperature profile where the minima are located at the
boundaries and the maxima are found in the interior (see Figs. 4 and 5). In all 1D solutions the
position of Tmax is found at rmax = 0.0179 m, or rmax/R2 = 0.665. The slope dTmax/dV0 increases
with the reference temperature (Fig. 3, inset).

B. Three-dimensional simulations

The governing equations (7)–(9), incorporating the electric field given by Eq. (14), are solved
numerically with the finite-volume method using the open source software suite OpenFOAM® [23].
A cubed sphere grid is used for all simulations. No-slip boundary conditions are imposed on the
velocity field at the electrode surfaces. The thermal boundary conditions are of Dirichlet type, i.e.,
constant temperatures. The code solves dimensional equations in three dimensions with the PISO
algorithm. Time integration is performed with an implicit Crank-Nicolson method. The spatial
derivatives are approximated in second order. Subgrid scales are modeled using a one-equation
ansatz for the turbulent kinetic energy. The accuracy of the results is given with a maximum residual
of 10−6. Several tests have been performed to guarantee converged solutions. A detailed grid study
showed that the total energy converges towards a fixed value for 4 × 106 cells. This resolution
also resolves the thermal boundary layers with at least five cells. In addition, the latitude- and
longitude-averaged temperature profiles are analyzed. These profiles (see Fig. 4) do not change
for more than 4 × 106 cells.

The GeoFlow experiment visualizes results as interferograms. They are obtained by a Wollaston
shearing interferometry which measures first derivatives of the fluid refractive index. These deriva-
tives are identified as temperature derivates through nearly identical slopes. Advanced numerical
postprocessing techniques are necessary to reconstruct the underlying temperature and velocity
field. An approved approach is the backward reconstruction, where numerical interferograms are
compared with experimental ones. In the case in which the interferograms match in predefined
characteristics (e.g., size, number, and speed of convective plumes), the internal field in the
experiment is assumed to be identical to the numerical simulations. To compare simulations and the
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FIG. 5. Radial temperature profiles in the spherical gap with dielectric heating. The conductive solution
obtained from Eq. (17) (thin lines) and latitude- and longitude-averaged temperature profiles computed from
the 3D simulations (thick lines) are shown for T0 = 303.5 K. The black long-dashed line connects temperature
maxima.

experimental images, numerical interferograms I (x, y) are calculated according to the algorithm
presented in Ref. [24]. We define the numerical interferometry function

I (x, y) = − cos

(
afringe

∂Tmean

∂s
+ bx + cy

)
, (20)

where afringe is a control parameter for the density of fringes, Tmean is the radially averaged
temperature, and s is the direction of polarization. The interferometric base pattern is implemented
by a linear extension of the mean-temperature derivative function with constants b and c. By
changing these values, the amount and direction of the base pattern are controlled. For our
simulations we use afringe = 0.05, b = −200, and c = 600. The numerical interferograms are
evaluated in the same area as the experimental interferograms. This is shown in Fig. 6, where
the patch of the numerical interferogram is spanned over the outer shell of the experiment. The
interferograms show two typical patterns: first, double-ring structures which originate from thermal
plumes, and second, parallel lines of fringes which are caused by sheetlike structures. A detailed
analysis of these structures is presented in Ref. [24].

All simulations follow the exact timeline of the experiment as shown in Fig. 7. A high voltage
and a uniform temperature field at a predefined reference temperature are applied for at least 61 min
before the interferograms are recorded. We have also taken into account the initial temperature
distribution in the fluid, which is estimated from the ambient temperature of the ISS. Our numerical
study covers ten parameter sets, including five voltages V0 = 1800, 3000, 4200, 5400, and 6500 V
as well as two reference temperatures T0 = 293.0 and 303.5 K.

C. Thermal stratification and heat transfer

The conductive solutions show parabolic profiles at the temperature where the maxima are found
in the interior of the gap and the minima are located at the boundaries. This stratification is also
found in the 3D simulations. The results of the 1D and 3D calculations are compared in Fig. 4 for
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FIG. 6. Area of the numerical interferogram congruent with the experimental interferogram of GeoFlow
for V0 = 6500 V and T0 = 293.0 K.

T0 = 293.0 K and in Fig. 5 for T0 = 303.5 K. Thin lines are stationary solutions for the conductive
case and thick lines are latitude- and longitude-averaged temperature profiles of 3D simulations.
The long-dashed black line connects peak values of the temperature. The location of the temperature
peak moves towards the outer shell for increasing voltages, contrary to the conductive case, where
the location of the peak is always found at rmax/R2 = 0.665 for both reference temperatures. For
V0 = 1800 V and T0 = 293.0 K the 1D and the 3D profiles coincide (black lines). It follows that this
case is also conductive in three dimensions, even though the profile shows a negative temperature
gradient in the outer half of the gap. The case of V0 = 1800 V and T0 = 303.5 K differs. Here the
profile from the 3D simulation is always above the 1D conductive solution. The onset of convection
will be found within 1800 V < V0 < 3200 V, where an octahedral convective structure is observed
for V0 = 3000 V in the numerical simulations.

