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Direct numerical simulation of particle sedimentation in a Bingham fluid
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The settling efficiency, and stability with respect to settling, of a dilute suspension
of infinite circular cylinders in a quiescent viscoplastic fluid is examined by means of
direct numerical simulations with varying solid volume fraction, φ, and yield number,
Y . For Y sufficiently large we find higher settling efficiency for increasing φ, similar to
what is found in shear-thinning fluids and opposite to what is found in Newtonian fluids.
The critical yield number at which the suspension is held stationary in the carrier fluid
is found to increase monotonically with φ, while the transition to settling is found to be
diffuse: in the same suspension, particle clusters may settle while more isolated particles
remain arrested. In this regime, complex flow features are observed in the sedimenting
suspension, including the mobilization of lone particles by nearby sedimentation clusters.
Understanding this regime, and the transition to a fully arrested state, is relevant to many
industrial and natural problems involving the sedimentation of viscoplastic suspensions
under quiescent flow conditions.

DOI: 10.1103/PhysRevFluids.3.093302

I. INTRODUCTION

The dispersion of coarse particles in complex (shear-dependent) fluids is an important aspect of
both natural and industrial flows, for example, pyroclastic gravity currents [1], proppant transport
in hydraulic fracturing [2], and fresh cement slurries. Often the suspended phase is (negatively)
buoyant and its stability with respect to sedimentation during transport, or after flow cessation [3],
is of fundamental interest. Viscoplastic fluids, by virtue of a material yield stress, may support such
a coarse particle phase indefinitely. This is governed by a balance between the stress exerted on the
fluid by the particle and the fluid yield stress [4], described by the nondimensional yield number
Y = τ̂y/(ρ̂p − ρ̂f ) ĝ l̂′, where ĝ is gravitational acceleration, ρ̂p is the particle density, ρ̂f the fluid
density, l̂′ a characteristic length scale, and τ̂y the material yield stress. Two aspects of buoyant
particle transport in viscoplastic fluids stand out: the conditions for suspension stability, and the
sedimentation behavior. Both of these have been well characterized for single particles but not yet
for suspensions, particularly under quiescent flow conditions.

With regard to stability, it has been shown that for an isolated particle there exists a critical yield
number Y = Y ∗

0 at which the buoyancy force exerted by the particle is balanced by the fluid yield
stress. This has been the subject of many numerical and theoretical works [4–6], and while there
is great variability among experimental studies [7,8], the theoretical Y ∗

0 for a spherical particle has
been corroborated by Tabuteau et al. [9]. Given the nonlinear rheology of the suspending fluid a
key question is whether Y ∗

0 is applicable to suspensions. There has been some work, predominantly
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numerical and experimental, investigating model systems of two or more particles posed in the
resistance sense—where flow is driven by a prescribed velocity—rather than the more applicable
mobility sense—where flow is driven by applied force—due to the intrinsic numerical and practical
difficulties of the latter. It was found that particles near each other, particularly in the inline configu-
ration, experience a decreased drag force, from which it may be inferred that the same configuration
would exhibit a higher critical yield number than an isolated particle [10–12]. The theoretical work
of Frigaard et al. [13] investigated this critical yield number for suspensions more directly through
the out-of-plane flow of uniformly distributed particle suspensions with prescribed uniform suspen-
sion velocity. They inferred a volume fraction, φ, dependent critical yield number, Y ∗

φ . However,
the resistance formulation has clear drawbacks in that individual particle velocities are prescribed
a priori. Recently, Chaparian et al. [14] investigated inline particle configurations for up to five
particles in the mobility sense, finding not only that their stability criterion is strongly influenced by
separation distance but that particle chains are unlikely to be stable sedimentation configurations.

