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A normal compressive shock wave with supercritical upstream thermodynamic condi-
tions is analyzed using the Soave-Redlich-Kwong equation of state (EoS) relations for
real-gas density, enthalpy, and entropy for argon, nitrogen, oxygen, and carbon dioxide.
Upstream pressure and temperature vary from 10 to 500 bar and 160 to 800 K. At high
pressures, the flow does not follow the calorically perfect-gas behavior. For the perfect gas,
the enthalpy and ratio of pressure-to-density are directly proportional to the square of the
sound speed, allowing direct substitution of the sound speed in the conservation equations.
A thermodynamic function is identified for the real-gas sound speed which is shown to
remain as the proper characteristic speed. Although the sound speed does not emerge directly
from the conservation equations as it does for a perfect gas, the shock speed goes to this
limiting value as shock strength goes to zero. For the real gas, modifications are obtained
for Prandtl’s relation and the Rankine-Hugoniot relation. The modified real-gas Riemann
invariants are constructed and discussed for application to weak shocks. A foundation is
presented for use with other cubic EoS, multicomponent flows, and/or for more complex
flow configurations. Near-similar solutions are developed by normalization of the variables
using critical values for pressure and temperature. These exact solutions are compared with
approximate solutions obtained via a linearization of the cubic EoS for deviation from
ideal-gas behavior.
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I. INTRODUCTION

The goal of this work is to analyze the differences at high pressures between real-gas compressible-
flow behavior and ideal-gas compressible-flow behavior. Recent trends in liquid-propellant rocket
engines and aircraft turbofan engines involve substantial increases in combustion-chamber pressures
for the purpose of increased thermal efficiencies. In particular, critical pressures of the fluids are
exceeded, and the ideal-gas assumption becomes flawed. Shock waves can appear in the compressor of
a gas-turbine engine or in the propellant turbopumps of the rocket engines. If combustion instabilities
develop in the engine combustor, shock waves become possible for higher amplitude oscillations.
While these practical shocks might be oblique or curved, an analysis that begins with normal shocks
is justified.

As a basis for analysis of compressible flow, two quantities which appear in the equations of
motion (EoS) directly or implicitly must be related: enthalpy h and pressure-to-density ratio p/ρ.
Also, their relations with temperature T and sound speed c are of interest. These four variables
are related very simply for the ideal gas whereby h, p/ρ, c2, and temperature T are all directly
proportional to each other. In the following discussion, it is shown how much more complex the
real gas can be due to the role of the attractive and repulsive forces between molecules at the high
pressures and densities.
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For analysis of compressible flow at very high pressures, corrections to the ideal-gas relations are
needed in the supporting thermodynamics theory. Among other issues, many classical relations no
longer apply in their original forms. In particular, adjustments are needed for the EoS that describe
density (or specific volume), enthalpy (or internal energy), and sound speed as functions of pressure,
temperature, and composition.

The potential for important quantitative differences for inviscid compressible flows between ideal-
gas flows and real-gas flows has been well established in the literature. Zel’dovich and Raizer [1]
give a broad coverage to the physics of shock waves and include several issues for real gases.
Menikoff and Plohr [2] emphasize several mathematical features of the discontinuous solutions to
the Riemann problem. There have been earlier attempts to determine the jump in flow variables
across a shock wave. Tao [3] calculated jumps across normal shocks in Freon-12 flow. They assumed
the Beattie-Bridgeman EoS and used perturbation theory with six small parameters to describe the
thermodynamics. The results show significant variations from ideal-gas behavior for shocks with high
pressure ratios. For a pressure ratio equal to 25, the downstream density was about 15% higher for
the real gas compared to the ideal gas, while the real-gas downstream temperature was 25% lower.
Shock flows of nitrogen were considered by Wilson and Regan [4] where the upstream pressure
and temperature varied up to 1000 atmospheres and 2000 K. Correction factors as high as 1.6 for
downstream pressure and 1.17 for downstream temperature were found to apply as multiples of the
ideal-gas values. The analysis was based on the assumption that the upstream values satisfy the
ideal gas law. For a wide range of upstream values of interest, this assumption is not acceptable.
Koremenos and Antonopoulos [5] computed results for a normal shock in air using the Redlich-
Kwong EoS. For a convergent-divergent nozzle with a standing shock in the divergent (supersonic)
portion, both Arina [6] and Jassim and Muzychka [7] show significant (i.e., 10 % or more) differences
in flow properties for the ideal gas and the real gas. The shock location is also modified. Similar
magnitudes of differences are shown by Arina [6] for the shock tube problem with traveling shock,
expansion wave, and contact surface. Recently Sirignano [8], using a linear approximation to the
Soave-Redlich-Kwong (SRK) EoS, reported results for choked nozzle flow, nonlinear acoustics,
and normal shocks for certain thermodynamic-parameter domains. All of these works reported only
subsonic flow normal to the shock on the downstream side and supersonic flow upstream, the same
as the classical findings of the ideal-gas behavior based on the Second Law constraint. The Bethe-
Zel’dovich-Thompson fluid [9] is known to exhibit other types of strange behavior with shock waves
and other flow issues. Those fluids are typically formed with very large molecules and are outside
of the range of interest here.

Many different types of variations from ideal-gas flow behavior are described as real-gas
phenomena in the general literature. Included are viscous flows, flows with heat and/or mass transport,
and flows with various type of relaxation processes such as molecular vibrational excitations,
dissociations, a wide variety of other chemical reactions, electronic excitations, and ionization. In this
paper, those nonequilibrium processes are not addressed. Here the focus is on inviscid, compressible
flows with equilibrium conditions that do not satisfy the ideal-gas law, p = ρRT , and with enthalpy
and internal energy dependent on pressure p as well as temperature T . For continuous flows, no
nonequilibrium conditions are considered; for the normal shock wave, the thin zone of O(100)
nanometers in thickness with molecular translational and rotational nonequilibrium is treated as a
mathematical discontinuity.

II. THERMODYNAMIC FOUNDATIONS

The formulation requires a replacement of the ideal-gas law with a relation that yields density ρ

as a function of pressure p, temperature T , and composition in terms of species mole fractions Xi (or
mass fractions Yi). In addition, formulas are needed giving specific enthalpy h (or specific internal
energy e), specific entropy s, and sound speed c as functions of those same variables. We need all of
these relations to understand fully the state of the fluid.
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NORMAL SHOCKS WITH HIGH UPSTREAM PRESSURE

TABLE I. Values for critical temperature, critical pressure, and ratio of specific heats, acentric factor, and
S coefficient.

