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The classical energy cascade in turbulence as described by Richardson and Kolmogorov
is predominantly a conjecture relying on the locality of interactions between scales of
turbulence. This picture is generally accepted and assumes that energy and enstrophy
transfers occur between neighboring scales of turbulence and that vortex stretching plays
a major role in the dynamics of this energy cascade. Direct numerical simulation data for
Reλ ranging from 37 to 1131 is used to gather evidence for the cascade by investigating
the energy and enstrophy fluxes between scales and the interplay between vorticity at one
scale and strain at an adjacent scale. This is achieved by using a bandpass filter to educe the
turbulent structures at various length scales, allowing one to determine the fluxes between
these scales and to interrogate the role of nonlocal (in physical space) vortex stretching. It
is shown that the structures of a length scale L mostly transfer their energy to structures
of size 0.3L and that most of the enstrophy flux goes from structures of scale L to 0.3L.
Furthermore, vortical structures of a length scale Lω are stretched mostly by straining
structures of size 3Lω to 5Lω, and the stretching by eddies of sizes larger than 10Lω is
negligible. The stretching is dominated by the most extensive principal strain rate of the
straining structures. These observations are found to be independent of Reλ for the range
investigated in this study. These results provide strong evidence for the classical view of an
energy cascade transferring energy from large to small scales through a hierarchy of steps,
each step consisting of the stretching of vortices by somewhat larger structures.
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I. INTRODUCTION

Turbulent flows are often pictured as a hierarchy of eddies of different scales whose morphology
and spatial clustering depend on the turbulence Reynolds number. Many views have been proposed
in the past to describe the interaction of these eddies and how the energy cascades through these
scales from the large energy-containing eddies to the small dissipative structures. In particular, the
Richardson/Kolmogorov energy cascade [1,2] conjectured that kinetic energy introduced at large
scales is progressively transferred to smaller and smaller scales through the inertial range, eventually
reaching the Kolmogorov scale where it is dissipated by the fluid viscosity. The key assumption of
this conjecture is the scale locality of the cascade, the idea by which eddies mainly interact with and
transfer energy to eddies of neighboring (smaller) sizes.

Historically, turbulence and turbulent structures have often been described in spectral space where
their wave numbers become a surrogate for their physical scales. In this formalism, the locality of
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the energy cascade is understood as the proximity between interacting wave numbers. From this
perspective, various closure models relying on this notion of cascade for turbulence were developed
based on algebraic expressions for the spectral kinetic energy transfer function [3–5] with reasonable
success. Furthermore, the locality of the energy cascade in wave-number space was assessed by
studying the interactions between triads of wave numbers and their contribution to the energy flux.
It was shown that the energy transfer was dominated by local wave-number triad interactions [6–9].
Approaches analogous to the analysis of the spectral energy transport equation were also performed in
physical space using the two-point velocity correlation transport equation and the Karman-Howarth
equation [10]. In this context, the family of closures proposed are the quasi-normal-type schemes
which assume that, for the fourth-order velocity correlations terms, the joint probability density
function (pdf) of the velocity field measured at two points is Gaussian. This then allows one to
close the Karman-Howarth equations; these closures are reviewed in [11]. However, there is an
inherent arbitrary nature to the approximations used and the heuristic modifications required to
correct these models. Thus, there is no consensus on the locality of the scale interactions in physical
space. Indeed, some studies have both supported the assumption of scale locality [12–15] while
others have shown that energy could be transferred directly from large scales to much smaller ones
[16–18]. Clear evidence for this scale locality of the energy cascade using real space quantities is
scant.

Nonetheless, from the physical space perspective, since Taylor’s work [19,20], it has often been
suggested that the mode of energy transfer across the scales is through vortex stretching, in which
vortical structures of a given scale are stretched and intensified by larger vortices, leading to the
transfer of energy from the larger to the smaller eddies, with the smallest eddies having a worm-like
shape, an idea that dates back to Burgers [21]. In particular, the rate of generation of enstrophy,
� = |ω|2/2, by vortex stretching, ψ = ωiωjSij , is often taken as a proxy for energy transfer in real
scale space [22,23].