Settling of suspensions in viscoplastic fluids can be categorized as static settling or dynamic
settling, depending on the background flow conditions (quiescent in the former). It is well known
in the oil industry that background shear enhances settling [15] in shear-thinning fluids. For
viscoplastic fluids, Merkak et al. [16] and Ovarlez et al. [17] demonstrated shear-induced settling in
fluids regardless of the yield number, showing that particles settle as soon as the fluid yield stress is
overcome by macroscopic shear. The latter advocated a suspension settling function, in conjunction
with a Newtonian hindering function, incorporating an effective viscosity based on the (applied)
macroscopic shear rate. This framework has recently been adopted in a model for solids dispersion
in hydraulic fracturing flows [18].

In quiescent background conditions, i.e., in the absence of applied macroscopic shear, a different
approach is needed. Single particles settling in viscoplastic fluids under quiescent conditions have
been investigated extensively in viscous and inertial regimes, both experimentally and numerically
[19–22]. Empirical terminal velocity models have been developed [21,22], and it has been suggested
that these may be combined with Newtonian hindering functions in dispersion models such as
Kaushal and Tomita [23]. However, studies on suspensions settling in viscoplastic fluids under
quiescent conditions are very sparse [24], so whether this is a viable approach is not clear.

In this article we present direct numerical simulations of noncolloidal particle suspensions, in
the dilute limit, settling in quiescent viscoplastic fluids. Building on the out-of-plane investigation
of Ref. [13], we investigate the stability criterion as a function of solid volume fraction for the
in-plane flow and comment on the transition to settling—which, as far as we are aware, has not
been investigated previously.

II. MATHEMATICAL FORMULATION AND SOLUTION

In contrast to Newtonian fluids, very little numerical work has been done on suspension
sedimentation in viscoplastic fluids. Many successful strategies for large-scale suspension simu-
lation in Newtonian fluids [25] rely on superposition principles to make large-scale computations
tractable, which are not applicable to the nonlinear viscoplastic system. Coarse-grain approaches
for Newtonian fluids use lubrication force models as subgrid-scale models for the underresolved
particle interactions. However, the authors recently found that such lubrication models cannot be
straightforwardly applied in cases where particles are strongly confined in their yield envelopes
such as may occur in sedimentation without imposed shear [26]. This necessitates direct numerical
simulation.

We consider the steady approximation of inertialess, rigid circular particles suspended in
incompressible viscoplastic fluid from a mobility perspective. The particles are denoted by P ; the
particle boundaries by ∂P ; and the entire domain (fluid and particle) by �; and the far field domain
walls by ∂�. The fluid has velocity û(x̂), pressure p̂(x̂), plastic viscosity η̂, and a total stress tensor
τ̂ − p̂δ, where variables with a hat are dimensional. In the absence of both fluid and particle inertia,
and taking the particle buoyancy, (ρ̂p − ρ̂f )ĝl̂′, as a characteristic stress scale T —where ρ̂p and ρ̂f
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are the particle and fluid densities, respectively, and l̂′ is a characteristic length scale governed by
the particle volume to frontal area ratio [10]—we solve the nondimensional steady Stokes equations

∇ · τ − ∇p = ρr

1 − ρr

eg, in � \ P, ∇ · u = 0, in � \ P, (1)

where eg denotes the unit vector in the direction of gravity, ρr = ρ̂f /ρ̂p and the particles are
negatively buoyant, such that ρr < 1. We impose no-slip and no-penetration boundary conditions
on the domain walls, such that

u = 0 on ∂�, (2)

and the fluid velocity is continuous with that of each particle, such that

u → U + ω × (x − xb ) on ∂P, (3)

where U and ω are the a priori unknown linear and angular particle velocities, x is a point on
∂P , and xb are the coordinates of the centre of mass of the particle. The particle translational and
rotational velocities are determined by satisfying zero force and torque constraints on each particle,
F = 0, T = 0. Here F and T are defined for any given particle by

F =
∫

∂P

(−pn + τ · n) ds + f b, T =
∫

∂P

(x − xb ) × (−pn + τ · n) ds + tb, (4)

where n is the unit normal vector to the body surface, and f b and tb are external body force and
torque, respectively.