Gas Tc (K) pc (kPa) γ W ω S(ω)

Argon 150.8 4780 1.667 40.0 0 0.485
Nitrogen 126.2 3390 1.400 28.0 .040 0.547
Oxygen 154.6 5050 1.400 32.0 0.022 0.517
Carbon dioxide 304.25 7380 1.286 44.0 0.228 0.831
Water vapor 647.1 22064 1.333 18.0 0.344 1.001

A. EoS for density

The compressibility factor is defined as Z ≡ p/(ρRT ). For the ideal gas, Z = 1 everywhere,
while, for a real gas, it may vary with space and time. The cubic EoS gives molar specific volume v

or mass density ρ for given pressure p and temperature T . In addition, an enthalpy departure function
gives the difference between the enthalpy for the ideal gas and the enthalpy for the real gas at any
given pressure and temperature. Essentially, there is a pair of EoS, one for density and another for
enthalpy h. The developments proposed here may be done with any of the well-known cubic EoSs,
but only one is chosen here. In particular, the analysis proceeds with the SRK cubic EoS [10], which
is known for accuracy over a wide range of important applications. The SRK EoS is a modification of
the van der Waals cubic EoS where some empirical fitting has been used to describe better the effects
of molecular attraction and repulsion. Although only very simple configurations will be considered
here (i.e., single species and single phase), an EoS is sought that can be extended reasonably well
for use in more complicated configurations to allow consistency in future work.

The SRK EoS for a single-component fluid is

Z3 − Z2 + (A − B − B2)Z − AB = 0, (1)

where

Z ≡ pv

RuT
= p

ρRT
, A ≡ ap

(RuT )2
, B ≡ bp

RuT
,

a ≡ 0.42748
(RuTc)2

pc

[
1 + S

(
1 − T 0.5

r

)]2
, b ≡ 0.08664

RuTc

pc
,

Tr ≡ T

Tc
, S ≡ 0.48508 + 1.5517ω − 0.15613ω2. (2)

R and Ru are the specific and universal gas constants, respectively. Subscript c denotes a
thermodynamic critical value. The coefficients a and b (and therefore A and B) relate respectively
to intermolecular attraction and repulsion.

An alternative form of Eq. (1) which is useful for certain algebraic manipulations is given as

Z − 1 = B

Z − B
− A

Z + B
. (3)

When A � 1 and B � 1, Sirignano [8] has shown that a good approximation is given by Z =
1 + B − A.

For argon, oxygen and nitrogen, the difference in the ω value modifies S in the second significant
digit; see Table I. (A different functional form is recommended for hydrogen; while discussion of
gases with different formulas is omitted to avoid distraction from the main themes, the approach is
easily extendable to consider them.) In the domain of pressure and temperature where both gas and
liquid exist in equilibrium, there is a solution of Eq. (1) for each phase; thus, two different, physically
meaningful Z values can result. Since p and T are identical for each phase, the implication is that there
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are two values for the specific molar volumes vg and vl and thereby for the mass densities ρg = W/vg

and ρl = W/vl. W is the molar mass. A range of values is considered for p and T where only one
phase exists and therefore only one interesting solution to the cubic equation exists. (Complex roots
are ignored.) At supercritical conditions, there are ranges of p and T where a compressible fluid
exists without discontinuities in properties and may still be labeled as a gas. Thus, reference to ρ

and other properties are made with the understanding they apply to a gas.
Table I presents critical temperature Tc, critical pressure pc, acentric factor ω, ratio of specific heats

for the ideal gas γ , and molecular mass W for selected gases. Monatomic, diatomic, and triatomic
species are considered. In the calculations in the following sections, argon, nitrogen, oxygen, and
carbon dioxide are analyzed. γ, cp, and cv are values pertaining only to the ideal-gas EoS. For
example, as shown by Eq. (6), cp will not be the partial derivative of enthalpy with respect to
temperature for the real gas. It will be that derivative only for the ideal gas, and it retains only that
meaning when used in the real-gas enthalpy relation. This particular formulation allows each of
the enthalpy and the entropy functions to be conveniently introduced as the ideal gas value plus a
departure function.

There is no obvious way to collapse the behaviors of different gases to a similar form for ease of
calculation. For example, even if pressure and temperature are normalized and p/pc and T/Tc are
treated, the gases differ significantly through three other parameters in the table: γ, ω, and W .

For a mixture of two or more gases, the parameters a and b are determined by the following rules.
Each species in the mixture has its own value of the integer index i. Then the mixture values of a

and b are determined from the species values ai and bi and the mole fractions Xi of the species as
follows:

a ≡ �Ñ
i=1�

Ñ
j=1XiXj (aiaj )0.5(1 − kij ); b ≡ �Ñ

i=1Xibi (4)

and

ai ≡ 0.42748
(RuTci )2

pci
αi ; bi ≡ 0.08664

RuTci

pci
; αi ≡ [

1 + Si

(
1 − T 0.5

ri

)]2

Tri ≡ T

Tci
; Si ≡ 0.48508 + 1.5517ωi − 0.15613ω2

i . (5)

The extension to multicomponent gases will not be considered here. However, Eqs. (4) and (5)
show that it would be straightforward.

B. Enthalpy and entropy departure functions

The specific enthalpy h (or enthalpy per mole h̃ = Wh) deviates from the ideal-gas specific
enthalpy h∗ (or h̃∗) at the same temperature. For the SRK case, the enthalpy h satisfies the following
relation:

h = h̃

W
= h∗(T ) + 1

W

[
RuT (Z − 1) + T (da/dT ) − a

b
ln

Z + B

Z

]
. (6)

Useful background information is given by Ref. [10]. It can be shown from Eq. (4) that, for a single
species,

ã ≡ 0.42748
(RuTc)2

pc
, T

da

dT
= ã

[
S2 T

Tc
− S(S + 1)

√
T

Tc

]
, T 2 d2a

dT 2
= ãS(S + 1)

2

√
T

Tc
,

A ≡ ap

(RuT )2
= ãp

(RuT )2

[
(S + 1)2 − 2S(1 + S)

√
T

Tc
+ S2 T

Tc

]
,
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A′ ≡ p

(RuT )2
T

da

dT
= AT

a

da

dT
= ãp

(RuT )2

[
S2 T

Tc
− S(S + 1)

√
T

Tc

]
,

A′ − A = ãp

(RuT )2
(S + 1)

[
S

√
T

Tc
− (S + 1)

]
, A′′ ≡ AT 2

a

d2a

dT 2
= ãp

(RuT )2

S(S + 1)

2

√
T

Tc
. (7)

The enthalpy relation can be developed a little further using these definitions:

h(p, T ) = h∗(T ) + RuT

W

[
Z − 1 + A′ − A

B
ln

Z + B

Z

]

= cpT +
[

(Z − 1)RT + ã

bW
(S + 1)

[
S

√
T

Tc
− (S + 1)

]
ln

Z + B

Z

]
. (8)

Using the departure function, the entropy change between states 1 and 2 from the value for an
ideal gas may be described [10] as follows:

�s|ideal = R

(
γ

γ − 1
ln

T2

T1
− ln

p2

p1

)
,

�s = �s|ideal + R

(
ln

Z2 − B2

Z1 − B1
+ A′

1

B1
ln

Z1

Z1 + B1
− A′

2

B2
ln

Z2

Z2 + B2

)
. (9)

The speed of sound is evaluated for our specific EoS in Appendix A.