Despite the relatively wide acceptance of this classical picture interweaving energy cascade
and vortex stretching, rigorous evidence supporting this association remains elusive and additional
investigations are required to support the vortex stretching picture and its locality in scale space.
Indeed, past direct numerical simulations (DNS) [24–27] and experiments [28,29] showed that the
vorticity aligns preferentially with the intermediate strain rate, β, which suggests the formation of
vortex sheets rather than vortex tubes [22]. By contrast, one would expect ω to preferentially align
with α if the vortices being stretched are tube-like (worms) [22]. This apparent disconnect stems
from the influence of local (in physical space) straining associated with the self-induced strain fields
of vortices [30,31]. Indeed, when these effects are excluded and only nonlocal straining in physical
space retained, it is found that ω is indeed aligned, on average, with α [32–34]. The effects of
self-straining can be filtered out by using a bandpass filter to educe vorticity and straining structures
of different scales and examine their mutual interaction. This shows that, for modest values of Taylor
microscale Reynolds numbers, Reλ, a vortex of a given size is stretched primarily by the α strain from
structures that are 3 to 5 times larger than the vortical structure [34]. These results were obtained
for homogeneous isotropic turbulence and similar results supporting the scale-locality of the energy
cascade and the vortex stretching in shear flows were reported in [35–37]. By contrast, if one does
only consider the alignment between vorticity and straining structures at the same scale, thus not
excluding the self-straining effect, the preferential alignment of ω with β is retained [34,38].

The relatively low Reλ of 107 [32] and 141 [34] in the previous studies raises questions as to the
validity of their findings for higher Reynolds numbers, particularly as it is often suggested that high
Reλ turbulence presents dynamical features that differ from lower Reynolds number turbulence.
For example, Ishihara et al. [39] examined data at Reλ = 1131 and highlighted the appearance
of thin shear layers consisting of clusters of thin intense vortex tubes. They suggested that the
spatial structure of turbulence undergoes a transition as Reλ approaches 1000, with larger values
of Reλ favoring the clustering of vortex worms into slabs or sheets. This clustering is less apparent
at lower Reλ. Thus, a definitive theory of the energy cascade, applicable across all Reλ, remains
elusive.
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The objectives of this study are (i) to revisit the classical cartoon of the energy cascade using DNS
data to investigate its locality in scale space, through a clear analysis of the energy and enstrophy
transfers, and vortex stretching mechanism between various scales; (ii) to investigate whether or not
the nature of the cascade changes with Reλ and in particular whether the results observed in [34] for
Reλ = 141 are valid for smaller and larger Reynolds numbers; and (iii) to study the morphology of
the straining and strained structures. These objectives are addressed by analyzing DNS data for Reλ

ranging from 37 to 1131. Each dataset is analyzed using the bandpass filtering method [34], which
allows one to focus on structures of a chosen length scale, L. The morphological features of these
structures are then analysed using Minkowski functionals. The present work will thus mainly focus
on the scale locality of the energy cascade using quantities in real space rather than in wave-number
space and not on the spatial locality of the energy/enstrophy transfer.

The scale decomposition framework used here is described in Sec. II along with the methodologies
used for analysis. Details on the various DNS datasets used are provided in Sec. III. The results are
then discussed in Sec. IV which focuses on (i) the morphological features of turbulent structures, (ii)
the transfer of energy and enstrophy across scales of turbulence, and (iii) the interaction of turbulent
structures through the analysis of the vortex stretching mechanism. Conclusions are summarized in
the final section.

II. ANALYSIS METHOD

A. Scale decomposition

To analyze the scale-by-scale transfer and interaction, following earlier works [40,41], one can
decompose the velocity u and vorticity ω into large and small scales such that u = uL + uS and
ω = ωL + ωS, where the superscripts L and S denote the contribution of structures respectively
larger and smaller than a specified scale r . Such decomposition is not unique and depends on the
low-pass filter used to yield ωL and uL. This aspect will be tackled subsequently.

