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Slippage effect on the dispersion coefficient of a passive solute in a pulsatile
electro-osmotic flow in a microcapillary
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The hydrodynamic dispersion of a neutral solute released into a pulsatile electro-osmotic
flow in a microcapillary that is affected by slippage at the wall (modeled by the Navier slip
condition) is studied theoretically. The long-time Taylor dispersion is analytically derived
using the homogenization method with multiple scales. The results indicate that the effective
dispersion coefficient depends on a dimensionless slip length, an angular Reynolds number,
the amplitude of the oscillatory component of the external electric field, and an electrokinetic
parameter that relates the radius of the microcapillary with the Debye length. Our results
suggest that in the presence of the Navier slip condition, the dispersivity is maximized by
up to two orders of magnitude compared with that obtained through the classical no-slip
condition.

DOI: 10.1103/PhysRevFluids.3.084503

I. INTRODUCTION

The mechanism for the dispersion of a passive solute cloud in a fluid flow through a tube is of great
interest for predicting the rate of broadening of pollutants through a circular channel or the spread of
soluble salts in the bloodstream. The latter was the motivation under which Taylor [1] provided us
with the first description of this phenomenon as an enhanced diffusion process in the flow direction
caused by the combined actions of axial convection and transversal diffusion across a tube. The
term dispersion is intended to distinguish this process from a true molecular diffusion process [2]
and it has a close relationship with the flow properties. The subsequent work conducted by Aris [3]
using the method of moments generalized the dispersion study to any pressure-driven periodic flow
pattern through a circular tube. Thus, the Aris-Taylor theory has become the cornerstone of many
studies related to the transport, separation, and mixing of species with physiological, environmental,
or chemical applications. Chatwin [4] analyzed how a passive contaminant disperses along the axis
of a tube in which the flow is driven by a longitudinal pressure gradient varying harmonically with
time. Watson [5] found that the resulting flux of the diffusing substance along a pipe depends on
the cross section and can be analytically evaluated from any frequency of oscillation if the pipe
is circular or if it is a two-dimensional channel. A few studies have focused on determining the
dispersion coefficient of oscillatory flows in two- and three-dimensional rectangular channels. In
this context, Lee et al. [6] observed that the presence of the channel wall in the third dimension
gives rise to a dispersion coefficient that is approximately seven times higher than that of the two-
dimensional flow. The presence of the sidewalls could significantly increase dispersion in oscillatory
flows in two- and three-dimensional rectangular channels [7]. They concluded that the maximum
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increment in dispersion occurs at very low frequencies, at which the flow can be considered to be
pseudounidirectional with a slowly changing velocity.

In recent years, the dispersion mechanism has found an important application in the mixing and
separation of chemical species that govern the performance of labs on a chip (LOCs) [8–13]. In many
cases, the design and construction of LOCs are based on electrokinetic phenomena, and LOCs have
become a subject of considerable interest due to their potential to provide significant advantages in
chemical analyses, medical diagnostics, and environmental monitoring compared to the conventional
ways in which these fields have been addressed. For example, LOCs have the ability to handle low
fluid volumes, lower manufacturing costs, and flexibility for automated operation. In this context,
many works have been performed to demonstrate the importance of ac electro-osmosis as a valuable
mechanism for manipulating microflows based on the interaction of the electric double layer (EDL)
with an externally applied alternating electric field [14–17]. The resulting flow, which is known as
an ac electro-osmotic flow [ac-driven electro-osmotic flow (EOF)], has important relevance for the
mixing [18] and mass separation of species [19] due to the strong dependence among the oscillation
frequency of the imposed electric field, the EDL thickness, the solute transport properties, and
the resulting dispersion. Currently, the research work focused on the oscillatory EOF dispersion
has considered not only the sole influence exerted by the alternating electric field but also the
notable influence of physicochemical processes [20,21] and nonuniform potentials [22] at the walls
of microconduits, thereby providing additional approaches to enhance or adjust the rate of spread of
a solute.