We close the system using the ideal Bingham constitutive law

τ = (
1 + Y

||γ̇ ||
)
γ̇ if ||τ || > Y ,

γ̇ = 0 if ||τ || � Y ,
(5)

where the rate of strain tensor is defined as γ̇ := (∇u + ∇uᵀ), and || · || is the induced norm of the
Frobenius inner product:

a : b := 1

2

∑
ij

AijBij , (6)

such that ||γ̇ || = √
γ̇ : γ̇ . The force-free and torque-free conditions imply that the particles adjust

their velocities and angular velocities instantaneously [27].
Unless otherwise stated, we use T /η̂ρ̂f , T l̂′/η̂ρ̂f , and R̂ as characteristic strain G, velocity V ,

and length L scales, respectively, where R̂ is the particle radius and l̂′ = πR̂/2.
Last, we define the critical yield number at which motion for a suspension of volume fraction

φ stops as Y ∗
φ , where for a single particle we find Y ∗

0 = 0.084, in agreement with the literature
[5,14,28] (note that Chaparian et al. [14] use a different length scale in their definition of Y ).

We solve (1)–(5) using the widely adopted alternating direction multiplier method—also
known as ALG2—developed by Glowinski [29]. It is extensively used in the literature—see
Refs. [20,30,31] and references therein—so we do not give details here. We follow the implemen-
tation of Refs. [32,33].

Wachs and Frigaard [34] studied the problem numerically for a single sedimenting particle in a
Bingham fluid, with a particular focus on the critical yield stress required for cessation of motion.
Even with a single particle in two dimensions with a relatively small mesh (61 440 cells), their
computations took around 12 h (wall-time). The limiting problem is the high computational expense
of the ALG2 algorithm typically used for viscoplastic flow problems; discussion of ALG2 and
related algorithms can be found in Refs. [35]. In order to make the larger problem sizes considered
in this study tractable we adopt a steady approximation, as in Ref. [14] and employ an overset
grid discretization strategy. Briefly, the overset grid method represents a complex domain using
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FIG. 1. Left: An overlapping grid consisting of two structured curvilinear component grids, x = G1(r ) and
x = G2(r ). Middle and right: Component grids for the square and annular grids in the unit square parameter
space r . Grid points are classified as discretization points, interpolation points, or unused points. Ghost points
are used to apply boundary conditions.

multiple body-fitted curvilinear grids that are allowed to overlap whilst being logically rectangular;
see Fig. 1. The overlapping aspect brings flexibility and efficiency to grid generation, which is
beneficial for complex domains and moving grid problems. Here, since the cylinders are static, the
chief benefit of the overset grid methods is that the grids may be locally refined near the cylinder
surfaces while keeping the grids logically rectangular. The grid generation procedure is discussed at
length in Refs. [36,37] and has been used for Newtonian and viscoplastic particulate flow problems
by the authors in Refs. [26,38]. The resultant linear system is inverted using the MUMPS massively
parallel direct linear solver library [39]. Recently some significantly faster algorithms have been
developed [40–43], and so we expect a rapid expansion in the near future of the size of problem
which can be attempted.

III. RESULTS AND DISCUSSION

We compute the instantaneous velocity field for pseudo-random configurations of infinite circular
cylinders, of diameter D, in a confined domain with dimensions (20 D, 120 D), for solid volume
fractions φ = (0.01, 0.05) over a yield number range of Y = (0, 0.173). Five pseudo-random
configurations are used for each volume fraction.

Figure 2 shows the mean settling velocity of the suspension 〈V̂φ,Y 〉—normalized by the Stokes
velocity of a single particle in a Newtonian fluid V̂0,0—averaged over all configurations, for
increasing yield number. Here the yield number is normalized using the critical yield number
required to hold a single particle at rest, Y ∗

0 .
All volume fractions show a decrease in settling velocity as the yield number increases. This

is expected from Eq. (5) where we can see that for any finite strain rate, a nonzero yield number
leads to an increase in the effective viscosity. Looking at the limiting high yield number behavior,
we can see that the critical yield number required to hold the suspension at rest, Y ∗

φ increases with
the solid volume fraction, as was found in Frigaard et al. [13] for out-of-plane settling. We find an
approximately two-fold increase in the critical yield number for φ = 0.05.

