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Jet droplets from bubble bursting are determined by a limited parametrical space:
the liquid properties (surface tension, viscosity, and density), mother bubble size, and
acceleration of gravity. Thus, the two resulting parameters from dimensional analysis
(usually the Ohnesorge and Bond numbers Oh and Bo) completely define this phenomenon
when both the trapped gas in the bubble and the environment gas have negligible density.
A detailed physical description of the ejection process to model both the ejected droplet
radius and its initial launch speed is provided, leading to a scaling law including both Oh
and Bo. Two critical values of Oh determine two limiting situations: One (Oh1 = 0.038)
is the critical value for which the ejected droplet size is minimum and the ejection
speed maximum, and the other (Oh2 = 0.0045) is a critical value which signals when
viscous effects vanish. Gravity effects (Bo) are consistently introduced from energy
conservation principles. The proposed scaling laws produce a remarkable collapse of
published experimental measurements collected for both the ejected droplet radius and
ejection speed.
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Bubble bursting is a particular case of a general class of free surface axisymmetric capillary flows
producing unsteady liquid ejections. Yarin [1] discussed several related phenomena (droplet impact,
film breakage in bubble bursting, etc.) where a sudden change in the overall potential energy of the
system leads to the radial progression and collapse of a wave package [2,3]. Those phenomena
plague the dynamics of free surface flows at length scales comparable to capillary lengths. Bubble
bursting at the liquid surface may arise as a consequence of trapped or dissolved gas reaching the
surface, but also bubble trapping caused by the axisymmetric wave collapse after a droplet impact
on a liquid surface produces a subsequent microdroplet ejection after the initial large-scale jetting.
At planetary scales, the largest free surface between liquid and gas is the sea surface, where the
dynamical interaction between these phases involves scales spanning about ten orders of magnitude
(from tens of nanometers to hundreds of meters). Yet, the mixing and penetration of each phase
in the other (in the form of droplets or bubbles) is dominated by the capillary lengths and below.
Indeed, at the smaller scales of capillary phenomena, very small droplets are always released: This
peculiar feature is so fundamental that it largely determines the global dynamics of the gas phase
(atmosphere) through the continuous formation of large masses of aerosols from ocean spray [4].
These aerosols form the cloud condensation nuclei (CCN) that eventually regulate precipitations
and the radiant balance of the earth.

Among the different spray formation mechanisms, what is known as bubble jetting was identified
early as the one producing the smaller droplets that reach farther away from the free surface, due
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FIG. 1. Schematics of the bubble bursting phenomenon showing three stages where the initial free surface
level, initial bubble radius Ro, ejected droplet radius R, main wave speed V ′, and induced ejection speed V

are indicated. The profiles shown correspond to three illustrating but arbitrary times selected from the case
Oh = 0.01 and Bo = 0.01 in a detailed numerical simulation [16].

to the vigorous ejection taking place perpendicularly from that surface. That ejection was observed
early and reported in detail by Worthington [2], and subsequently attracted much attention from
climate scientists [5–11]. Bubble jetting entails the collapse of a main capillary wave onto the axis
of symmetry and the eventual ejection of liquid along the axis of symmetry, due to conservation of
mass and momentum. The allure of this peculiar phenomenon comes not only from its own physical
beauty, symmetry, and richness beget by just a few parameters, but from its transversal impact
and direct role in the global complexity and life on the planet. In fact, one can easily understand the
importance of the aerosols generated in large-scale phenomena such as planet albedo, precipitations,
or airborne microbial dissemination.

This Rapid Communication analyzes in detail bubble bursting on a surface, with the aim to
provide a complete description and predicting models for the two main mechanical parameters to
determine the fate of the ejecta as airborne aerosols: the size (radius) R of the first ejected droplet
and its initial speed V (Fig. 1). In this phenomenon, the source of energy mainly comes from the
breakage of a liquid film exposed to air. To a lesser extent, the sudden local imbalance of the gravity
potential associated with the open cavity created right after the film breakage may also contribute
to the ejection. Besides, several simultaneous droplets are in most cases formed from the breakup
of the issued jet. However, since the first droplet is the one taking the most important fraction of
energy from the short living jet, this work is focused on that droplet. Indeed, it is the one with a
larger ejection speed and the highest reach.