Nonetheless, using this formalism, an energy equation for the large and small scales can be
deduced by taking the dot product of uL and uS with the Navier-Stokes equations and ensemble
averaging the resulting equations [40,41]. This gives

∂

∂t

〈
1

2
(uL)2

〉
= −�V − ν〈(ωL)2〉, (1)

∂

∂t

〈
1

2
(uS)2

〉
= �V − ν〈(ωS)2〉 (2)

for the energy in scales L and S respectively. The symbol �V is defined as

�V (r ) = 〈
SL

ij τSij − SS
ij τ

L
ij

〉
(3)

with Sij the symmetric strain-rate tensor; τLij = −uLi uLj and τSij = −uSi uSj are the Reynolds stresses
at large and small scales. In the present formalism, as �V (r ) appears in both equations with an
opposite sign, it can be interpreted as the flux of energy from larger to smaller scales across the
scale r .

In a similar manner, by taking the dot product of ωL or ωS with the vorticity equation, one can
obtain the enstrophy equations for the large and small structures [41]:

∂

∂t

〈
1

2
(ωL)2

〉
= −F (r ) + GL(r ) − ν〈(∇ × ωL)2〉, (4)

∂

∂t

〈
1

2
(ωS)2

〉
= F (r ) + GS(r ) − ν〈(∇ × ωS)2〉, (5)

084601-3



DOAN, SWAMINATHAN, DAVIDSON, AND TANAHASHI

with

F (r ) = 〈ωL · (u · ∇ωS)〉 = −〈ωS · (u · ∇ωL)〉, (6)

GL(r ) = 〈ωL · (ω · ∇u)〉 = 〈
ωL

i ωjSij

〉
, (7)

GS(r ) = 〈ωS · (ω · ∇u)〉 = 〈
ωS

i ωjSij

〉
. (8)

Here, GL(r ) and GS(r ) represent the generation of enstrophy via vortex stretching at large and small
scales respectively, and F (r ) is the transfer or flux of enstrophy across the scale r , from larger to
smaller scales.

From this formalism, the transfer of energy and enstrophy from scales L to S across the scale r

can be analyzed by studying the flux functions, �V for the energy and F for the enstrophy, as done
by Davidson et al. [41]. The interest of the present work is to investigate the interactions between a
given scale L and various smaller scales S to identify the range of scales interacting with structures
at scale L and thus assess the locality of the energy/enstrophy transfer. This is achieved by using the
bandpass filtering method proposed by Leung et al. [34] described in the next section.

B. Bandpass filtering

This filtering procedure allows one to educe structures of a chosen length scale, L, in physical
space, as demonstrated by Leung et al. [34]. In this method, the Fourier transform of the bandpass
filtered velocity field is simply related to the Fourier transform of the unfiltered field, and it is written
as

ûL
b = α√

L
2κ2 exp(−κ2 )̂u(k), (9)

where k is the wave-number vector, κ = kL/2 with k = |k|, and α = √
2 [34]. Then, applying the

inverse Fourier transform to the filtered field, a bandpass filtered velocity field, uL
b , is obtained. The

fields of vorticity, strain rate, and Reynolds stresses at scale L are then computed through

ωL = ∇ × uL
b , SL

ij = 1

2

(
∂uL

b,i

∂xj

+ ∂uL
b,j

∂xi

)
, τL

ij = −uL
b,iu

L
b,j (10)

By using this technique, one can educe these “large” and “small” scales separately, and not
necessarily across a given scale r . The bandpass filtered velocity at some specified scales L and S,
with L > S, can be used in Eqs. (3) and (6) to directly compute the transfer of energy or enstrophy
from structures of scale L to those of scale S, i.e.,

�L→S
V,b = 〈

SL
ij,bτ

S
ij,b − SS

ij,bτ
L
ij,b

〉
, (11)

FL→S
b = 〈

ωL
b · (

u · ∇ωS
b

)〉
, (12)

where the subscript b indicates the use of bandpass filtered fields.
Furthermore, to analyze the vortex stretching mechanism, one can analyze the interplay between

the vorticity at scale Lω and the strain rate at Ls . Indeed, the rate of generation of enstrophy at scale
Lω due to straining structures at scale Ls can be expressed as

ψ = ω
Lω

i ω
Lω

j S
Ls

ij = |ωLω |2(αLs cos2 θα + βLs cos2 θβ + γ Ls cos2 θγ ), (13)

where αLs , βLs , and γ Ls are the principal components of S
Ls

ij with αLs > βLs > γ Ls , and θi are the
corresponding angles between the vorticity vector and these principal components. Thus, to analyze
the vortex stretching mechanism, one can analyze the alignment statistics as measured by the pdf
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of cos(θi ) between vortical structures at a length scale Lω and straining structures at a larger length
scale Ls .