As Y → 0 the medium mirrors a Newtonian fluid with viscosity η̂, showing hindered settling
with increased φ [44]. However, for Y sufficiently large, we find higher settling efficiency with
increasing solid volume fraction, indicated by the increased mean settling velocity. This is similar
to what has been observed in experimental studies of settling suspensions in shear-thinning fluids
[45]. There, settling particles shear fluid, causing a local decrease in viscosity and thereby allowing
nearby particles to settle more easily.
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FIG. 2. Left: Close-up view of a representative computational grid used, showing the overlapping particle
and background grids and near-surface grid refinement. Right: Mean sedimentation velocity at increasing
yield numbers for φ = (0, 0.01, 0.05), with error bars indicating the standard error of the mean particle
sedimentation velocity.

We investigate possible shear thinning by examining the average local viscosity in the vicinity
of a particle at a given volume fraction at the same yield number, Y = 0.043, where all particles for
all volume fractions are mobile. A rectangular grid is placed around each particle in the suspension
on which || ˆ̇γ || is found by means of bilinear interpolation. This is then averaged over all particles in
the suspension, and used to find the average local effective viscosity, η̂(〈|| ˆ̇γ ||〉), where 〈·〉 denotes
an average over all particles. This is plotted as color maps in the left panel of Fig. 3. The viscosity
field for the single particle is as expected: arbitrarily high viscosity peaks (truncated in the plot)
at the unyielded equatorial plugs and the unyielded end caps. As the volume fraction increases the
viscosity field becomes more uniform and is found to decrease in magnitude. The viscosity along
the two axes of symmetry shown in the φ = 0 plot of Fig. 3 is further examined in the right panel
of Fig. 3. The average viscosity decrease with increased solids volume fraction is evident, and the
viscosity field is found to be, on average, uniform L away from the particle surface. Near the surface,

FIG. 3. Left: Average effective viscosity near the particle surface for Y = 0.043, with longitudinal (dashed
line) and lateral (dash-dot line) axes of symmetries indicated in the φ = 0 panel. Right: Average effective
viscosity along the longitudinal (top) and lateral (bottom) axes of symmetry for Y = 0.043.
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FIG. 4. Color maps of the fluid velocity magnitude with particles overlaid in gray and yield surface
indicated by the solid black lines for Y = 0.087 with φ = 0.01 (left) and φ = 0.05 (right) for five different
configurations.

the viscosity is high in the longitudinal direction due to the attached unyielded end caps; however,
in the lateral direction the viscosity is low near the surface due to the viscoplastic boundary layer.

It has been shown experimentally that static suspensions in yield stress fluids will settle when
a macroscopic stress, for example by shearing the system, is introduced [16,17]. In the absence of
a macroscopic flow, only the buoyancy stress of the individual particles acts on the fluid to drive
the flow. Studies of small systems of particles in the resistance formulation demonstrated a drag
reduction for inline particle arrangements [10,11,20]. Equivalently, the recent study of Chaparian
et al. [14] demonstrated higher velocities for inline configurations in the mobility formulation.
The current simulations corroborate this in so far as structures of vertically clustered particles can
clearly be visually identified to be settling fastest; for example, see the velocity magnitude color
maps in Fig. 4. By examining the velocity field Chaparian et al. [14] demonstrated that nearby
particles had little effect on one another beyond a relatively small separation distance d̂sep/L < 20,
suggesting that the stress decay in a viscoplastic fluid is appreciably faster than in a Newtonian fluid
where ||τ || ∼ r−1 as r → ∞ [46]. As the yield number increases the rapid stress decay becomes
more relevant. In the left panel of Fig. 5 the logarithmically scaled color maps of the strain rate
magnitude is shown for a configuration of φ = 0.01, with the yield number increasing from left
to right. As expected, unyielded material emerges as the yield number increases. For Y � 0.065
discrete yield envelopes surround particles, coalescing into larger pockets when particles are close
together. As the yield number increases further we find clusters of particles inside yield envelopes
with comparatively isolated particles held static. For φ = 0.05 we see a similar trend in the log10(γ̇ )
color maps shown in the right panel of Fig. 5. However, there are fewer distinct groups of particles
in individual yield envelopes. It is likely that the computational domain is not sufficiently large for
a suspension this dense.