The heat transfer is described in terms of the Nusselt number

Nu = Ftot

Fcond
, (21)

where Ftot is the total heat flux, incorporating the convective and the conductive flux. To calculate the
total heat flux at the electrodes the temperature field is averaged in the latitude and in the longitude
and then differentiated in the radial direction. The conductive flux Fcond is given by the solutions
of the extended heat (17). Figure 8 shows the Nusselt number calculated at the inner (subscript i)
and the outer (subscript o) shells for both reference temperatures and as a function of the voltage.

FIG. 7. Time line of experimental runs of GeoFlow II. Two series of reference images (Ref1 and Ref2)
are recorded with �T = 0 and high voltage V0. Ref1 is recorded after 61 min and Ref2 after 85 min. Both
reference series are used to measure the influence of dielectric heating on the conductive state.
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FIG. 8. Nusselt number as a function of the voltage. Closed and open symbols show the Nusselt numbers
measured at the outer shell Nuo and the inner shell Nui , respectively.

The value of Nui is always decreasing with the voltage, while Nuo increases with the voltage. The
slopes of both graphs are opposite, resulting in a nearly constant averaged arithmetic mean value of
Nu (not shown). The Nusselt numbers differ between the reference temperatures. Their values for
T0 = 303.5 K are always higher than those for T0 = 293.0 K. Even the assumed conductive case of
V0 = 1800 V reveals a Nusselt number of Nu = 1.5. In contrast to the classical Rayleigh-Bénard
(RB) convection, the Nusselt numbers at the inner shell are also less than unity. This comes from
the fact that the convective flux becomes negative in the inner part of the spherical gap. This is
a distinctive feature of the TEHD convection under dielectric heating. In the RB convection, the
convective flux is always greater than (convection state, Nu > 1) or equal to (conduction state,
Nu = 1) the conductive flux. In the TEHD convection under dielectric heating, therefore, the onset
of convection cannot be detected anymore with the criterion Nu > 1.

A strong influence of the convective flow on the temperature profile is observed for V0 > 3000 V.
The maxima are “eroded” by the velocity field towards the outer shell, where the convective flux is
positive and greater than the conductive flux. This explains the differences between the inner and
the outer Nusselt numbers. It is observed that convective cells penetrate the stably stratified bottom
region, which results in convection cells extending over the whole gap.

III. COMPARISON WITH EXPERIMENT

A. Temperature field

A comparison of experimental interferograms and the numerical results for different values of
the voltage is shown in Figs. 9 and 10. The first row depicts the experimental interferograms and
the second row the numerical interferograms. The third and fourth rows show the temperature and
velocity fields in a meridian plane.

In all experimental interferograms the base pattern of the Wollaston shearing interferometry
unit is visible as stripes. This pattern is produced because of the manufacturing tolerance of the
shells. The first column (V0 = 1800 V) does not exhibit any convective structures for both reference
temperatures. Three explanations are possible: First, the interferometry is not sensitive enough to
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V0 = 1800V V0 = 3000V V0 = 4200V V0 = 5400V V0 = 6500V

Experimental

interferogram

ΔT = 0 K

T0 = 293.0 K (a) (b) (c) (d) (e)

Numerical simulation

ΔT = 0 K

T0 = 293.0 K (f) (g) (h) (i) (j)

temperature slice (k) (l) (m) (n) (o)

radial velocity (p) (q) (r) (s) (t)

FIG. 9. (a)–(e) Experimental interferograms of the GeoFlow II experiment for T0 = 293.0 K and �T =0.
(f)–(j) Numerically calculated interferograms based on 3D simulations. Both rows show interferograms
recorded after t = 2603 s. Dielectric heating is visible for V0 � 4200 V as thermal plumes which exhibit
characteristic double-ring structures. Conductive cases (a) and (b) show only the base fringe pattern. (k)–(o)
Temperature distribution in a vertical slice. (p)–(t) Streamlines colored by the radial velocity field. Blue regions
are downdrafts and red regions are updrafts.

resolve weak temperature gradients; second, the experiment timescale is too short for convective
flow to develop; third, the conduction state is stable at this voltage.