III. SHOCK RELATIONS

The conservation equations for mass, normal momentum, transverse momentum, and energy
across the shock wave can be stated in the following forms:

ρ1u1 = ρ2u2 ≡ m, (10)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2, (11)

w1 = w2, (12)

h1 + u2
1/2 = h2 + u2

2/2, (13)

where u and w are the normal and transverse velocity components, respectively. Subscripts 1 and
2 pertain respectively to conditions on the upstream and downstream sides of the shock. Upstream
conditions for p1, h1, ρ1, u1, and w1 are related to the downstream values p2, h2, ρ2, u2, and w2.
The other variables T1 and T2 can also be readily determined from the equations of state.

An examination indicates that
√

p/ρ and
√

h are the characteristic velocities appearing in the
momentum equation (11) and energy equation (13), respectively. Fortunately, with the calorically
perfect gas, those two values are directly proportional to each other and to the sound speed c over
all upstream thermodynamic property values. Thus, sound speed is the characteristic velocity for the
perfect gas. The ideal-gas shock strength (measured by the magnitude of the jump across the shock
in the value of any thermodynamic property) decreases as shock velocity decreases towards the sonic
speed and goes to zero as the sonic speed is reached. For the real gas, the values of

√
p/ρ,

√
h, c,

and
√

T will not be directly proportional to each other. Thus, a different behavior might be expected
because no single characteristic velocity appears through the equations. So the question remains
about whether the Mach number will be more informative than other nondimensional velocities. It
is widely stated that the weak shock propagation velocity goes to the sound speed in the limit as
its strength goes to zero. However, typically, the literature shows by theory that the limiting shock
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velocity as �p → 0 is the sound speed only after the perfect-gas EoS is assumed [11]. A proof that
does not depend on the choice for the EoS is shown in Appendix B; the sound speed in the limiting
speed for the real gas just as it is for the ideal gas. Thereby, it is the sensible choice for a reference
velocity.

A. Solution method

The real-gas shock problem can be viewed as having ten flow properties: u, p, ρ, h, and T on
both sides of the shock. The equations give seven constraints: three conservation equations [(10),
(11), and (13)] applied across the shock and the thermodynamic relations (1) and (6) applied on each
side of the shock. [The transverse velocity and transverse momentum equation (12) are dismissed
here.] Thus, three conditions must be imposed. Upstream pressure p1 and upstream temperature T1

will be chosen to characterize a parameter case. Through the thermodynamic relations, the other
upstream thermodynamic variables h1, Z1, and ρ1 become known for that case. The downstream
density ρ2 value will then be chosen and varied over a range of interest, i.e., ρ2/ρ1 � 1. With the
known densities, the velocity ratio u2/u1 is determined easily from the continuity equation (10), and
u2 can be eliminated from the two other conservation equations (11) and (13) by substitution. Then
the momentum and energy equations can be combined to eliminate u1 yielding

h2 − h1

p2 − p1
= 1

2ρ1

(
1 + ρ1

ρ2

)
= ρ2 + ρ1

2ρ2ρ1
, (14)

where the right-hand side is now known. Equation (14) presents the classical Hugoniot relation.
Substitution for h2 in Eq. (14) using Eq. (6) gives a nonlinear two-equation system, together with
Eq. (1), to determine p2 and T2. Numerical solution is needed and provided by the fsolve Matlab
function: https://cn.mathworks.com/help/optim/ug/fsolve.html. After determining p2 and T2, Eq. (6)
will yield h2. Once all of these thermodynamic variables are known, the momentum and energy
equations (11) and (13) will give u1 and u2 values pertaining to the chosen ρ2 value. This completes
the solution for all primitive variables. Nondimensional variables can be determined easily from
these results.

Equations (10) and (11) can be combined to eliminate the velocities, thereby yielding the relation
for the Rayleigh line:

p2 − p1 = m2

(
1

ρ1
− 1

ρ2

)
. (15)

The intersection of the Hugoniot relation and Rayleigh line determines the thermodynamic conditions
behind the shock. This is not surprising since those two statements result from the conservation
equations that describe the jump conditions for the shock.

B. Rankine-Hugoniot relation

Let us examine same general features of the solution that are independent of the choice of EoS.
Equation (14) can be rewritten using the following definitions: �h ≡ h2 − h1,�ρ ≡ ρ2 − ρ1, and
�p ≡ p2 − p1. Also, ρ∗ ≡ (ρ2 + ρ1)/2. Then Taylor expand each of ρ1 and ρ2 in the denominator
about ρ∗. Also, expand h2, h1, p2, and p1 about the same point. If follows that �h/�p = 1/ρ∗ +
O([�ρ]2) where �p,�h, and �ρ are of the same order. Thus, comparison with fundamental relation
T ds = dh − (1/ρ)dp demonstrates that entropy gain across the weak shock is O([�p]3) without
regard to the particular EoS.

Equation (14) can be reformulated as

h2

h1
= 1 + p1

2ρ1h1

(
1 + ρ1

ρ2

)(
p2

p1
− 1

)
. (16)
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In general, this cannot lead to a result where p2/p1 is simply a function of ρ2/ρ1 and γ such as we
obtain for a perfect gas. That is, h2/h1 is not simply a function of p2/p1 and ρ2/ρ1 and ρ1h1/p1

is not a constant. So the generalization of the Rankine-Hugoniot curve does not give an impressive
canonical form. This finding is consistent with the dependence on upstream conditions seen in
Figs. 4(a), 4(b), and 10(a).

It is convenient to define and evaluate nondimensional ratios which take the value of one for the
ideal gas but will vary with p and T for the real gas. Already, there is the compressibility factor
Z ≡ p/ρRT . The following ratios are added:

μ ≡ (γ − 1)ρh

γp
; � ≡ (γ − 1)h

c2
; η ≡ γp

ρc2
; ν ≡ c2

γRT
. (17)

Only three of these five ratios are independent, e.g., η = �/μ, ν = Zμ/�. Now h2/h1 =
(μ2/μ1)(p2/p1)/(ρ2/ρ1) which can be substituted in Eq. (16) to yield

h2

h1
= μ2

μ1

p2

p1

ρ1

ρ2
= 1 + γ − 1

2γμ1

(
1 + ρ1

ρ2

)(
p2

p1
− 1

)
,

μ2

μ1
=

ρ2

ρ1
+ γ−1

2γμ1

(
1 + ρ2

ρ1

)(
p2

p1
− 1

)
p2

p1

. (18)

For the ideal gas, with μ1 = μ2 = 1, p2/p1 becomes a function only of γ and ρ2/ρ1. However, for
the real gas, it also depends on μ2/μ1 and μ1. Thus, a different Rankine-Hugoniot curve results
for different upstream conditions. Equation (18) indicates that the pressure ratio p2/p1 will become
infinite when ρ2/ρ1 increases to a certain maximum value given by

ρ2

ρ1

∣∣∣∣
max

= 2γμ2

γ − 1
− 1. (19)

The implication is that μ2 must reach an asymptote if ρ2 reaches a maximum. Also when μ2 = 1
for the ideal gas, the maximum density ratio becomes (γ + 1)/(γ − 1).