We take a closer look at the suspension morphology near Y ∗
0 in Fig. 4, where color maps of the

velocity magnitude with yield surface overlays are shown for all five configurations for φ = 0.01
(left panel) and φ = 0.05 (right panel) at Y = 0.087. All configurations for φ = 0.01 show both
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FIG. 5. Color maps of log10(γ̇ /G ) for φ = 0.01 at Y = (0, 0.022, 0.065, 0.087, 0.13) (left panel) and φ =
0.05 at Y = (0, 0.043, 0.087, 0.13, 0.17) (right panel).

static particles and yield pockets with sedimentation clusters, while for φ = 0.05 no static particles
are present in any configuration, and velocity peaks are found near vertically arranged clusters.

This formation of settling pockets of particle-dense regions and isolated static particles is not
evident from the mean suspension velocity. In Fig. 6 we show the proportion of settling particles for
both volume fractions as the yield number increases, averaged over all configurations. In both cases,
for Y/Y ∗

0 < 1 the entire suspension settles as the yield number is below the threshold required to
hold even a single particle static. At Y/Y ∗

0 ≈ 1 the vast majority of the suspension settles for both
cases, with a fraction of static particles evident for φ = 0.01. As the yield number increases beyond
Y/Y ∗

0 = 1 more isolated particles are held static, leading to a decrease in the settling fraction for
both volume fractions considered. For φ = 0.01 we find that the entire suspension is held static at
Y/Y ∗

0 ≈ 1.5. The critical yield number required to hold the entire φ = 0.05 suspension static was
not reached in this study due to convergence time requirements.

FIG. 6. Proportion of settling particles in the suspension at increasing yield strengths with the critical yield
number for a single particle indicated by the dashed line.

093302-7



A. R. KOBLITZ, S. LOVETT, AND N. NIKIFORAKIS

FIG. 7. Examples of the complex flow features found in regime II. Left: Close-up view from a φ = 0.01
suspension with Y = 0.087 showing the mobilization of an isolated particle by a passing sedimentation cluster.
Right: Close-up view from a φ = 0.05 suspension with Y = 0.173 showing lone particles swept up in the
strong recirculating flow generated by a sedimentation cluster. A large unyielded region undergoing rigid body
motion with embedded particles is visible. For each panel, the left plots show color maps of the fluid velocity
magnitude, with particles overlaid in gray and their individual velocity vectors indicated by arrows. The right
plots show color maps of the normalized second invariant of the velocity gradient tensor, with static unyielded
regions masked off, yield surfaces indicated by the solid white lines, and particles overlaid in gray.

Concentrating on φ = 0.01, for which we have found the critical yield number, we can see three
distinct flow regimes: regime I for 0 � Y < Y ∗

0 where the entire suspension is settling; regime II for
Y ∗

0 � Y < Y ∗
φ where the proportion of static particles increases as Y → Y ∗

φ ; regime III for Y � Y ∗
φ ,

for which the entire suspension is held stationary. While Y ∗
φ was not reached for φ = 0.05 in this

study we have no reason to believe that the suspension will not be held static with a sufficiently
high yield number. Experimental studies have worked with statically held suspensions as dense as
φ = 0.4 [17].