C. Morphology descriptor

The Minkowski functionals are used to perform an objective analysis of the morphology of
turbulent structures educed at various scales using the bandpass filtering methodology. These Galilean
invariants are commonly used in cosmology, for example [42], and describe the morphology of a
given three-dimensional structure. The four functionals for a three-dimensional structure are given
by [43]

V0 = V, V1 = A

6
, V2 = 1

3π

∫
A

K1 + K2

2
dA, V3 = 1

2π

∫
A

K1K2dA. (14)

V is the volume enclosed by the three dimensional object with a surface area, A. The principal
curvatures at a given point on this surface are K1 and K2. Using these Minkowski functionals, one
can then define the shape finders: length �, width w, and thickness t , ordered as t < w < � and
computed using

t = V0

2V1
, w = 2V1

πV2
, � = 3V2

2V3
. (15)

It should be noted that particular care is taken with V3 as holes could be present in the structure,
thus yielding V3 � 0. In those case, � is defined as � = 3V2/[4(G + 1)], where G = 1 − V3/2 is
the genus of the structure. The genus of a structure is the number of cuts that can be made along a
simple curve on the object without splitting it [44]. From these three characteristics length scales,
two quantities called planarity, P , and filamentarity, F , can be defined [43]:

P = w − t

w + t
, F = � − w

� + w
. (16)

These two dimensionless quantities are bounded between 0 and 1 and can then be used to classify the
considered three-dimensional object in terms of simple shapes, such as a blob or sphere (P,F ) =
(0, 0), a very long tube (0, 1), a thin sheet (1, 0), and a very long ribbon (1,1), as noted by Leung
et al. [34].

This procedure has been applied on vortical and straining structures educed at various length
scales as will be detailed in Sec. IV A.

III. DNS DATASET

DNS data of homogeneous isotropic turbulence are used here. These datasets, from Ishihara et al.
[39], Tanahashi et al. [45], Donzis et al. [46], Kobayashi et al. [47], cover Reλ from 37 to 1131 (or
integral length scale Reynolds number, Rel , from 97 to 36,345) as listed in Table I. These datasets
cover the widest range of Reynolds number currently available and are from a variety of research
groups. The computational domain for each dataset is a triply periodic cube of length 2π with N

grid points in each direction. Two cases at Reλ = 140 and 1131 have forced turbulence while all
the others have freely decaying turbulence. The case at Reλ = 140 uses stochastic forcing at large
scale, applied on wave numbers smaller than Kc = 2

√
2 [46,48]. For the case at Reλ = 1131, the

forcing is performed in wave-number space as f̂ (k) = cû(k) where f̂ is the Fourier transform of the
forcing and c is a nonzero coefficient independent of k and is equal to � for k < KC and 0 otherwise.
The value � was adapted at each time step so as to maintain the total kinetic energy E inside the
domain. The value of Kc was taken to be 2.5 for the Reλ = 1131 case [39]. It should be noted that
these forcing schemes mainly affect structures of turbulence of a scale of about 2π/Kc and have a
decreasing influence as one considers smaller and smaller scales. This scale of 2π/Kc corresponds
to approximately 190η and 4900η respectively for the cases at Reλ = 140 and Reλ = 1131, where
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TABLE I. Characteristics of the (forced or decaying) homogeneous isotropic turbulence DNS database. l is
the integral length scale, λ the Taylor microscale, and η the Kolmogorov length scale.

Reλ N l/η λ/η Forced or decaying Reference Institution

37.1 128 31 11.8 D [45] Tokyo Tech
64.9 128 55 17.1 D [45] Tokyo Tech
97.1 256 100 20.9 D [45] Tokyo Tech
140 256 101 28.0 F [46] Georgia Tech
141.1 400 200 24.0 D [45] Tokyo Tech
222.7 640 494 29.3 D [47] Tokyo Tech
393.8 1536 1146 39.0 D Unpublished Tokyo Tech
1131 4096 2137 66.5 F [39] Nagoya Univ.