C. Modified Prandtl relation

We can define the velocity c∗ and stagnation enthalpy ho following normal practice:

ho = h1 + u2
1

2
= h2 + u2

2

2
= γ + 1

2(γ − 1)
c∗2. (20)

From Eqs. (17), (B1), and (20), the following can be written as

h1 = γμ1

γ − 1

p1

ρ1
= γ + 1

2(γ − 1)
c∗2 − u2

1

2
, h2 = γμ2

γ − 1

p2

ρ2
= γ + 1

2(γ − 1)
c∗2 − u2

2

2
,

u1 − u2 = γ − 1

γμ2u2

[
γ + 1

2(γ − 1)
c∗2 − u2

2

2

]
− γ − 1

γμ1u1

[
γ + 1

2(γ − 1)
c∗2 − u2

1

2

]
. (21)

Convenient multiplication of the two major terms on the right by u1/u1 and u2/u2, respectively,
allows the development of a new relation:

γ + 1

2γ

c∗2

u1u2
= (u1 − u2)(μ∗2 − δ2)

μ1u1 − μ2u2
+ γ − 1

2γ

μ1u2 − μ2u1

μ1u1 − μ2u2
, (22)

where μ∗ ≡ (μ1 + μ2)/2 and δ ≡ (μ2 − μ1)/2. Equation (22) presents the modified-Prandtl shock
relation. For the perfect gas where μ1 = μ2 = 1, the above relation becomes c∗2 = u1u2.
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For the parameter range where |δ| � 1, an approximation can be constructed, neglecting quantities
of O(δ2):

c∗2

u1u2
≈ 1 + 2γ

γ + 1

[
μ∗ − 1 + u1 + u2

u1 − u2
δ

]
. (23)

Hence, the limiting velocity for the weak shock as μ∗ → μ1, δ → 0, and u2 → u1 should be

SL = u1|δ→0 = c∗√
1 + 2γ

γ+1 [μ1 − 1]
. (24)

Consequently, for the perfect gas, a relation results which is clearly consistent with previous findings
[11]:

SL = c∗ =
√

2(γ − 1)ho/(γ + 1) =
√

2(γ − 1)
[
c2

1

/
(γ − 1) + c2

1

/
2
]
/(γ + 1) = c1.

D. Nondimensional shock relations

It can be shown that normalization using critical values of pressure and temperature leads to a
system of equations in nondimensional variables that has a greater degree of similarity across different
gases. For example, it follows readily from Eqs. (1), (2), (4), and (5) that, for the same values of
p/pc, T /Tc, and ω, the same values of A,B, and Z result. Then the following normalization scheme
can be employed:

p̃ ≡ p

pc
; T̃ ≡ T

Tc
= Tr; ρ̃ ≡ ρRTc

pc
; h̃ ≡ h

RTc
; s̃ ≡ s

R
;

ũ ≡ u√
RTc

; w̃ ≡ w√
RTc

; c̃ ≡ c√
RTc

; M ≡ u

c
= ũ

c̃
. (25)

Then Eqs. (10)–(13) can be rewritten as

ρ̃1ũ1 = ρ̃2ũ2, (26)

ρ̃1ũ
2
1 + p̃1 = ρ̃2ũ

2
2 + p̃2, (27)

w̃1 = w̃2, (28)

h̃1 + ũ2
1

/
2 = h̃2 + ũ2

2

/
2, (29)

where

h̃(p̃, T̃ ) = γ

γ − 1
T̃ +

[
(Z − 1)T̃ + 4.934(S + 1)[S

√
T̃ − (S + 1)] ln

Z + B

Z

]
,

�s̃|ideal =
(

γ

γ − 1
ln

T̃2

T̃1
− ln

p̃2

p̃1

)
,

�s̃ = �s̃|ideal +
(

ln
Z2 − B2

Z1 − B1
+ A′

1

B1
ln

Z1

Z1 + B1
− A′

2

B2
ln

Z2

Z2 + B2

)
, (30)

c̃2 = ZT̃ (f + gβ ). (31)

The functions f and g depend only on p̃ and T̃ through A,B, and Z. β brings a dependence on
γ − 1; see Eqs. (A6) and (A12). Consequently, specification of p̃, T̃ , γ, and S(ω) determines h̃, s̃,
and c̃. Since S is a weak function of ω, we can expect different gases at the same values of p̃, T̃ , and
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FIG. 1. Shock upstream and downstream Mach numbers for nitrogen at various upstream pressures
p1 = 1 MPA, 10 MPa, 50 MPa; and T1 = 400 K. (a) M1; (b) M2.

γ to behave almost in a similar fashion. Also, the different behaviors for monatomic, diatomic, and
triatomic gases at the same values of p̃ and T̃ primarily be due to differences in γ values.

E. Riemann invariants and weak shocks

Consider one-dimensional, unsteady wave motion with isentropic conditions. The continuity and
momentum equations may be written in (x, t ) space as

∂ (ln ρ)

∂t
+ u

∂ (ln ρ)

∂x
+ ∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ c2 ∂ (ln ρ)

∂x
= 0. (32)

Define

ĉ ≡ γ − 1

2

∫
c

ρ
dρ (33)

with the understanding that c and ρ are related along an isentrope in this integration. Multiplication
of the continuity equation by c followed by sequential addition and subtraction with the momentum
equation yields

∂I+
∂t

+ (u + c)
∂I+
∂x

= 0,
∂I−
∂t

+ (u − c)
∂I−
∂x

= 0, (34)

where

I+ ≡ u + 2

γ − 1
ĉ, I− ≡ u − 2

γ − 1
ĉ. (35)
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FIG. 2. Shock upstream and downstream Mach numbers for nitrogen at various upstream temperatures and
p1 = 10 MPa. (a) T1 = 200 K; (b) T1 = 800 K.

Thus, these modified Riemann invariants I+ and I− are constant along the paths δx/δt = u + c and
δx/δt = u − c, respectively. Lighthill [12] has discussed the integral of 1/(ρc) over pressure and
its role in invariancy. However, only results for a perfect gas were given. For the isentropic process,
(1/ρc)dp = (c/ρ)dρ. For the perfect gas, integration readily shows that ĉ = c for the indefinite
integral (and ĉ = �c for the definite integral.).

For the real gas, the evaluation of ĉ from the integral given by Eq. (33) requires coordination
with the integrations of p, T , and Z along an isentropic path. From Eqs. (A11) and (A14), we have
dT = (βT/ρ)dρ and dp = c2dρ. Substitution can be made in Eq. (A2) to obtain dZ = Z[c2/p −
(1 + β )/ρ]dρ along the isentropic path.