Convective plumes at V0 = 3000 V show weak gradients and are hard to identify in the
interferograms. They are indicated by sightly distorted fringes. On the other hand, the plumes are
visible in the numerical simulations as regular octahedral structures. These structures have also
been observed by Zaussinger et al. [24] and Feudel et al. [25]. For V0 � 4200 V convective plumes
are visible as double rings in the experiment and in the numerical simulations. The number of
rings is positively correlated to the voltage and to the reference temperature. Due to the increased
acceleration at higher voltages, the thermal gradients steepen and the frequency of fringes in
double-ring packages increases. This holds for both reference temperatures. It may be worth
mentioning that sheetlike structures are never observed under the isothermal condition T1 = T2.
The size of convective plumes decreases with increasing voltage. See, for instance, the results for
T0 = 303.5 K and V0 = 4200–6500 V. The observed behavior of plumes is in good agreement with
RB convection, where convective plumes are described as thermal boundary layers separated from
walls. The boundary layers get thinner with increasing Rayleigh number. The thermal gradients then
become steeper. In addition, the size of the plumes depends on the reference temperature. Plumes
are larger for T0 = 293.0 K. By comparing the temperature field [Figs. 9(o) and 10(o)] or the radial
velocity field [Figs. 9(t) and 10(t)] observed at different temperatures, one finds steeper plumes at
the higher temperature T0 = 303.5 K.

The selected images are representative of the amount of convective cells found. They are obtained
by manually counting. For both reference temperatures we find a positive correlation between
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V0 = 1800V V0 = 3000V V0 = 4200V V0 = 5400V V0 = 6500V

Experimental

interferogram

ΔT = 0 K

T0 = 303.5 K (a) (b) (c) (d) (e)

Numerical simulation

ΔT = 0 K

T0 = 303.5 K (f) (g) (h) (i) (j)

temperature slice (k) (l) (m) (n) (o)

radial velocity (p) (q) (r) (s) (t)

FIG. 10. (a)–(e) Experimental interferograms of the GeoFlow II experiment for T0 = 303.5 K and �T =0.
(f)–(j) Numerically calculated interferograms based on 3D simulations. Both rows show interferograms
recorded after t = 2603 s. Dielectric heating is visible for V0 � 4200 V as thermal plumes which exhibit
characteristic double-ring structures. Conductive cases (a) and (b) show only the base fringe pattern. (k)–(o)
Temperature distribution in a vertical slice. (p)–(t) Streamlines colored by the radial velocity field. Blue regions
are downdrafts and red regions are updrafts.

plumes and voltage. Up to 20 plumes are found per hemisphere in the case of V0 = 6500 V. In
the statistical mean we find 38% more convection cells in the numerical simulations than in the
experiment. This aberration will be discussed in Sec. IV. The numerical simulations reveal that
the convective plumes emerge irregularly in the spherical gap. They are not stationary, but are
moving and relocated within 10–20 min over the distance of the interferogram. As the experimental
interferogram measurement lasts only 3 min, it is not possible to estimate the velocities of plumes
for comparisons with the numerical results.

B. Size of double-ring structures

The inner structure of double rings depends on the temperature gradients inside the convective
plume. In addition, the temperature distribution in the midgap spherical surface looks Gaussian
around a plume. As the interferometry delivers narrower stripes at higher gradients, the two centers
of the double rings represent inflection points. These points are located at μ ± σ , where μ is the
bisection point of the double-ring centers. The temperature takes its local maximum or minimum
there. The length between two centers (lc = 2σ ) gives a quantitative value for the width of a
convective plume which is used to calibrate numerical interferograms. Additionally, lc depends on
the velocity field and the thermal distribution due to dielectric heating. We calculate the mean value
of all visible plumes to calibrate the numerical interferograms. The variation of this mean value is
within 10%, which indicates that the lateral elongation of the plumes is nearly identical. We find the
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FIG. 11. Velocity vectors and associated streamlines along a convective downdraft. The double-eye pattern
occurs from a downward stream, where cold material is transported towards the inner shell. The red box shows
an experimental interferogram.

same result in the numerical simulations by analyzing the temperature field in the meridian surface.
Double-ring structures at T0 = 303.5 K are generally wider than for T0 = 293.0 K.