η is the Kolmogorov length scale. Thus for the range of scales considered here, the influence of the
forcing scheme should be limited. This will be further discussed in Sec. IV B.

The analysis presented here is performed on snapshots of the data taken once the turbulence
is fully developed, as judged by the velocity derivative skewness approaching −0.5. Since only
instantaneous snapshots are available for analysis, the temporal aspects of the energy cascade is not
studied here. Characteristics of each case required for this study are summarized in Table I and more
details on these datasets can be found in the relevant references.

IV. RESULTS

A. Morphology of the turbulent vortices

The turbulent velocity fields have been obtained at various scales by using the bandpass filter with
length scale, L, varying from 5η to up to 1300η depending on the dataset. From these fields, the
strained (enstrophy) and straining structures can be deduced using Eq. (10). Figure 1 shows examples
of the strained and straining structures for Reλ = 140 and 1131. The length scales Ls and Lω are
respectively 24η and 5η for Figs. 1(a) and 1(c). These length scales are Ls = 75η and Lω = 24η

for Fig. 1(b), and they are Ls = 750η and Lω = 150η for Fig. 1(d). These specific combinations
of Ls and Lω are chosen based on the suggestions of Leung et al. [34] which showed that most
stretching imparted on strained structures was coming from straining structures 3 to 5 times larger.
The isosurfaces are thresholded at a value of μ + 2σ , where μ is the mean and σ is the standard
deviation. This threshold was chosen following the work of Leung et al. [34] to focus on regions with
intense vorticity or strain rate. Despite the variation in the volume of these structures, it is observed
that their general morphology is not significantly modified by varying the threshold, as also observed
by Leung et al. [34]. Indeed other thresholds of μ + σ and μ + 3σ yielded similar results (not shown
here for brevity). The enstrophy and straining structures are more space filling in the larger Reλ case,
irrespective of their scales. This was assessed by computing the volume fraction occupied by these
structures at various Reynolds numbers. For example, when comparing the enstrophy structures of
Fig. 1(a) to those of Fig. 1(c), they occupy respectively 2.97% and 10.4% for cases Reλ = 140 and
Reλ = 1131. Similarly, the straining structures of Fig. 1(a) for Reλ = 140 only occupy 4.3% of
the volume compared to 24.64% for Reλ = 1131 shown in Fig. 1(c). Furthermore, the enstrophy
structures are predominantly tube- and blob-like with large strain fields at their periphery, as in the
Burgers vortex model. This is illustrated in Fig. 2 where a single enstrophy structure has been isolated
from Fig. 1(c) along with its neighboring straining structures.

The shape finders, P and F , for the strained and straining structures seen in Fig. 1 are plotted in
Fig. 3. The results are shown as contours of the joint probability density function (pdf) of P and F
for the strained structures and as scatter plots for the straining structures. This particular choice is due
to the small number of straining structures at larger scales preventing the computation of a smooth
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FIG. 1. Isosurfaces of enstrophy (red) and straining (green) structures with a threshold value of μ + 2σ ,
where μ is the mean and σ is the rms value. Panels (a) and (b) are for Reλ = 140 and panels (c) and (d) are for
Reλ = 1131. In (a) and (c) Ls = 24η and Lω = 5η, in (b) Ls = 75η and Lω = 24η, and in (d) Ls = 750η and
Lω = 150η.

pdf. For example, there are only 18 straining structures observed in Fig. 1(b) for Ls = 75η and their
P and F are shown as scatter plots in Fig. 3(b). The ranges of P and F observed in Fig. 3 suggest
that the educed structures seen in Fig. 1 are mostly blob-like (low P and low F) or tube-like (low P
and medium or high F) even for the largest Reλ and Lω = 150η considered here. More specifically,
the straining structures tend to have a blob-like aspect ratio for all length scales considered here,
while the small scale vortices with Lω = 5η present a tube-like morphology [see Figs. 3(a) and 3(c)].
However, as Lω increases, the enstrophy structures start to show blob-like morphology as observed
by the shift in the position of the joint pdf towards lower value of F [compare Fig. 3(a) to 3(b), and
Fig. 3(c) to 3(d)]. Similar observations about the difference in the shapes of the vortical and straining

(a) (b)

x
y

z
x

y

FIG. 2. (a) Isolated single isosurface of enstrophy (red) and dissipation (green) structures with a threshold
value of μ + 2σ extracted from the case Re = 1131. (b) The associated mid x-y plane distribution.
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(a) (b)

(c) (d)

FIG. 3. Joint pdf of planarity P and filamentarity F of the strained (or enstrophy) structures seen in Fig. 1.

structures were also made in [34] using bandpass filters and in [49] based on the fractal dimensions
for the intense vortical and straining structures.