The evaluation of ĉ can be thereby made through simultaneous solution of four coupled first-order
ODEs between an initial and a final value of the independent variable, chosen here to be p:

dĉ

dp
= γ − 1

2

1

ρc
,

dρ

dp
= 1

c2
,

dZ

dp
= Z

[
1

p
− 1 + β

ρc2

]
,

dT

dp
= βT

ρc2
. (36)

Initial conditions are zero for ĉ and the upstream values p1, ρ1, Z1, and T1 for the other properties.
The solution values can be considered as running values of the end state for differing values of p2/p1.

If a weak shock were traveling in the positive x direction, the function I− should remain constant
across the shock through second order in the pressure jump since the entropy jump is third order.
The velocity jump across the weak shock should approximately be

�u ≈ 2

γ − 1
�ĉ. (37)
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FIG. 3. Entropy vs shock Mach number for nitrogen at various upstream conditions. (a) T1 = 400 K; p1 = 1,
10, 50 MPa. (b) p1 = 10 MPa; T1 = 200, 400, 800 K.

The value of this velocity change is positive for a wave traveling in the positive x direction. Here the
integral to evaluate ĉ will have upper and lower limits set by downstream and upstream conditions,
respectively. The shock relation (B1) gives exactly the magnitude of the velocity jump as |�u| =
(p2 − p1)/(ρ1u1). These two values for velocity jump can be compared for the same jump in pressure
to test the weak shock assumption using Riemann invariants.

IV. RESULTS

A. Normalized velocities

From the examination of the conservation equations only, i.e., Eqs. (10), (11), and (13), three
characteristic velocities appear explicitly:

√
p/ρ,

√
h, and

√
ho. The last property is proportional to

c∗, which will used in its place. For the perfect gas,
√

h,
√

p/ρ, and c are directly proportional to each
other. So, the three normalized velocities, Mach number M = u/c, u/

√
γp/(ρ), and u/

√
(γ − 1)h

give identical values, and all take unity value as shock strength goes to zero. (The functions of γ

are included in two of these normalizing velocities so that the speed of sound results in the limit of
a perfect gas.) The fourth normalized velocity u/c∗ generally has a different value from the others
except at zero shock strength where again u/c∗ = 1. One might get the sense that the sound speed
is coincidentally important for the perfect gas but inconsequential for the real gas. However, the
examination in the previous section shows that the relevance of the sound speed exists but is hidden
in the thermodynamics. It is actually

√
p/ρ,

√
h, and c∗ which lose consequence as characteristic

velocities for the real gas while the importance of c remains. More discussion on these points is given
in Sec. IV D.
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FIG. 4. Pressure ratio vs density ratio for nitrogen at various upstream conditions. (a) T1 = 400 K; p1 = 1,
10, 50 MPa. (b) p1 = 10 MPa; T1 = 200, 400, 800 K.

In the presentation of our computational results, the Mach number will be used as the normalized
velocity.

B. Shock solutions

Various choices are made for upstream conditions in the ranges from 200 K � T1 � 800 K and
10 bar � P1 � 500 bar. All cases have supercritical temperature. One case has the 10-bar subcritical
pressure with the value of a comparison with a “near-perfect” gas. Five different cases for upstream
pressure and temperature are given in Figs. 1 through 4.

Figures 1 and 2 show how the upstream and downstream Mach numbers M1 and M2 vary
with pressure ratio for nitrogen at various upstream conditions. The monotonic increase of M1

with increasing pressure ratio is slightly less as upstream pressure increases and/or downstream
temperature decreases. The monotonic decrease of M2 is less affected with upstream pressure change
but becomes slightly less as upstream temperature decreases. M2 moves towards a constant asymptote
as pressure ratio increases while M1 continues to increase. The M2 asymptote appears to be close to
the ideal gas value of

√
(γ − 1)/(2γ ).

Figure 3 shows that entropy goes to zero at the point where the shock strength goes to zero for
all cases in Figs. 1 and 2. Although not shown, the calculated entropy jump would be negative at
lower shock speeds where (prohibited) expansion shocks are predicted. The entropy gain is higher
order in the jump value for pressure, velocity, or other variables; i.e., it decays more slowly to zero.
At a given p2/p1 or M1, the entropy gain is relatively insensitive to p1 but increases as T1 increases.
At a fixed p2/p1 with increasing T1, the value of M1 increases modestly while c1 increases faster;
thereby, there is more kinetic energy u2

1/2 to be dissipated, leading to the greater entropy gain.
Figure 4 shows pressure ratio versus density ratio for various upstream conditions. Unlike the

perfect gas at a given value of γ , one curve does not apply to all upstream conditions for a given
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FIG. 5. Four-gas comparison at the same upstream conditions: T1 = 400 K; p1 = 10 MPa. (a) Pressure ratio
vs density ratio; (b) M1 vs pressure ratio; (c) M2 vs pressure ratio.

gas. Strong dependence on both p1 and T1 is seen. The pressure ratio still goes towards infinity at
a finite maximum value for density ratio. The maximum density ratio decreases with increasing p1

and decreasing T1. This limitation on maximum density is where the strongest departure from the
ideal gas is seen.

The density ratio reaches a maximum value as predicted by Eq. (19). Essentially, the amount of
compression of volume is limited no matter how high the pressure becomes. For the real gas, the
parameter B affects this limit. B increases with p and decreases with T explaining how compression
becomes more constrained at higher p1 and lower T1. The abscissa of Fig. 4 is equivalently u1/u2.
So it is seen that velocities are very sensitive to upstream conditions.

The behaviors of four gases at identical upstream conditions are compared in Fig. 5: the two
diatomic gasses, nitrogen and oxygen, the monatomic argon, and the triatomic carbon dioxide. Only
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FIG. 6. Behavior of density ratio, downstream sound speed and velocity for nitrogen at various upstream
conditions and pressure ratio: (a) Rankine-Hugoniot curves; (b) downstream sound speed vs pressure ratio;
(c) downstream velocity vs pressure ratio; (d) downstream velocity vs upstream velocity.

the lower values of pressure ratio are considered; we expect strongly different behaviors closer to
the values that produce maximum density ratio. The two diatomic gases have identical values of γ

and values of the acentric factor ω [more importantly S(ω)] and molecular mass W closer to each
other than to the values for argon or carbon dioxide. The latter two gases have significant differences
in their values for both γ and S(ω) but similar values for W . The three subfigures show that oxygen
and nitrogen follow very similar behaviors, while the largest differences occur between the results
for argon and carbon dioxide. We already know that γ is an important value for the ideal gas, and
there is evidence here that it is true for the real gas as well. W does not appear to be a significant
parameter in these plots since argon and carbon dioxide have different tracks in the plots. We are left
with some uncertainty about the importance of ω.

For the applications of interest here, the behavior of the shock solutions with the SRK EoS is
expected to satisfy the convexity condition which avoids unusual behavior such as wave splitting [2].
The convexity condition is given by the relation ∂2p/∂v2|s > 0 for the downstream properties of
the shock where v = 1/ρ. This condition is satisfied if both ∂p/∂ρ|s = c2 > 0 and ∂2p/∂ρ2|s > 0.
The former condition is obviously satisfied by a positive value of c, and Fig. 5 gives a heuristic
demonstration of the latter condition.