The physics involved has been discussed by several authors who have provided successive
insightful approaches [8,12–16]. A synthesis of the existing arguments was briefly discussed in
Ref. [17]: Those arguments pointed to the existence of an overall speed of the capillary wave
front that should be of the order of Vo = ( σ

ρRo
)1/2. This assumes that (i) the dominant wave

number k should be comparable to R−1
o , and (ii) that the wave undergoes a viscous damping

rate as t−1
D ∼ μ/(ρR2

o ) which should be smaller than the inverse of the time of collapse of the
wave t−1

o ∼ ( σ
ρR3

o
)1/2. In other words, one should have tD > to, which immediately implies that the

Ohnesorge number Oh = μ

(ρσRo )1/2 should be below a critical one (here, Oh1) to have a sufficiently
energetic jetting for droplet ejection. That critical number Oh1 was experimentally calculated by
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Walls et al. [14], including the influence of the gravity using the Bond number Bo = ρgR2
o/σ . In

the limit of very small Bo numbers, they obtained Oh1 � 0.037, which was confirmed in Ref. [15].
However, identifying the critical Oh1 does not resolve the dependency that both the ejected

droplet size and its speed should have on the three relevant physical properties of the liquid
{ρ, σ, μ}, the bubble radius Ro, and the acceleration of gravity g. Following dimensional analysis,
that dependency should be given in terms of two nondimensional variables, for example, in the
forms R/lμ = fR (Oh, Bo) and V/Vμ = fV (Oh, Bo), where lμ = μ2/(ρσ ) and Vμ = σ/μ are
the capillary-viscous length and speed, respectively. The interested reader can find the whole
formulation of this work in the alternative terms of R/Ro = fR (Oh, Bo) and V/Vo = fV (Oh, Bo)
in the Supplemental Material [18]. In the following and for illustrative purposes, the obtaining and
limits of applicability of the scaling proposed in Ref. [17] is outlined from physical principles. This
work aims to provide a valid scaling for R and V in the whole parametrical space {Oh, Bo} where
experiments, numerical simulations, and limiting behaviors have been reported in the literature. In
particular, another paper [19] has discussed the minimum size of the drops ejected, which is also
contemplated here for completeness.

Among others, Krishnan et al. [15] neatly described (see their Fig. 8) how the different
wavelengths λi of the wave packet produced by the breakup of the liquid film sequentially arrive at
the axis segregated by their different wave speeds [σ/(ρλi )]1/2. In Ref. [17], it is observed that when
the front of the main capillary wave producing ejection collapses at the axis, the curvature reversal of
the surface involved in the onset of ejection implies that all terms of the momentum equation should
be locally comparable. In brief, the collapse of a wave with speed VL and amplitude L leading to the
ejection of a mass with a characteristic radial size R and axial speed V should obey the dimensional
balance,

O(ρV 2/L) ∼ O(μVLL−2) ∼ O(σR−2), (1)

which, together with the conservation of mass, i.e.,

O(V R2) ∼ O(VLLR), (2)

leads to

R/lμ ∼ (V/Vμ)−5/3, (3)

L/lμ ∼ (V/Vμ)−4/3, (4)

VL/Vμ ∼ (V/Vμ)2/3. (5)

In reality, the scaling relationships (5) hold for every wave with arbitrary wavelength L that
successfully arrives at the axis, with no restriction on the wave being one of the precursor wavelets
or the main wave with a wavelength comparable to Ro. Indeed, when Oh is sufficiently small,
the precursor waves segregate according to their wave speed VL, forming the capillary ripplets
studied by different authors [20–22]: Each individual wavelet arrival from the precursor wave pack
[8,12,15,16] may produce its own collapse with curvature reversal and partial ejection (and often
a tiny bubble entrapment). However, these possible partial collapses are overcome by the more
energetic wave, leading to first successful ejection. For example, Deike et al. [16] neatly show in
their Fig. 4(b) the appearance of more than one subsequent velocity peak at the axis. In this sense,
the wave collapse sequence observed is akin to a race among small, fast, but weak devices and
larger, slower, but stronger ones: At some point, one of them has the right balance of velocity and
strength to prevail. In the vast majority of cases, the slower but stronger wave produces the droplet
ejection. A salient feature observed at the collapse of the capillary wave pack at the axis is that
the amplitude of the waves appears comparable to their wavelength [see Ref. [8], and Fig. 4(a) in
Ref. [16]]. Close to collapse, a wave is akin to a hydraulic jump or shoulder that often engulfs a
small bubble after collapse.
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For any wavelength L, one has that its propagation speed is VL ∼ [σ/(ρL)]1/2, or ρV 2
L ∼ σ/L.