In regime I the fluid could be considered as weakly shear-thinning, and regime III is trivial, while
in regime II the strong competition between the yield stress and buoyancy of groups of particles
leads to complex flow features, which the larger error bars above Y/Y ∗

0 > 1 in Fig. 6 indicate. Two
examples of the complex flow features found in this regime are shown in Fig. 7. For each of the two
features the left plots show color maps of the fluid velocity magnitude, while the right plots show
color maps of the normalized second invariant of the velocity gradient tensor, �—a metric used to
describe the character of the flow

� = ||D|| − ||W ||
||D|| + ||W || , (7)

where D and W are the symmetric and skew symmetric components of the velocity gradient tensor,
D = 1/2(∇u + ∇uᵀ) and W = 1/2(∇u − ∇uᵀ), respectively. Negative and positive values of �

show where flow is dominated by enstrophy and strain, where for � = −1 flow is purely rotational,
� = 0 flow undergoes simple shear, and � = +1 flow is purely extensional [47]. The left panel
shows a sedimentation cluster in a φ = 0.01 suspension mobilizing a lone particle as it moves past.
The right panel is from a φ = 0.05 suspension showing a collection of particles settling together,
generating a strong recirculating flow within the yield envelope. Lone particles are swept up by this
recirculating flow, and two large unyielded plugs can be seen, one of which has embedded particles
that would have otherwise been held static. It is flow features such as these that lead to the larger
error bars in Fig. 6 but also complicate the identification of spatial correlation lengths, for example,
critical separation distances between particles that encourage settling at yield numbers beyond Y ∗

0 .
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FIG. 8. Convergence behavior of the functionals a(u, u) (circles), j (u) (squares), and L(u) (diamonds), for
a single particle (blue), φ = 0.01 (yellow), and φ = 0.05 (red). Symbols are computed, and lines are power-law
fits with exponent m.

Following the analysis of Refs. [30,48,49] we examine global flow properties through the viscous
dissipation, plastic dissipation and buoyancy work functionals, respectively:

a(v,w) =
∫

�\P
γ̇ (v) : γ̇ (w) dA, j (v) =

∫
�\P

||γ̇ (v)|| dA, L(v) = πV · ey, (8)

where v,w are divergence free vector fields satisfying the boundary conditions (2) and (3), and V
is a particle velocity vector. Exploring the static stability limit Putz and Frigaard [48] observed that
as Y → Y ∗−:

a(u, u) ∼ O([Y ∗ − Y ]2), (9)

Yj (u) ∼ L(u) ∼ O(Y ∗ − Y ), (10)

where O([Y ∗ − Y ]2) is a lower bound on the decay rate of the viscous dissipation [49], but it always
decays faster than the plastic dissipation [48]. In the following analysis, we approximate the critical
yield numbers for the suspensions as Y ∗

0.01 ≈ 1.5Y ∗
0 and Y ∗

0.05 ≈ 2Y ∗
0 , respectively.

The panels of Fig. 8 show the convergence of the functionals for φ ∈ {0, 0.01, 0.05}. For all
volume fractions explored here, the viscous dissipation decays faster than O([Y ∗ − Y ]2), the plastic
dissipation approximately one order of magnitude slower and at a similar rate to the buoyancy work
functional.

Defining the particle Bingham number as B = τ̂yL̂/μ̂Ûp, where Ûp is a particle settling velocity,
Chaparian and Frigaard [30] linked the mobility and resistance formulation by rescaling variables
by Y/B, showing that Y → Y ∗− and B → ∞ are the same limit and are coupled by

B ∼ (1 − Y/Y ∗)−ν, (11)

where ν is some positive exponent.
Using the mean suspension velocity (at a given volume fraction) to compute a B(φ) we show the

convergence at large B in Fig. 9, along with a power-law fit to the single disk data. For the single
disk, fitting the power law to the markers for 1 − Y/Y ∗ < 0.5 to limit ourselves to the behavior
near the yield limit [48], we recover ν ≈ 2, in line with previous results of Tokpavi et al. [5] and
Chaparian and Frigaard [30]. For the suspensions it is evident that we lack data sufficiently close to
Y ∗

φ to explore the behavior near the yield limit. More computations near the yield limit are required
for the suspensions. However, this is a far more computational demanding task than for single disks,
as for single disks the resistance problem—which is significantly cheaper—may be evaluated at
arbitrary velocities (see Chaparian and Frigaard [30]) while for the suspensions we must evaluate
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FIG. 9. Convergence at large B for three volume fractions. Symbols are computed, and lines are power-law
fits with exponent m.

the mobility problem. This, coupled with the necessarily increased problem size for the suspensions,
makes further exploration of the near yield limit behavior a computationally arduous task.