C. Behavior of downstream velocity

If density ratio reaches a limiting maximum value, the continuity equation with Eq. (19) assure
that u1/u2 reaches a maximum value. In particular,

u1

u2

∣∣∣∣
max

= 2γμ2

γ − 1
− 1. (38)

Consequently, as sufficiently high values of p2/p1 are reached, u2 will monotonically increase with
p2/p1. This trend occurs regardless of upstream conditions and applies also to the ideal gas.

Figure 6 compares downstream velocity behavior for three sets of upstream conditions. The
behavior for T1 = 400 K and p1 = 10 MPa is most common and qualitatively similar to the ideal-gas

093401-14



NORMAL SHOCKS WITH HIGH UPSTREAM PRESSURE

1 5 10 15
p

2
/p

1

0
1
2
3
4
5
6
7
8

Γ
2

ν
2

η
2

Z
2

μ
2

1 5 10 15
p

2
/p

1

1.0

1.5

Γ

(a)

(b)

(c)

2

ν
2

η
2

Z
2

μ
2

1 5 10 15
p

2
/p

1

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

2

2

2

Z
2

2

FIG. 7. Various ratios vs pressure ratio: variations from ideal-gas behavior for nitrogen at different upstream
pressures. (a) 400 K, 50 MPa; (b) 400 K, 10 MPa; (c) 400 K, 1 MPa.

behavior. Namely, the limiting density ratio is not so small, say, greater than 5, and the downstream
velocity decreases with increasing ratio until, at higher density ratio, it increases. For a substantial
increase in p1 or a substantial decrease in T1, the behavior changes. In particular, the limiting density
ratio is decreased by a significant factor and u2 becomes monotonically increasing in u1 or p2/p1 for
the complete range. u1 and c2 are always monotonically increasing with p2/p1 for common gases.
The linear asymptote for u2 as a function of u1 is a predictable consequence of the velocity ratio
reaching a maximum constant value asymptotically as discussed before.

D. Departures from ideal-gas behavior

The five nondimensional ratios discussed early give useful information about where the departure
from ideal-gas behavior is stronger. Figures 7–9 show �2, ν2, η2, Z2, and μ2 versus pressure ratio. At
p2/p1 = 1, the values apply to the upstream conditions. The departures from values of one indicate
the variations from ideal gas behavior. Departures are seen to increase with increasing p2/p1 or
equivalently with increasing M1. They can become O(1) at high pressures and/or low temperatures.
At any upstream state, the departure magnitude increases with increasing p2/p1 or M1, reaching an
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FIG. 8. Various ratios vs pressure ratio: variations from ideal-gas behavior for nitrogen at different upstream
temperatures. (a) 200 K, 10 MPa; (b) 800 K, 10 MPa.

asymptote for some ratios. The greatest departures occur with � and ν while the lowest departures
occur with Z and μ.

There are certain implications from the behaviors seen. Since Z2 and ρ2 are reaching asymptotes,
T2 should asymptote linearly with p2. (γ − 1)h and γp/ρ are better aligned with each other than
with c2. So the modifications of Prandtl’s relation and the Rankine-Hugoniot relation which both
depend on μ values might not be as large as some other factors. The larger variation of c together
with the small changes in M values implies that the variation in u must be very significant.

The case in Fig. 9 is interesting because it likely will apply to flow around compressor blades
in the high-pressure gas-turbine engines of the not-so-distant future. It demonstrates that departures
from ideal-gas behavior can be significant there.

E. Near-similar behavior

A comparison among argon, oxygen, nitrogen, and carbon dioxide is made holding the ratios p1/pc

and T1/Tc fixed at 8.00 and 2.00, respectively. γ is identical for both oxygen and nitrogen. Except
for the slight (6%) difference in the values of S(ω), mathematical similitude of the nondimensional
variables could be claimed for oxygen and nitrogen. Of course, only near-similitude can be expected.
Argon and carbon dioxide differ in the values of both γ and S(ω) from each other, oxygen, and
nitrogen by larger percentages. Figure 10(a) shows that the Rankine-Hugoniot curves (pressure ratio
versus density ratio) are almost identical for oxygen and nitrogen. The RH curves are notably different
for argon and carbon dioxide, indicating the important role of γ here. The curves for oxygen and
nitrogen are extremely close, while the argon and carbon dioxide curves show respectively a larger
and smaller pressure ratio for the same density ratio. Downstream Mach number as a function of
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FIG. 11. Comparison of exact and approximate methods for nitrogen: p1 = 5 MPa, 10 MPa; T1 = 400 K.
(a) Pressure ratio vs density ratio. (b) Downstream Mach number vs upstream Mach number.

upstream Mach number is presented in Fig. 10(b). Figures 10(c) and 10(d) show that for the same
upstream or downstream Mach number, the monatomic (triatomic) species yields a larger (smaller)
pressure ratio than the diatomic species. This limited study indicates that the critical values of pressure
and temperature and γ are more important than the acentric factor ω in determining shock solutions.

F. Comparison with other real-gas normal shock calculations and experiment

Solutions for normal shocks for an SRK gas were first analyzed in Ref. [8] using a linear
approximation of the cubic EoS. The nonlinearities of the flow conservation equations were fully
preserved, but the solution of the cubic equation was given by Z = 1 + B − A, which is a valid
linear approximation when A � 1 and B � 1. Here we compare results for our exact results with
the approximate results for nitrogen with p1 = 5 and 10 MPa and T1 = 400 K. In Fig. 11(a) the
Rankine-Hugoniot curves are shown. Again, for higher upstream pressures, a higher pressure ratio
is obtained for the same value of density ratio with both the exact and the approximate solutions.
For an upstream value of p1 = 5 MPa, the error in the approximation is small. However, the error
for p1 = 10 MPa is more substantial because the values of A and B become larger. Fig. 11(b)
shows downstream Mach number M2 versus upstream Mach number M1. Again, the error with the
approximate solution is modest for p1 = 5 MPa but becomes significant at 10 MPa. As expected from
previous calculations, the M2 versus M1 curve for the exact solution is insensitive to p1; however,
the approximate solution shows more sensitivity, indicating an error. Of course, the ideal gas curves
for both subfigures would not vary with upstream pressure or temperature for a fixed gas.

Table II compares the present nitrogen results, now designated by subscript S, with the results
for air of Kouremenos and Antonopoulos [5], now designated by subscript KA. Ratios of pressure

093401-18



NORMAL SHOCKS WITH HIGH UPSTREAM PRESSURE

TABLE II. Comparison with Kouremenos and Antonopoulos [5] normal shock calculations. Values for
upstream Mach number, downstream Mach number, temperature ratio, and pressure ratio. Upstream values
were 700 K and 4 MPa.