C. Velocity field

Interferograms do not deliver direct quantitative information about the velocity field. By careful
confrontation of the experimental and numerical interferograms, however, it is possible to deduce
some properties of the flow velocities. The simulations show that the convective flow is enhanced
by the increase of the applied electric voltage, as expected from the analogy to the classical RB
convection. Furthermore, the simulations show peak velocities at the locations of downdrafts,
underneath double-ring structures. The mean velocity in updraft regions is about halved. The
last rows in Figs. 9 and 10 show this behavior. Blue regions, where the radial velocity points
inward, coincide with steep thermal plumes. This observation differs from earlier publications
about GeoFlow II, where updrafts were predicted in the same situations. We will discuss this
point in Sec. IV. The velocity field in such a downdraft region is shown in Fig. 11 in more detail,
where streamlines are superimposed on the velocity vectors. The colors of the vectors indicate
the temperature values. One can see that the velocities are larger in the inner half layer than in
the outer half layer. This would be a consequence of (i) an increased radial acceleration due to
the dielectrophoretic force field and (ii) the channel-like acceleration between the counterrotating
vortices. In addition, the fluid could be heated up by passing the middle of the gap (small, deep red
colored vectors).

IV. DISCUSSION

Although the GeoFlow experiment delivers only interferograms and hence an integrated value
of the mean temperature, we are able to deduce some basic properties of the velocity field with
accompanying numerical simulations. We find that cold fluid is transported downward underneath
channel-like plumes. This is in strong contrast to earlier publications where steep updrafts have
been found. Futterer et al. [16] explained the specific convective plumes with a massively
increased viscosity contrast of νmin/νmax = 32. Although the numerical simulations reproduced
well experimentally determined interferograms, the physical process of the viscosity contrast has
never been justified. Travnikov et al. [26] also analyzed laminar convection in the same numerical
and experimental setup for various viscosity contrasts. Very good alignment of sheetlike structures
has been found for Ra < 14 000. The turbulent convective case was not in the scope of this study.
Zaussinger et al. [24] recognized a “stability island” between the conductive and the convective
case. The plumes, now known that they are dielectrically produced, have been studied according
to their automatized recognition in images. The presented experimental setup is unique for two
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reasons. First, the dielectric properties of 1-Nonanol are user friendly. This means that the frequency
of the electric field is reasonable low (f = 10 650 Hz) and the loss rates are high (tan δ ≈ 0.07).
Second, the given spherical geometry with radius ratio η = 0.5 delivers a stationary electric field.
This favors the numerical solution [15] as the Gauss equation does not have to be solved in each
time step. Although the comparison of numerical and experimental interferograms shows many
similarities, it reveals one significant issue. We find 38% more plumes in the simulations than in
the experiment. Three reasons could explain this discrepancy. First, the numerical simulations have
been performed without the cylindrical shaft. Egbers et al. [10] examined the influence of the shaft
during the construction phase of GeoFlow and estimated a region of influence of 30◦ around the
shaft in the southern hemisphere. However, the influence of the shaft might extend over a wider
zone in convective flows. Second, the experimental interferograms do not show all plumes, as the
visibility depends on the polarization plane. Plumes occur and vanish depending on their position
according to the polarization plane. This also reduces the amount of actually counted experimental
plumes and implies that we find all plumes in the numerical simulations, but only a fraction of them
in the experiment. Third, the plumes observed in the simulation are undergoing merging processes
(see [25]) and the number of plumes converges towards the experimental amount.

V. CONCLUSION

The behavior of a liquid layer in the gap between two concentric spherical electrodes has been
investigated by means of numerical simulations and the microgravity experiment GeoFlow. The
liquid was heated internally by dielectric heating, which leads to thermal convection. The isothermal
conductive case was analyzed with a simple 1D temperature equation, which involves a source term
arising from the dielectric heating. We found that dielectric heating leads to a parabolic-shaped
thermal profile, where the maximum was found in the middle of the gap.

Three-dimensional numerical simulation showed that convection does not set in for V0 =
1800 V, but for V0 � 3000 V. The onset of convection is expected in between. In addition, we
found Nusselt numbers less than unity, which was explained by a negative convective flux in the
inner part of the spherical gap. Incorporating the dielectric heating in the equations governing the
TEHD convection delivered the best match between numerical and experimental interferograms for
GeoFlow II. With increasing voltage, a series of experimental interferograms could be reproduced
by numerical simulations.

The GeoFlow experiment does not deliver direct information about the temperature field.
Additionally, the velocity field is not accessible, except drift rates of plumes. The temperature
distribution is given as an interferogram which represents a radially averaged temperature value
and therefore a projection of the full temperature field on the 2D plane. The loss of information
is intrinsic owing to the measurement technique. However, the present numerical simulation can
complete the experimental measurements. Confronting experimental interferograms with those
produced by the simulation, we can deduce basic features of the temperature fields and identify
convective plumes and laminar structures in the flow. The simulation also provides associated
velocity fields.

Future work could apply the presented TEHD model in situations with an initial temperature
contrast. This could explain further inconsistencies in similar experiments. The extension to
rotational cases is also in the scope of envisaged work.
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