B. Energy and enstrophy transfer

The normalized energy transfer function, �̂L→S
V,b = �L→S

V,b / max(�L→S
V,b ), is shown in Fig. 4 where

it is plotted for three different Reynolds numbers: Reλ = 97.1, 222.7, and 1131. For each case, a
large scale L is picked first and the small scale S is varied to determine which small scale receives
the most energy from the structures of size L. This can be repeated for various values of L to analyze
if the range of scale interactions evolves across scales of turbulence in a particular fashion or not.

It is observed that �̂L→S
V,b peaks for values of S/L around 0.3 for all values of L. This indicates that

structures at scale L mostly transfer energy to structures having a size of about ∼0.3L. Furthermore,
the normalizing quantity, max(�L→S

V,b ), increases with decreasing L, for the range of L studied
here, and increases with increasing Reλ. As this analysis is performed for various L, the results
in Fig. 4 show that there exists a locality in the energy transfer for the range of scales across the
turbulence spectrum. This strongly supports the energy cascade picture which portrays that the energy
is transferred from one scale to its neighboring smaller scale. Furthermore, this result is observed

FIG. 4. Normalized energy transfer function, �̂L→S
V,b , for various cases.
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FIG. 5. Normalized enstrophy flux, F̂ L→S
b , for various cases.

to be insensitive for all the Reynolds numbers considered here, suggesting that the energy cascade
picture is robust and does not change with Reλ.

A similar analysis is performed for the enstrophy flux between two scales, L and S. The normalized
value of the enstrophy flux, F̂ L→S

b = FL→S
b / max(FL→S

b ), is shown in Fig. 5 for the same cases
considered for the energy transfer in Fig. 4. The behavior of F̂ L→S

b is very similar to that for the
energy transfer. The enstrophy of scale L is mostly transferred to scales of about 0.3L for all L

considered and max(FL→S
b ) has the same behavior as max(�L→S

V,b ) with variations of Reλ and L.
This similar behavior between F̂ L→S

b and �̂L→S
V,b hints at a close relation between the energy and

enstrophy transfers, and the enstrophy still cascades from large to small scales just like the energy [41].
To further quantify the locality of this energy and enstrophy flux, one can plot the value of the ratio

S/L yielding the highest energy or enstrophy transfer for various L and Reλ considered. These ratios,
denoted as (S/L)Emax for the energy transfer and (S/L)�max for the enstrophy flux, are shown in Fig. 6
with the uncertainty associated with the location of the peak. This uncertainty comes from the limited
combination of the ratios (S/L) computed for this study. Indeed, to estimate (S/L)�max and (S/L)Emax,
first a large scale L is chosen and then a finite number of small scales S are considered subsequently
to compute the energy/enstrophy transfer and to determine for which S the energy/enstrophy transfer
is maximum for the chosen L. From this set of ratios (S/L), (S/L)�max and (S/L)Emax are determined.
Thus, the uncertainty of the maximum corresponds to the interval between the two consecutive (S/L)
bracketing the peaks seen in Figs. 4 and 5. This interval width is shown as vertical bars in Fig. 6.

It is observed that for all cases the values of (S/L)�max and (S/L)Emax lie between 0.25 and 0.4.
This provides strong support for the scale-by-scale energy or enstrophy cascade throughout the
range of scales of turbulence and, more importantly, for all Reynolds numbers considered. The
results shown in Figs. 4 and 5 have also been compared for the decaying and forced cases with Reλ

of about 140 and no significant differences were observed (not shown), implying that the forcing of
the turbulence at sufficiently large scale does not influence the energy or enstrophy flux through the

FIG. 6. Ratio (a) (S/L)Emax and (b) (S/L)�max yielding the maximum energy or enstrophy transfer from eddies
of a scale L to a scale S.