M1 M2KA M2S (T1/T2)KA (T1/T2)S (p1/p2)KA (p1/p2)S

1.5 0.70 0.700 0.77 0.757 0.40 0.404
2.0 0.58 0.577 0.60 0.593 0.23 0.221
2.5 0.52 0.514 0.49 0.470 0.15 0.140
3.0 0.47 0.476 0.39 0.375 0.10 0.0966
3.5 0.45 0.452 0.31 0.303 0.07 0.0706
4.0 0.44 0.435 0.26 0.248 0.06 0.0557

and temperature plus downstream Mach number are compared for certain upstream Mach numbers.
The KA computations were done for a normal shock using the Redlich-Kwong EoS while the S

results treat a normal shock using the SRK EoS. The quantitative KA results were interpreted from
the graph in Fig. 2 of their paper; so the number of trusted significant digits is limited. Table II shows
that the two results compare favorably. For the chosen range of M1, Z2 varied from 1.02 to 1.06 in
the S results, increasing with M1; and the downstream pressure, temperature, and density were each
lower than the value yielded for the ideal gas, with the difference increasing with M1.

Experimental evidence for shock waves at very high pressures is limited. Some comparison can
be made with the experimental results of Dattelbaum et al. [13] for a shock in argon generated
by gas-gun-driven plate impact. A comparison can be made at conditions below which they find
that ionization becomes a factor and the downstream density exceeds the theoretical asymptote for
nonionized conditions. First, the results at the highest upstream density value of ρ1 = 56.3 kg/m3

were considered with T1 = 293.8 K. The calculation shows an asymptote for ρ2/ρ1 = 3.489 as shock
velocity is increased. This is notably below the ideal-gas asymptotic ratio equal to 4.000 which applies
for any upstream values. In the calculations here, density ratio is an input; so only the lowest value of
shock velocity at the asymptote was yielded, which is u1 = 1945 m/s. The experiment of Dattelbaum
et al. does not reach velocities as low as this value; see their Fig. 2(b). For this upstream density value,
they show only results where ionization was a factor and higher density ratios were obtained. The
calculated results here does agree well with the fit they show using their Sesame 5172 database for the
EoS. Next, the results at their lowest upstream density value of ρ1 = 24.9 kg/m3 are considered with
T1 = 295.8 K. Here the calculated asymptote is ρ2/ρ1 = 3.70 with the shock speed u1 = 2290 m/s
which agrees well with the results in Fig. 2(b) of Dattelbaum et al.

G. Comparison with weak shock approximation

From solutions to Eqs. (36) and (37) and the relation Z = p/(ρRT ), the approximations to density
ratio, pressure ratio, and velocity jump across the normal shock may be determined. In Fig. 12(a)
the velocity jump u1 − u2 is calculated for a real gas over a range of shock strengths as described by
pressure ratio. Nitrogen at upstream condition 10 MPa and 400 K is considered. Three methods are
compared: the exact solution outlined in Sec. III A, the approximate method described in Sec. III E
using the Riemann invariant developed for the real gas, and the inappropriate approximation which
uses the Riemann invariant in a form developed only for the ideal gas with ĉ replaced by c2 − c1.
Figure 12(b) shows the Rankine-Hugoniot curve with comparison between the exact solution of
Sec. III B and the approximate method of Sec. III E.

The use of the classical form of the Riemann invariant for weak shock estimation is seen to
lead to great error because ĉ is substantially smaller than c2 − c1. The modified Riemann invariant
allows for a very good approximation with a pressure ratio below 1.5 and errors of only a few
percent at p2/p1 = 2.0. The isentropic approximation based on the modified Riemann invariant
underestimates the magnitude of the velocity difference and overestimates the density ratio for a
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FIG. 12. Comparisons between exact shock solution and weak-shock approximation for nitrogen at upstream
conditions of 400 K, 10 MPa. (a) Velocity jump vs pressure ratio; (b) Rankine-Hugoniot curve.

given value of the velocity ratio. Through the continuity equation, this can readily be shown to
imply that both u2 and u1 are underestimated. This finding is consistent with expectations based on
thermodynamic constraints. For a given pressure increase, the nonisentropic process requires a larger
enthalpy increase. The change in enthalpy across the shock equals the change in kinetic energy per
unit mass; thus, the nonisentropic process yields the larger velocity change.

V. CONCLUDING REMARKS

The Soave-Redlich-Kwong (SRK) EoS relations for real-gas density, enthalpy, and entropy
relations for argon, nitrogen, oxygen, and carbon dioxide are used to analyze normal compressive
shock waves under supercritical upstream thermodynamic conditions. Upstream pressure and
temperature vary from 10 to 500 bar and 160 to 800 K. At high pressures, the flow does not follow
the calorically perfect-gas behavior.

The
√

p/ρ and
√

h are characteristic velocities that appear in the primitive form of the conservation
equations. For the perfect gas, those quantities are directly proportional to the sound speed, allowing
direct substitution of the sound speed in the conservation equations. This cannot happen for the real
gas. A new thermodynamic function is identified for the real-gas sound speed. Although the sound
speed does not emerge directly from the conservation equations as it does for a perfect gas, the shock
speed is shown to go to this limiting value as shock strength goes to zero. Thus, the sound speed
remains as the proper characteristic speed. The deviation of the sound speed c from the values of√

γp/ρ,
√

(γ − 1)h, or
√

γRT can be very substantial at higher pressures.
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For the real gas, modifications are obtained for Prandtl’s relation and the Rankine-Hugoniot
relation. The upstream and downstream shock velocities, u1 and u2, for the real gas do not go to c∗
as shock strength goes to zero (i.e., p2/p1 → 1). The maximum density ratio ρ2/ρ1|max decreases
and the minimum velocity ratio u2/u1|min increases as upstream pressure increases or upstream
temperature decreases. Thereby, the largest deviations from a normal shock in an ideal gas at the
same pressure ratio appear in the downstream density, the shock velocity, and the downstream
velocity. Differences in upstream and downstream Mach numbers are smaller.

The SRK real gas has the parameters for the critical values pc, Tc, and the accentric factor ω

in addition to the specific-heat ratio γ and molecular mass W which also appear for the perfect
gas. Near-similar solutions are developed by normalization of the variables using critical values for
pressure and temperature. For the normalized solutions, γ has a significant effect as it does for the
perfect gas. However, nitrogen and oxygen give near similar behaviors, indicating that ω and W

carry less importance. Argon and carbon dioxide have molecular masses within 10% of each other
(a lower fractional difference than oxygen and nitrogen) but a substantial difference in γ , leading to
significant differences.

These exact solutions are compared with approximate solutions obtained via a linearization of the
cubic EoS [8] for deviation from ideal-gas behavior. That approximation is built on the constraint
that the compressibility factor Z satisfies Z − 1 � 1. The approximation with nitrogen is shown to
perform well at 5 MPa but not so well at 10 MPa.

The results here for nitrogen are shown to agree well with results in Ref. [5], which used the
Redlich-Kwong EoS for air.

Holding one Riemann invariant constant through a weak shock, a comparison is made with
the weak shock approximation. A new real-gas Riemann invariant must be constructed. The new
function ĉ ≡ [(γ − 1)/2]

∫
(c/ρ)dρ replaces the sound speed c in the modified Riemann invariant.