Moreover, given the near-zero stress condition at the surface, the strong wave leading to ejection
would also induce a radial motion in the underlying layer of liquid with speed as V , such that
ρV 2 ∼ μVL/L. V is akin to the mass-transport velocity in the analysis of Longuet-Higgins [22].
One fundamental remark here is that the induced velocity (or mass-transport velocity; see Ref. [22],
Fig. 11) never overcomes the wave speed, i.e., V is smaller than, or at most of the same order as,
VL, which ensures that the mass balance O(V R2) ∼ O(VLLR) previously used is fulfilled. Indeed,
one should expect that the ratio V/VL vanishes for vanishing Oh numbers: In this case, only the
waves with wavelengths comparable to Ro which set in motion most of the liquid surrounding the
bubble would produce a sufficient push to eject a jet. Finally, due to conservation of momentum
after collapse, the induced velocity should eventually be comparable to the axial speed, both scaling
as V .

The reader can readily verify that the above arguments based on the wave collapse, i.e., ρV 2
L ∼

σ/L and ρV 2 ∼ μVL/L are exactly equivalent to saying that all terms of the momentum equation
at the location of collapse should balance, expressed as in Eq. (1). Finally, the condition of an
efficient collapse entails that the wave front should induce an axial motion sufficient to launch a
liquid column at vertical distances comparable to Ro. This was summarized in a global energy
balance as (see Ref. [17]) [

Oh1σR2
o − μ

(
σR3

o

/
ρ
)1/2] = kρV 2R2Ro, (6)

i.e., that the total available energy in the form of surface energy, proportional to σR2
o , minus the

total viscous dissipation of the complete wave pack μ(σR3
o/ρ)1/2 should be proportional to the

mechanical energy of the liquid ejected column ρV 2R2Ro. Observe that the potential energy of
gravity was not accounted for in the balance (6) initially formulated in Ref. [17]. One should also
be careful at considering what is understood as the ejection speed V since it varies strongly with
space and time. Most authors take velocity measurements when the jet front reaches the level of the
original free surface, which supports using Ro as the characteristic length for the liquid column on
the right-hand side of (6). Besides, the constant Oh1 is precisely that critical Ohnesorge number
above which the viscous dissipation would overcome the available surface energy, as one may
readily observe dividing the whole equation (6) by σR2

o . Combining Eqs. (1), (2), and (6), one
obtains [17]

R

lμ
= kdϕ

5/4,
V

Vμ

= kvϕ
−3/4, (7)

where ϕ = Oh−2(Oh1 − Oh). kd and kv would be expected to be universal constants under the same
definite criteria to measure R and V , or at least have a weak dependency on Bo and Oh. From these
results, one has

V

VL

∼ Oh1/2(Oh1 − Oh)−1/4. (8)

As anticipated, V/VL vanishes for vanishing Oh, providing consistent support to all prior assump-
tions. This means that in the limit Oh → 0, one should expect a significant deviation from the
scaling proposed in Ref. [17], since in this limit the large wavelength waves would always take
over, as experimentally observed.

In summary, we have two possible causes of deviation: (i) very small Oh values, and (ii) nonsmall
Bo values. This Rapid Communication is dedicated to unveiling the parametric dependency of these
deviations from prior scaling.

About 350 published experimental and numerical data sets since 1954 (see Table I) have been
analyzed [5–11,13,14,23,24]. The liquid properties are listed in Table I. A first important remark
here is that we are considering the scaling laws for the ejection of the first drop (or top jet
drop), which entails univalued universal constants. This does not exclude the ejection of other
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TABLE I. Liquid properties from experiments in the literature since 1954. SW: Seawater. W+G: Water-
glycerol mixtures. The properties from Ghabache et al. [23] are provided in their Table I.

Liquid Ref. ρ (kg m−3) σ (N m−1) μ (Pa s)

SW 20 ◦C [6,9] 1025 0.0734 0.00108
SW 4 ◦C [9] 1028 0.0755 0.00167
SW 16 ◦C [7] 1025 0.0736 0.00112
SW 30 ◦C [7,11] 1024 0.071 0.00098
Water [5,8,10,24] 1000 0.072 0.001
W+30% G 25 ◦C [24] 1078 0.067 0.0021
W+50% G 25 ◦C [24] 1130 0.065 0.0044
W+60% G 30 ◦C [24] 1156 0.064 0.0062
W+60% G 25 ◦C [24] 1156 0.064 0.0074
W+60% G 20 ◦C [24] 1156 0.064 0.0097

subsequent differently sized droplets; in particular, one can observe how a first drop is ejected while
the advancing jet may also eject a larger drop (see Ref. [15], Figs. 15 and 16). Second, we use
experimental data where the authors measure the velocity of ejection when the jet front reaches the
free surface; we call this V , while the final ejection velocity of the droplet (right at pinch-off, as
considered by Deike et al. [16]) will be called Vj . Naturally, one should expect Vj < V , as shown
by experiments and detailed numerical simulations [13,16].