084601-9



DOAN, SWAMINATHAN, DAVIDSON, AND TANAHASHI

FIG. 7. pdf of alignment between the vorticity filtered at scale Lω = 5η and the principal directions of the
strain filtered at scales Ls . Solid line α and dashed line β. The gray lines are for the case Reλ = 1131 computed
using unfiltered fields.

scales. Furthermore, the similar behavior of the results for both large and small scales in the cases
with Reλ = 140 and Reλ = 1131 suggests that the forcing scheme does not influence the results
unduly.

C. Vorticity–strain rate alignment

As noted by Eq. (13), the generation of enstrophy through the vortex stretching mechanism is
dictated by the alignment between the vorticity vector and the principal strain rates.

The probability density function of | cos θ | between vorticity at 5η and the principal strain rates at
various Ls is shown in Fig. 7 for four Reynolds numbers. This alignment pdf is shown for both the α

and β strain rates. The vorticity is observed to align preferentially with the most extensional strain,
α, when Ls > Lω, and the alignment with the β strain rate increases progressively as Ls/Lω → 1, as
observed by Leung et al. [34] for Reλ = 141. Statistics similar to unfiltered alignment characteristics
reported by Ashurst et al. [24], i.e., alignment with the β strain rate, are observed for Ls ≈ Lω. The
statistics with unfiltered field computed for the case Reλ = 1131 are shown for comparison in the
frame for Ls = 5η of Fig. 7 using gray lines.

One can also quantify the size of larger structures primarily responsible for stretching a vortex of
size Lω by studying the probability P of the alignment with the α strain rate. As discussed in Leung
et al. [34], this can be obtained by simply integrating the results in Fig. 7 for ξ1 � | cos θα| � 1, and
the variation of this probability with L = Ls/Lω is shown in Fig. 8, with ξ1 = 0.99, for the range of
Reynolds numbers in Table I. Figures 8(a) and 8(b) show this quantity respectively for Lω = 5η and
Lω = 45η with Ls ranging from 5η to 1300η depending on the dataset under analysis. [The additional
case of Lω = 150η is included for Reλ = 1131 in Fig. 8(a)]. Evidently, for all cases considered, the
probability peaks for 3 � L � 5, implying that the vortical structures of scale Lω are stretched mostly
by structures that are about 3 or 5 times larger, as noted by Leung et al. [34]. Although the results
shown in Fig. 8 are for ξ1 = 0.99, they are observed to be insensitive to the choice of the ξ1 value.
These results support the hypothesis that the enstrophy structures are predominantly stretched by the
extensional strain from larger eddies, corroborating the idea that the most effective vortex stretching
is incremental in scale space. More importantly, it is seen that this observation holds for all values
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FIG. 8. Variation of probability of near perfect alignment of ω with α versus L with (a) Lω = 5η and
(b) Lω = 45η.

of Reλ investigated here and even for relatively large enstrophy structures at large Re [see the curve
corresponding to Reλ = 1131 with Lω = 150η in Fig. 8(a)]. This observation is also consistent with
the ratios of scales for the maximum energy or enstrophy transfer, (S/L)Emax or (S/L)�max, shown in
Fig 6.

The value of L associated with the peak probability for near perfect alignment between ω and
α, denoted as L∗, is plotted against Reλ in Fig. 9, where various values of Lω, ranging from 5 to
100η, are considered for the strained structures. It is clear that this length scale ratio is between 3
and 5 and is more or less independent of Reλ, at least for the range considered in this study, and
independent of the choice of Lω. This provides further evidence of a scale-by-scale energy transfer.
The results for larger Lω, for example 45η, do not extend to lower Reλ because the larger straining
scales required for the analysis become larger than the size of the computation domain. Furthermore,
in light grayscale, the range of ratios (L/S)Emax for each Reλ case observed in Fig. 6 is also plotted.
This ratio also lies in the same range as L∗ which clearly shows that all these phenomena related to
the energy cascade picture are local in scale and more or less independent of the Reynolds number.
This provides support and evidence for the universality of the energy cascade picture, even at modest
values of Reλ.