At pressure ratios below 1.5, a good approximation is given by the approximate isentropic solution
with the constant Riemann invariant.

A foundation is presented for use with other cubic equations of state, multicomponent flows,
and/or for more complex flow configurations.
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APPENDIX A: SOUND SPEED

The speed of sound can be evaluated for our specific EoS. The differential form of Eq. (1) is
obtained as

[3Z2 − 2Z + A − B − B2]dZ + [Z − B]dA − [Z + 2BZ + A]dB = 0. (A1)

Changes in A and B are forced by changes in T and p for constant-composition situations. These in
turn cause changes in Z. It follows from the EoS that

dZ = Z

[
dp

p
+ dv

v
− dT

T

]
= Z

[
dp

p
− dρ

ρ
− dT

T

]
, (A2)

dA = A

[
dp

p
− 2

dT

T

]
+ A′ dT

T
, (A3)

dB = B

[
dp

p
− dT

T

]
, (A4)

where A′ ≡ (T/a)(da/dT )A.
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Equations (A1) and (A2)–(A4) may be combined to determine the differential of pressure dp as
a function of the temperature and density differentials, dT and dρ. Specifically,

dp

p
= f (A,B,Z)

dρ

ρ
+ g(B,Z)

dT

T
, (A5)

where the definitions are made that

f (A,B,Z) ≡ 2Z3 − Z2 + AB

Z3 − B2Z
, g(B,Z) ≡ 1

Z − B
− A′

Z(Z + B )
. (A6)

From Eq. (6), the differential relation for enthalpy is derived:

dh = cpdT + RuT

W

[
(Z − 1)

dT

T
+ dZ − A − A′

B

(
1

Z + B
− 1

Z

)
dZ

− A − A′

B

1

Z + B
dB +

(
A′′

B
ln

Z + B

Z

)
dT

T

]
. (A7)

From Eq. (9), the differential entropy becomes

ds|ideal

R
= γ

γ − 1

dT

T
− dp

p
,

ds

R
= ds|ideal

R
+ dZ − dB

Z − B
+ A′

B

(
1

Z + B
− 1

Z

)
dZ

+ A′

B

1

Z + B
dB +

(
A′′

B
ln

Z + B

Z

)
dT

T
. (A8)

As a check on the real-gas analysis here, another relation given by the combined First and Second
Law is used:

dp

ρ
= dh − T ds. (A9)

Substitution for dh and ds from Eqs. (A7) and (A8) and use of (A2)–(A4), after substantial
cancelations and simplification using (3), yields

dh − T ds

RT
− dp

ρRT
= −

[
Z + A

Z + B
+ Z

Z − B

]
dρ

ρ
= 0. (A10)

Thus, the consistency with fundamental thermodynamics is demonstrated which will become
important later in determining the limiting speed of a shock as its strength (e.g., pressure jump)
goes to zero.

With use of the differential forms given by Eqs. (A2)–(A4) for substitution into Eq. (A8), it follows
that

dT

T
= β

dρ

ρ
+ 1

cv + κ
ds, (A11)

where the following definitions are used:

β ≡ (γ − 1)Zg

1 + κ/cv
, κ ≡ cv(γ − 1)

A′′

B
ln

(
Z + B

Z

)
. (A12)

Eliminate the temperature differential by substitution from Eq. (A5) with Eq. (A11):

dp

p
= (f + gβ )

dρ

ρ
+ 1

cv + κ
ds. (A13)
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Thus, this results shows by using the chain rule that

c2 ≡ ∂p

∂ρ

∣∣∣∣
s

= ZRuT

W
(f + gβ ). (A14)

The development of the wave equation for an inviscid fluid (in either linear or nonlinear form)
shows that c = √

∂p/∂ρ|s is the wave speed, commonly named the sound speed. For an ideal gas,
Z = 1, A = B = A′ = A′′ = 0, f = g = 1, α = 0, β = γ − 1 and therefore the well known result,
c2 = γRuT/W , follows.

APPENDIX B: CHARACTERISTIC VELOCITY

The continuity and momentum equations (10) and (11) can be combined to yield

p2 − p1 = ρ1u1(u1 − u2) = u2
1
ρ1

ρ2
(ρ2 − ρ1), (B1)

thereby

�p

�ρ
= u2

1 + O(�ρ). (B2)

This implies that the limiting shock speed, identified here as SL, as �p → 0 is given by the limiting
value of u1; that is,

SL ≡ u1|�p,�ρ→0 =
√

�p

�ρ

∣∣
�p,�ρ→0. (B3)

The proper characteristic speed that gives the limiting velocity of a weak shock wave can be
obtained by examining the limiting behavior of the constraints of Eqs. (14) and (B1), which were
developed from the conservation equations without regard to any particular EoS.

It follows from Eqs. (6) and (9) that, after certain cancelations and neglect of other higher-order
terms:

�h − T1�s

RT1
= −�T

T1
+ �p

p1
− �Z − �B

Z1 − B1
− A1

B1

(
�Z + �B

Z1 + B1
− �Z

Z1

)
. (B4)

Equation (3) can be used to substitute for A1/(Z1 + B1) in the last term of Eq. (B4). Also, Eqs. (A1)–
(A4) are used to relate �T/T1,�Z/Z1,�A/A1, and �B/B1 to �p/p1 and �ρ/ρ1. The result is

�h − T1�s − �p

ρ1

RT1
= �h

RT1
− Z1

�p

p1

= f1

(γ − 1)g1

[
1 + κ1

cv

+ (γ − 1)g2
1Z1

]
�ρ

ρ1
− 1

(γ − 1)g1

[
1 + κ1

cv

]
�p

p1
, (B5)

where f, g, and κ are defined in Eqs. (A6) and (A12). Note that, since �s is actually of higher
order, Eq. (B5) is giving the limiting behavior of Eq. (14). Thus, the following limiting behavior
for the propagation speed is actually influenced by each of the energy, momentum, and continuity
constraints.

The left side of Eq. (B5) is known from Eq. (14) to become zero in the limit as �p → 0. So the
right side must yield zero in that limit as well, which gives the relation

�p

�ρ

∣∣∣∣
�p,�ρ→0

=
{

p

ρ

[
f + (γ − 1)g2Z

1 + κ/cv

]}
, (B6)
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where the definition of the thermodynamic function SL providing the limiting shock speed SL is
obtained by matching the results from Eqs. (B3) and (B6):

SL ≡
{

p

ρ

[
f + (γ − 1)g2Z

1 + κ/cv

]}0.5

. (B7)

Compare this result with the relation given by Eq. (A14). This limiting shock speed is precisely the
sound speed based on the upstream pressure and temperature. The perfect gas has f = g = Z = 1
and A′ = B = κ = 0 yielding SL = (γp/ρ)0.5 = c, the sound speed.

Lighthill [12], following Hugoniot, gives a parallel argument using internal energy and specific
volume instead of the enthalpy and density used here. He also shows graphically how entropy gain
is related to the pathway between upstream and downstream conditions.
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