The aforementioned investigations focusing on determining the effective dispersion coefficient
caused by oscillatory EOFs assume the no-slip condition at the fluid-microchannel wall interface.
Nevertheless, recent studies have considered the Navier slip boundary condition us = λN { ¯̄γ · n −
[( ¯̄γ · n) · n]n}, where us is the fluid velocity at the wall, u is the velocity field, λN denotes the Navier
slip length, n represents the unit vector normal to the microchannel surface pointing toward the fluid,
and ¯̄γ is the rate of strain tensor, which is given by ¯̄γ = ∇u + (∇u)T . The Helmholtz-Smoluchowski
velocity us

HS under the slippage condition is obtained as

us
HS = −εζE0

μ

(
1 + λN

λD

)
, (1)

where ε, ζ , E0, μ, and λD are the permittivity of the electrolyte solution, the zeta potential at the
surface of a microchannel, the external electric field, the dynamic viscosity, and the Debye length,
defined as λD = (εkBT /2e2z2n∞)1/2, respectively. Here e, kB , n∞, and T are the electron charge, the
Boltzmann constant, the ionic number concentration, and the absolute temperature, respectively. As
shown in Eq. (1), by considering the slippage as the boundary condition, the mean velocity through
the microchannel can be notably increased compared with the classical Helmholtz-Smoluchowski
velocity according to the value of the ratio λN/λD . In this context, several studies have focused on
the effect of slippage on the hydrodynamics of EOFs [23,24] and on determining the hydrodynamic
effective dispersion coefficient in an EOF driven by a dc by including the slippage [11,25]. These
studies are the only ones that have taken the effect of slippage on the dispersion in EOFs into account.
Hydrodynamic slippage has been shown to be a topic of fundamental physical interest that has the
potential to exert important repercussions in many areas of engineering and applied sciences where
liquids interact with small-scale systems [26,27]. In the electrokinetic scenario, such repercussions
have been reflected in significant changes in the EDL dynamics [28,29] and in a notable enhancement
in the driven volumetric flow rates through a large slip-induced flow amplification [8,24,30,31].

In this paper, recognizing the inherent potential of pulsatile electro-osmotic flows (PEOFs)
as an important means for electro-osmotic mass flow control or enhancement [15,22,32–34] and
considering that the surface of microchannel walls can be hydrophobic, we determine the effective
dispersion coefficient, also known as Taylor dispersion, in the long timescale of the process, i.e.,
when the transient stage has died out and the flow field corresponds to the periodic transient motion.
Quantitative surprises emerge from this study, showing that the dispersion coefficient can be notably
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FIG. 1. Schematic diagram of the physical model under study.

increased due to a PEOF when slippage is considered. These effects should be taken into consideration
when analyzing and designing microchannels. In this context, the present study aims to broaden the
understanding of the influence and importance of the oscillatory EOFs and the Navier slip condition
in terms of the mass transport phenomenon. To this end, this study analyzes the importance of the
variations in the rate of change of a pulsatile body force over the rate of spread of a solute immersed
in an EOF through a microcapillary with and without slippage at the wall. This study also evaluates
the importance of the EDL thickness on the mass transport mechanism, showing that the PEOF with
κ � 1 is a strong candidate to participate in the separation of chemical species, which is one of the
major fluidic processes to be performed in lab-on-a-chip systems.

II. PROBLEM FORMULATION

A qualitative schematic of the physical model under study is presented in Fig. 1. The dispersion
of an analyte band along a microcapillary, with slippage and a low surface potential ζ at its inner
surface, caused by a PEOF is considered. The origin of the cylindrical coordinate system (x, r ) is
located at the left end and at the center of the microcapillary, as shown in the schematic. The radius
of the microcapillary is denoted by a and its length is denoted by L. In this context, we define a
parameter β = a/L � 1 that will be useful for our mathematical modeling. The fluid is a symmetric
electrolyte solution z:z, where z is the valence of the electrolyte, and an EDL is formed on the
inner surface of the microcapillary. The variable notation used throughout this paper is defined as
follows: If a variable is decorated with an overbar (e.g., γ̄ ), then it represents a physical quantity;
otherwise, it is a dimensionless variable (e.g., γ ). The PEOF is caused by applying a pulsating
potential difference between the ends of the microcapillary, generating an external pulsating electric
field; accordingly, an electric force on the ions of the electrolyte is generated. The external electric field
is assumed to be of the form Ēx (t ) = Ē0{1 + ξ Im[eiωt̄ ]}, where Ē0 is the steady part of the electric
field, ξ Im[eiωt̄ ] denotes the harmonically fluctuating part, ξ is a factor such that ξE0 represents the
amplitude of the oscillatory part of the electric field, and ω represents the angular frequency of the
oscillation. Moreover, Im[F ] represents the imaginary part of the complex quantity F and i = √−1.
By considering a dimensionless time t , which is normalized using the inverse of the angular frequency
1/ω, as a characteristic time and Ex (t ) = Ēx (t̄ )/Ē0, the dimensionless form of the external electric
field is given by