For the first drop, the scaling laws (7) and (8) in Ref. [17] showed a very good agreement with
experiments for Bond numbers Bo < 0.1. However, as anticipated, the interested reader can observe
apparent deviations from the alternative form of the scaling laws given by Eqs. (4) and (5) in the
Supplemental Material [18] for both very small Oh and Bo of the order unity.

Deike et al. [16] made an exhaustive numerical analysis on the dynamics of the ejected
jets, proposing a correction of the form kv (Bo) = Oh−3/4

D (1 + αBo)−3/4 for the scaling law (8)
in Ref. [17] when Bo > 0.1, with a critical Ohnesorge number OhD = La−1/2

∗ = 0.045 (Gañán-
Calvo previously obtained a critical value Oh∗ = 0.043), and α = 2.2. Deike’s proposal improves
significantly the dispersion observed (compare Figs. 1 and 2 in the Supplemental Material [18]).
However, that proposal does not address simultaneously the outstanding issues for both Oh → 0
and nonsmall Bo. To do so, we propose the following:

(1) The induced momentum ρV 2 comes from both the faster wave by viscous mechanisms, i.e.,
μVL/L, and from the final inertial push of the largest wave, i.e., ρV 2

o . This can be formulated as

ρV 2 ∼ μVL/L + Oh2 ρV 2
o , (9)

where the constant Oh2 is called this because it will indeed have that specific physical meaning: It
will signal the small limiting value of Oh below which the inertial push of the large wave takes over.
It is expected to have a universal value for this problem. Retracing the same steps as before, one
arrives at the following scaling expression,

V

Vμ

∼
(

1 + Oh2

Oh

)1/5(
R

lμ

)−3/5

. (10)

(2) The gravity potential imbalance ρgRo created by the cavity after the film burst should be
taken into account as an additional asset of energy proportional to (ρgRo)R3

o for the ejection. This
should be formulated as an augmented version of Eq. (6),

Oh1 σR2
o − μ

(
σR3

o

/
ρ
)1/2 + kBo,1(ρgRo)R3

o = k′ρV 2R2Ro, (11)
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FIG. 2. Nondimensional droplet radius R/lμ as a function of the scaling variable ϕR, from the same data as
in Fig. 5 in Ref. [17]. The interested reader can assess a small deviation for large values of ϕ in that prior figure
which is largely emphasized using the variable R/Ro instead, as shown in the Supplemental Material [18].

or in nondimensional form,

Oh1 − Oh + kBo,1 Bo = k′ ρ

σRo

V 2R2, (12)

where both kBo,1 and k′ are expected, again, to have universal values under the same criteria to
measure R and V . In this regard, it is worth noting that Eq. (11) assumes a balance that should hold
at each point of the ejection, which entails having different values for kBo,1 and k′ if one considers
that V is the jet front speed measured at the free surface or anywhere else. We will come back to
this issue once we get to the experimental validation.

Given that the ejected droplet radius R has an unequivocal final value, while V depends on the
measurement criteria, we can first focus on the scaling law of R. Eliminating V from (10) [or from
Eq. (8) in the Supplemental Material [18]] and (12), one explicitly has for the ejected droplet radius,

R

lμ
∼

[
Oh−1

(Oh1
Oh − 1 + kBo,1G

)]5/4

(
1 + Oh2

Oh

)1/2 ≡ ϕR, (13)

where G = Bo/Oh is the ratio of gravity over viscous forces, with kBo,1 a fitting constant. One would
expect that the experiments should provide universal values of the critical numbers Oh1 and Oh2. To
this end, one may use the same experimental data set employed in Ref. [17], including all data for
Bo > 0.1. First, Oh1 and Oh2 are resolved together with the fitting parameters kBo,1 and kBo,2 by any
valid optimization method (e.g., minimum least squares) using measurements of the top jet droplet
radius R. The optimum fitting is shown in Fig. 2(a) with Oh1 = 0.038 (very close to Walls’ critical
value 0.037), Oh2 = 0.0045, kBo,1 = 0.006. The scaling prefactor such that R/lμ = kdϕR results in
kd = 0.9.