We can take a closer look at the energy dissipation in our system by examining the local viscous
dissipation, � = τ : D, in various flow structures by utilizing the normalized second invariant of
the velocity gradient tensor, �, discussed previously. In Fig. 10 we show the viscous dissipation per
unit volume as a function of the flow parameter � for a single disk and the suspensions. Defining
a shear flow as −1/3 � � � 1/3 [50], we can see that for a single disk most viscous dissipation
is confined to shear layers, at all Y . For a single disk at low Y there is some contribution from
extensional flow regions. However, as Y increases, the viscous dissipation becomes confined to
shear layers, as is evidenced by the steepening in the left-hand side of the � peak near � = 0. For
the two suspensions the viscous dissipation peaks in the shear layers, and the � peak steepens up
as Y increases. However, unlike for the single disk, contributions to the viscous dissipation from
extensional flow regions remain significant, particularly for φ = 0.05.

In Fig. 11 we plot probability density functions of �. For the single disk, the flow is initially
dominated by extensional flow. As Y increases, the particle becomes enclosed by a yield envelope,
with shear layers developing on the envelope interface. This is reflected as a decrease in the
extensional component, and the development of a peak near � = 0. Increasing the yield number
further results in the growth of unyielded plugs on either side of the particle, with additional shear
layers between the particle and plug, and plug and yield envelope wall, leading to a rapid decrease

FIG. 10. Normalized energy density per unit volume per unit � for a single disk (left), φ = 0.01 (middle),
and φ = 0.05 (right).
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FIG. 11. Probability density functions of � with increasing Y for a single disk (left), φ = 0.01 (middle),
and φ = 0.05 (right).

in extensional flow and a large peak near � = 0. We can see that for a single particle, the limiting
flow, as Y → Y ∗−, is dominated by shear layers.

For the suspensions the trend is similar, with shear layers increasing while extensional flow de-
creases as Y increases. While we do not have enough data close enough to Y ∗

φ to determine the lim-
iting flow characteristics, the trend is certainly indicative of a shear-dominated flow near Y ∗

φ . In light
of this, it is possible that with more data near Y ∗

φ , the power-law behavior in Fig. 9 should approach
that of the single disk, i.e., ν ≈ 2, in line with other flows dominated by simple shear [30,49,51].

IV. CONCLUSIONS

In this article we investigated settling of two-dimensional noncolloidal particles in viscoplastic
fluids under quiescent conditions by means of direct numerical simulation. Three flow regimes were
identified, where (I) the entire suspension settles, (II) there exist both static and settling particles in
the same suspension, and (III) the entire suspension is arrested.

In regime I for sufficiently high yield numbers we observe enhanced settling with increased
volume fraction, opposite to a Newtonian fluid, which we attribute to shear-thinning. Regime II
displays complex flow features such as sedimenting clusters, mobilization of lone particles, and
rigid recirculating zones. For suspension volume fractions greater than zero the transition to regime
III is delayed, requiring a higher yield number to hold the suspension static than is required to hold a
single particle static. This corroborates the theoretical work of Frigaard et al. [13] and the inferences
drawn from studies of small-scale model systems [10,14].

Further research is required to explore the dynamics of the settling phases in regimes I and
II. Regime II is of particular interest since it may lead to heterogeneities in the suspension.
Understanding this regime and the transition to regime III may play a role in explaining observations
in many industrial and natural problems involving the sedimentation of viscoplastic suspensions
under quiescent flow conditions. We anticipate that new solution methods [40–43] will soon enable
much larger simulations of such systems, including the ability to investigate time evolution and
inertia, which were neglected in this study. Finally, we encourage researchers to investigate this
problem experimentally.
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