Ex (t ) = {1 + ξ Im[eit ]}. (2)

The PEOF is assumed to be unidirectional and fully developed, characterized for a velocity
distribution ū(r̄ , t̄ ), and affected by slippage at the inner surface of the microcapillary. This type
of PEOF was previously analyzed by Rojas et al. [32], who derived the dimensionless velocity
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distribution

u(r, t ) = us (r ) + Im[uω(r )eit ], (3)

where the dimensionless velocity is u(r, t ) = ūx (r̄ , t̄ )/uHS and the Helmholtz-Smoluchowski
velocity is defined as uHS = −εζE0/μ [35]. Here ε and μ are the dielectric permittivity and the
dynamic viscosity of the electrolyte solution, respectively. In addition, us (r ) and uω(r ) are the
steady and oscillatory components of the dimensionless velocity profile, respectively, defined as

us (r ) = 1 − I0(κr )

I0(κ )
+ κδ

I1(κ )

I0(κ )
, (4)

with

uω(r ) =
{

ξκ2(κ2 + iRω )(
κ4 + R2

ω

)
I0(κ )

[
[I0(κ ) + δκI1(κ )]I0(

√
iRωr )

I0(
√

iRω ) + δ
√

iRωI1(
√

iRω )
− I0(κr )

]}
. (5)

In the above expressions for the velocity field, I0 and I1 are the zeroth- and first-order modified
Bessel functions of the first kind [36]. Note that κ is an electrokinetic parameter that is inversely
proportional to the Debye length λD = κ−1 and its dimensionless form is given by κ = κ̄a. Here
e, kB , n∞, and T are the electron charge, the Boltzmann constant, the ionic number concentration,
and the absolute temperature, respectively. In addition, Rω = ωa2/ν is the angular Reynolds number
[37], where ν is the kinematic viscosity of the fluid. Further, δ is the ratio between the Navier length
λN and the microchannel radius, i.e., δ = λN/a and r = r̄/a.

We consider that the fluid is moving with a velocity profile given by Eq. (3), and at instant t̄ = 0
(a condition not shown in Fig. 1), a pulse of a neutral solute is injected across the microcapillary.
At sufficiently large times, i.e., t̄ � O(a2/D) (where D represents the molecular diffusivity of the
solute in the electrolyte solution), this pulse has spread along the microcapillary axis through a process
that enhances its effective diffusion in the direction of the flow known as Aris-Taylor dispersion,
which exists because of the velocity shear across the microcapillary. Our objective is to analyze this
long-scale behavior and derive an analytical expression for the dispersion coefficient that will allow
us to understand how the hydrodynamic slippage, the angular frequency of the oscillatory part of
the electric field together with its amplitude, and the EDL thickness affect the effective dispersion
coefficient.

We consider the convection-diffusion equation that governs the behavior of a solute in an isotropic
medium, which is given by

∂C̄

∂t̄
+ ∂ (ūC̄)

∂x̄
= D

[
∂2C̄

∂x̄2
+ 1

r̄

∂

∂r̄

(
r̄
∂C̄

∂r̄

)]
, (6)

with boundary conditions given by

∂C̄

∂r
= 0 at r = 0, a. (7)

Here C̄ is the concentration (mass of species per bulk volume) of the diffusing substance. To obtain
the dispersion coefficient, it is necessary consider that the species transport described by Eq. (6)
occurs at different timescales and that the solute does not axially spread as fast as it would radially
spread at the microcapillary; hence, we are in the presence of a multiple-scale phenomenon. To
derive the effective dispersion coefficient for a PEOF in the periodic stage with slippage at the wall
of the microcapillary, we use the homogenization method [38–40], which has been widely applied
to analyze the dispersion phenomenon of passive solutes in pressure-driven flows.