The accurate fitting found validates the proposed scaling (13). The interested reader can see
an enhanced comparison between the original and this new scaling in Figs. 1(a) and 3(a) in the
Supplemental Material [18]. This scaling encapsulates a rich physical spectrum summarized in the
following:

(1) The number Oh1 indicates the limiting value of the Ohnesorge number for which the droplet
radius nearly vanishes, and below which droplet ejection appears just marginally, originating larger
droplets [13] (a minimum attainable droplet size is proposed in Ref. [19] for Oh → Oh1; in reality,
as discussed in Ref. [19], dominant viscous effects should make R/lμ minimum but nonzero
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FIG. 3. Ejection velocity at the level of the original free surface V made dimensionless with Vμ, as a
function of ϕV. All available data, including those with Bo > 0.1 (that were not included in the previous study
[17]), are represented.

at that singular point). Walls obtained Oh1 � 0.037 while we propose Oh1 = 0.038 (practically
indistinguishable) when Bo → 0. More precisely, to this end one should have G → 0.

(2) The number Oh2 (small compared to Oh1) is the value of the Ohnesorge number below which
viscous forces become negligible compared to capillary and inertia forces. The main mechanism
leading to ejection becomes the collapse of the larger and slower nonlinear capillary wave which
inertially pushes the liquid towards the axis. In this region (Oh < Oh2) the inviscid limit studied by
Boulton-Stone and Blake is beautifully recovered [12] [data from their Figs. 4(a) and 4(b) are used
in Fig. 3 in the Supplemental Material [18]]. In this inviscid limit, expression (13) using the viscous
scaling lμ becomes undetermined, and one should use R/Ro instead (see Supplemental Material
[18]). After some easy algebra, the resulting limit is a function of the Bond number alone (Oh1 and
Oh2 are constants),

R

Ro

= kd Oh−1/2
2 (Oh1 + kBo,1 Bo)5/4. (14)

(3) In the intermediate asymptotic region Oh1 	 Oh 	 Oh2, one has

R/lμ � kd Oh−5/2(Oh1 + kBo,1 Bo)5/4. (15)

The limit described in Ref. [17] is recovered when kBo,1G ≡ kBo,1 Bo/Oh 
 1. It is noteworthy that
the effect of gravity is not due to the ascending jet (whose contribution would be negative), but to the
gravity potential imbalance (a positive contribution) produced by the local presence of the original
bubble at the surface: This is easy to understand given the much larger volume of the cavity than
that of the jet, both having comparable heights.

Now, one can use the same data as in Fig. 2 for the jet velocity, obtained with the same
measurement criterion (whenever available). While one should expect that the values of Oh1 and
Oh2 remain constant, one should also expect some opposing push of the gravity on the column as
it rises. Therefore, one may expect variations in the values of kBo,1 (that can be called k′

Bo,1) and an
additional term in Eq. (9) corresponding to the weight of the column for any given length that it
reaches. If the criterion to measure the jet speed is when its front reaches the initial free surface of
the bubble, that weight can be formulated as

ρV 2 ∼ μVL + Oh2 ρV 2
o − kBo,2ρgRo. (16)
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Using now (16), one reaches to

V

Vμ

∼ (Oh + Oh2 − kBo,2 Bo)1/2

[Oh−1(Oh1 − Oh + k′
Bo,1 Bo)]−3/4

≡ ϕV. (17)

Thus, doing the same optimum collapse process as for the droplet radius, one effectively ob-
tains Oh1 = 0.038 and Oh2 = 0.0045 (consistently with expectations from the scaling of the
droplet size), and k′

Bo,1 = 0.14 and kBo,2 � 0.004, with a scaling prefactor kv = 13.5 such that
V/Vμ = kvϕV. Again, a very good collapse is obtained. The interested reader can compare the
data dispersion in either Figs. 1(b) or 2 with that in Fig. 3(b) in the Supplemental Material [18].
Observe that the inviscid limit [12] is also recovered for the jet speed, naturally (see Supplemental
Material [18]). Finally, for completeness, one should also consider those ejections contemplated in
Ref. [19] and previously in Ref. [13] for values of the Ohnesorge number above the one that makes
ϕR zero. However, given the much lower ejection speeds of droplets for Oh numbers larger than
Oh1, for which the droplet size is minimum, the overall importance of that regime can be marginal
except for the determination of the minimum ejectable droplet size [19].
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