Furthermore, the importance of the alignment of vorticity with the α strain, and thus the actual
vortex stretching, for the enstrophy production can be highlighted by estimating the contribution of
each principal strain to the total enstrophy production. Indeed, the contributions of α, β, and γ to
the volume averaged enstrophy production 〈ψ〉 = 〈ωiSijωj 〉 = 〈ψα〉 + 〈ψβ〉 + 〈ψγ 〉 are known to
be in the ratio of 〈ψγ 〉 : 〈ψβ〉 : 〈ψα〉 = −1 : 1.41 : 2.06. For a vortex of scale Lω, these contributions

FIG. 9. Ratio L∗ = Ls/Lω yielding the highest probability for perfect alignment of ω with the α strain rate
(lines). The shaded region shows the minimum and maximum values of (L/S )Emax yielding the highest energy
transfer for the associated Reλ.
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from strain rates of various sizes of eddies can be estimated using

〈ψLω〉 = |ωLω |2
∫ ∞

1
(αL cos2 θα + βL cos2 θβ + γ L cos2 θγ )dL

= 〈
ψLω

α

〉 + 〈
ψ

Lω

β

〉 + 〈
ψLω

γ

〉
. (17)

The ratio 〈ψLω
γ 〉 : 〈ψLω

β 〉 : 〈ψLω
α 〉 = −1 : 0.46 : 3.44 is observed for Lω = 5η and Reλ = 140.

If one considers Lω = 24η then this ratio becomes −1 : 0.49 : 4.93. For Reλ = 1131, this ratio is
−1 : 0.32 : 2.51 when Lω = 5η and −1 : 0.36 : 2.67 when Lω = 150η. The α strain rate thus clearly
dominates over the β strain for all the filtered fields. Hence, the main mechanism of enstrophy
production is through the axial vortex stretching as suggested by the original energy cascade picture
[1,19,22].

V. CONCLUSION

In summary, the validity of the Richardson/Kolmogorov energy cascade picture has been
investigated in real space using DNS data for Reλ varying from about 37 to 1131. Through the
detailed study of the energy and enstrophy fluxes, it has been confirmed that there is a scale locality
in the energy and enstrophy transfer across the cascade. In particular, it was observed that turbulent
structures of a scale L mostly transfer energy/enstrophy to smaller structures of a size ∼0.3L.
Furthermore, as it is generally thought that the energy/enstrophy transfer is made through vortex
stretching, this mechanism was studied by considering the alignment statistics between vorticity at a
scale Lω and straining structure at a scale Ls . It was confirmed that vortical structures of a length scale
Lω are mostly stretched by structures 3 to 5 times larger than Lω for the range of Reλ considered. This
was noted by Leung et al. [34] for Reλ = 141, but it is seen here that this results extend to Reλ as high
as 1131 and as low as 37. In particular, the statistics of near perfect alignment between the filtered
vorticity and filtered strain rate fields show a clear maximum for a ratio of Ls/Lω between 3 and
5. Considering the similarity between all these findings, a close link between the vortex stretching
mechanism, energy transfer, and enstrophy flux can be summarized. At a given scale Lω, vortical
structures are mostly stretched by structures of a scale of about 3Lω. This gives rise to a transfer
of energy from the large scale ∼3Lω to the scale Lω. Subsequently, at the scale Lω, enstrophy is
being generated locally, but this enstrophy is directly transferred to a smaller scale of about 0.3Lω

through vortex stretching at smaller scale. This process continues down the energy cascade to the
Kolmogorov and dissipative scales. Furthermore, the statistics found are qualitatively the same for
all the Reynolds numbers investigated here and choice of Lω. This suggests the existence of a similar
vortex stretching mechanism across a wide range of values of Reλ and turbulence scales, and provides
a strong support for the classical picture of the energy cascade and its locality. The morphology of
these vortical structures were also studied using the Minkowski functionals and were characterised
as being tube-like for small scales, supporting the vortex-worm structures proposed by Burgers [21].
Thus, it is quite clear that the classical mechanism for the energy cascade prevails even at Reλ as low
as about 40 or as high as 1131.

Future work will be devoted to analyzing the temporal aspect of the energy cascade. Indeed, only
instantaneous snapshots were considered here while the temporal decay of the energy cascade could
play an important role. Furthermore, the spatial locality of the energy and enstrophy transfer could
also be examined in future studies.
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