Homogenization method

For convenience, we present the homogenization method to derive an expression that allows us to
evaluate the dispersion coefficient, which will be obtained from the convection-diffusion equation (6),
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also known as dispersivity, denoted by D. For the analysis, we focus on the transport at a scale L that
is considerably greater than the radius of the microcapillary a, i.e., we assume that the microcapillary
radius is very small such that the transversal diffusion is completed within an oscillation period, i.e.,
2π/ω ∼ a2/D ∼ O(1).

Under the above assumptions, the dimensionless form of Eq. (6) takes the form

∂C

∂t
+ β Peu(r, t )

∂C

∂x
= β2 ∂2C

∂x2
+ 1

r

∂

∂r

(
r
∂C

∂r

)
, 0 < r < 1, (8)

where u(r, t ) is the dimensionless velocity profile of a PEOF with slippage at the inner surface of
the microcapillary wall and is given by Eq. (3). The dimensionless concentration distribution is C =
C̄/CR , where CR is a reference concentration. In addition, x = x̄/L, t = t̄D/a2, and Pe = uHSa/D

is the Péclet number, which is assumed to be of O(1). In this context, we have considered some
typical values of the physical parameters used in EOFs for estimating the dimensionless parameters
involved in this study as follows: λD ∼ 10−9 m, E0 ∼ 103 V m−1, L ∼ 10−2 m, a ∼ 10−6 m, D ∼
10−9 m2 s−1, λN ∼ 10−6 m, ζ ∼ 10−2 m, and uHS < 2 × 10−3 m s−1.

In the present problem, there are three timescales: a2/D for the transversal diffusion, L/uHS for
the convection along L, and L2/D for the diffusion along L for the convection-diffusion equation.
Therefore, by introducing the three time coordinates

t0 = t, t1 = βt, t2 = β2t (9)

and proposing the perturbation series for the dimensionless concentration

C = C0 + βC1 + β2C2 + · · · (10)

into Eq. (8) and after collecting terms of like powers in β, the following set of equations is obtained.
(i) The O(β0) problem. At this order, the governing equation is given by

1

r

∂

∂r

(
r
∂C0

∂r

)
= 0, (11)

subject to the boundary conditions
∂C0

∂r
= 0 at r = 0, 1. (12)

Here we have neglected the shortest time dependence for C0 because we focus on the long behavior
after the periodicity is completed. Accordingly, C0 does not depend on r and it is of the form

C0 = C0(x, t1, t2). (13)

(ii) The O(β ) problem. The dimensionless convection-diffusion equation for C1 is governed by
the problem

∂C1

∂t0
+ ∂C0

∂t1
+ Pe{us + Im[uωeit0 ]}∂C0

∂x
= 1

r

∂

∂r

(
r
∂C1

∂r

)
, (14)

with the boundary conditions

∂C1

∂r
= 0 at r = 0, 1. (15)

(iii) The O(β2) problem. At this order, C2 is governed by

∂C2

∂t0
+ ∂C1

∂t1
+ ∂C0

∂t2
+ Pe{us + Im[uωeit0 ]}∂C1

∂x
= ∂2C0

∂x2
+ 1

r

∂

∂r

(
r
∂C2

∂r

)
, (16)

with the boundary conditions

∂C2

∂r
= 0, r = 0,1. (17)
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Considering that our interest is after the transients have died out, i.e., the periodic response, the time
average during one period of oscillation of any function f is defined as f̂ = 1

2π

∫ 2π

0 f dt0. Therefore,
time averaging Eqs. (14) and (15) yields

∂C0

∂t1
+ Peus

∂C0

∂x
= 1

r

∂

∂r

(
r
∂Ĉ1

∂r

)
, (18)

with the boundary conditions

∂Ĉ1

∂r
= 0 at r = 0, 1. (19)

In this way, an inhomogeneous and steady boundary-value problem for Ĉ1 is obtained. The
development of Eq. (18) continues. By defining the area average of a dimensionless quantity f

as 〈f 〉 = 2
∫ 1

0 r f dr , the cross-sectional average of Eq. (18) is given by

∂C0

∂t1
+ Pe〈us〉∂C0

∂x
= 0. (20)

According to the homogenization method, Eq. (20) represents a solvability condition for the
inhomogeneous boundary-value problem for Ĉ1 given by Eq. (18). Subsequently, we subtract Eq. (20)
from Eq. (14), thereby obtaining

∂C1

∂t0
+ Pe{ũs + Im[uωeit0 ]}∂C0

∂x
= 1

r

∂

∂r

(
r
∂C1

∂r

)
, (21)

where ũs = ¯̃us/uHS represents the deviation of the dimensionless velocity from its corresponding
mean velocity, i.e., ũs (r ) = us (r ) − 〈us (r )〉. Considering the linearity of Eq. (21), we can assume a
solution for the variable C1 as

C1 = Pe
∂C0

∂x
{Bs (r ) + Im[Bω(r )eit0 ]}. (22)

Substituting Eq. (22) into Eq. (21) yields

Im(iBωeit0 ) + [ũs (r ) + Im(uωeit0 )] = 1

r

d

dr

(
r
dBs

dr

)
+ Im

[
1

r

d

dr

(
r
dBω

dr

)
eit0

]
. (23)

In Eqs. (22) and (23), Bs = B̄sD/a2uHS and uω = ūω/uHS. Further, Bs and Bω depend on the
solutions of two canonical problems developed using the homogenization technique, which are
derived from a solution proposed to obtain a constitutive relation for the dispersion coefficient. The
cell problems for the steady component Bs and for the oscillatory component Bω are clearly obtained
from Eq. (23). The steady component Bs is determined by solving the problem

1

r

d

dr

(
r
dBs

dr

)
= ũs (r ), (24)

with the boundary conditions

dBs

dr
= 0 at r = 0, 1. (25)

For the oscillatory component Bω, we have

1

r

d

dr

(
r
dBω

dr

)
− iBω = uω(r ), (26)

with the boundary conditions

dBω

dr
= 0 at r = 0, 1. (27)
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After defining these two cell problems, we continue developing Eq. (16), which corresponds to the
O(ε2) problem, to obtain the dimensionless dispersivity coefficient D for the PEOF with slippage
at the microcapillary wall. Substituting the definition of ũs , provided above, in conjunction with
Eq. (22) into Eq. (16) leads to

Pe2 ∂2C0

∂x2
[ũs + 〈us〉 + Im(uωeit0 )][Bs + Im(Bωeit0 )] + ∂C2

∂t0
+ ∂C1

∂t1
+ ∂C0

∂t2

= ∂2C0

∂x2
+ 1

r

∂

∂r

(
r
∂C2

∂r

)
. (28)

Taking Eqs. (13), (20), and (22) into account, a useful expression for ∂C1/∂t1 is as follows:

∂C1

∂t1
= −Pe2〈us〉∂

2C0

∂x2
[Bs + Im(Bωeit0 )]. (29)

Introducing Eq. (29) into Eq. (28) leads to

Pe2 ∂2C0

∂x2
[ũs + Im(uωeit0 )][Bs + Im(Bωeit0 )] + ∂C2

∂t0
+ ∂C0

∂t2
= ∂2C0

∂x2
+ 1

r

∂

∂r

(
r
∂C2

∂r

)
. (30)

We now take the time average over a period regarding the shortest timescale t0 of Eq. (30). Special
attention must be placed on the product [ũs + Im(uωeit0 )][Bs + Im(Bωeit0 )] at the moment to obtain
its short-time average, as it can be demonstrated that the period average of the product of the two
harmonic functions η = Im(uωeit0 ) and τ = Im(Bωeit0 ) is given by ητ = 1

2 Re(uωB∗
ω ), where Re[F ]

represents the real part of the complex quantity F and B∗
ω = B̄∗

ωD/a2uHS is the complex conjugate
of Bω. Thus, a differential equation for Ĉ2 is obtained in the form

Pe2 ∂2C0

∂x2

[
ũsBs + 1

2
Re(uωB∗

ω )

]
+ ∂C0

∂t2
= ∂2C0

∂x2
+ 1

r

∂

∂r

(
r
∂Ĉ2

∂r

)
, (31)

with the boundary conditions

∂Ĉ2

∂r
= 0 at r = 0, 1. (32)

Thus, a nonhomogeneous and steady boundary-value problem for Ĉ2 has been developed. Subse-
quently, we obtain the cross-sectionally averaged form of Eq. (31), which is defined as

∂C0

∂t2
= [1 + Pe2(Ds + Dω )]

∂2C0

∂x2
. (33)

Here the quantity E = 1 + Pe2(Ds + Dω ) represents the effective diffusivity and D ≡ D̄/D =
Ds + Dω is the dimensionless effective dispersion coefficient, which is composed of two parts:
a steady dispersion coefficient that depends on the deviation from the mean velocity Ds = −〈ũsBs〉
and an oscillatory coefficient that depends on the periodic component of the velocity field Dω =
− 1

2 Re〈uωB∗
ω〉. Therefore, the effective dispersive coefficient can be written as

D = −{〈ŨsBs〉 + 1
2 Re〈UωB∗

ω〉}. (34)

Equation (34) represents the dispersivity of the solute on the long timescale. In the following section,
we use Eq. (34) to determine the dispersion coefficient of a neutral solute in a PEOF with slippage
on the inner surface of the microchannel.

III. SOLUTION METHODOLOGY

Using the methodology presented in Sec. II A, we derive the effective dispersion coefficient for a
PEOF with slippage at the microcapillary wall in the following.
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A. Dispersion coefficient due to the steady part of the PEOF

To obtain the steady part of D, we first evaluate the cross-sectionally averaged velocity of the
stationary component of the velocity field us (r ). From Eq. (4), the area average is

〈us (r )〉 = 2
∫ 1

0
rusdr = 1 − 2I1(κ )

κI0(κ )
+ κδ

I1(κ )

I0(κ )
. (35)

From this result, the dimensionless velocity deviation ũs is obtained as

ũs = us (r ) − 〈us (r )〉 = (2/κ )I1(κ ) − I0(κr )

I0(κ )
. (36)

Considering the cell problem for Bs , Eq. (24), and Eq. (35), we obtain

Bs = 1

κ2I0(κ )

[
1 − I0(κr ) + 1

2
κr2I1(κ )

]
+ B0. (37)

Using the boundary conditions defined by Eq. (25), it is possible to find that B0 is undetermined
unless a unique condition is specified, which is given by

〈Bs〉 =
∫ 1

0
2rBsdr = 0. (38)

Then B0 is obtained as

B0 = (8 − κ2)I1(κ ) − 4κ

4κ3I0(κ )
. (39)

Accordingly, Bs is given by

Bs = 1

κ2I0(κ )

[
1 − I0(κr ) + 1

2
κr2I1(κ ) + (8 − κ2)I1(κ ) − 4κ

4κ

]
. (40)

It is now possible to define the steady component of the dispersivity Ds = D̄s/D as follows:

Ds = −〈ũsBs〉 = − 1

κ2I 2
0 (κ )

[
I 2

0 (κ ) −
(

3

2
+ 8

κ2

)
I 2

1 (κ ) + 2

κ
I0(κ )I1(κ )

]
. (41)

The result given by Eq. (41) was previously obtained by Ng and Zhou [11] for the dispersion
coefficient of a neutral nonreacting solute due to EOF driven by a dc through a circular channel
under the combined effects of longitudinal nonuniformity of potential and hydrodynamic slippage
on the channel wall.

B. Dispersion coefficient due to the oscillatory part of the PEOF

We proceed to determine the oscillatory component of the dispersion coefficient. Considering the
oscillatory part of the velocity profile uω, given by Eq. (5), and substituting it into the definition of
the cell problem for Bω, given by Eq. (26), we obtain

1

r

d

dr

(
r
dBω

dr

)
− iBω = ξ [�2I0(

√
iRωr ) − I0(κr )]�1. (42)

The parameters �1 and �2 are defined as

�1 = κ2(κ2 + iRω )(
κ4 + R2

ω

)
I0(κ )

(43)
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and

�2 = I0(κ ) + δκI1(κ )

I0(
√

iRω ) + δ
√

iRωI1(
√

iRω )
. (44)

The solution of the cell problem (42), together with the boundary conditions given in Eq. (27), is as
follows:

Bω = ξ�1

2(κ2 − i)(iRω − i)J1(i3/2)
{
√

2κ (1 + i)(iRω − i)I1(κ )J0(i3/2r )

−
√

2(1 + i)�2(κ2 − i)
√

iRωI1(
√

iRω )J0(i3/2r )

− 2iJ1(i3/2)[(−1 + Rω )I0(κr ) + �2(1 + iκ2)I0(
√

iRωr )]}. (45)

As described in Eq. (34), the oscillatory component of the dispersivity requires the complex
conjugate of Bω, which is represented by B∗

ω and has the form

B∗
ω = ξ�∗

1

2(κ2 + i)(−iRω + i)J1
(−1−i√

2

){√
2κ (1 − i)(−iRω + i)I1(κ )J0

(−1 − i√
2

r

)

−
√

2�∗
2 (1 − i)(κ2 + i)

(
1 − i√

2

√
Rω

)
I1

(
1 − i√

2

√
Rω

)
J0

(−1 − i√
2

r

)

+ 2iJ1

(−1 − i√
2

)[
(−1 + Rω )I0(κr ) + �∗

2 (1 − iκ2)I0

(
1 − i√

2

√
Rωr

)]}
, (46)

where J0 and J1 are Bessel functions of order 0 and 1 of the first kind, respectively [36]. Further, �∗
1

and �∗
2 are the complex conjugates of �1 and �2, respectively, and are given by

�∗
1 = κ2(κ2 − iRω )(

κ4 + R2
ω

)
I0(κ )

(47)

and

�∗
2 = I0(κ ) + δκI1(κ )

I0
(

1−i√
2

√
Rω

) + 1−i√
2
δ
√

RωI1
(

1−i√
2

√
Rω

) . (48)

Therefore, the oscillatory component of the PEOF dispersivity Dω = −Re〈uωB∗
ω〉/2 is given by the

expression

Dω = −1

2
ξ 2Re

(((
�1�

∗
1

(κ2 + i)(−iRω + i)J1
(−1−i√

2

){[
�1 − �2 + 2i(�3 + �4)J1

(−1 − i√
2

)]

−
[
�5 − �6 + 2i(�7 + �8)J1

(−1 − i√
2

)]})))
. (49)

The parameters �j (j = 1, . . . , 8) in Eq. (49) are provided in the Appendix.

Dispersion coefficient due to the oscillatory part of the PEOF for Rω = 1

Equation (49) allows the dispersion coefficient due to the oscillatory component of the PEOF
with slippage at the wall to be evaluated. In the particular case of Rω = 1, this equation is singular;
however, applying l’Hôpital’s rule yields

lim
Rω→1

Dω = −1

2
ξ 2Re

⎧⎨
⎩

7∑
j=1

�j

⎫⎬
⎭, (50)

with the parameters �j (j = 1, . . . , 7) provided in the Appendix.
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FIG. 2. Dimensionless velocity profiles caused by the PEOF in the periodic stage for 0 � t � 2π [Eq. (3)]
for Rω (=0.1, 10, and 100) with ξ = 1.0, δ = 0.1, and two EDL thicknesses quantified by (a) κ = 10 and
(b) κ = 100. Schemes I and IV correspond to Rω = 0.1, II and V to Rω = 10.0, and III and VI to Rω = 100.

IV. RESULTS AND DISCUSSION

At this point, our analytical results for the dispersion coefficient have been derived as a function
of the four main parameters that control the dynamic behavior of the PEOF: κ , Rω, ξ , and δ. To
estimate the dimensionless parameters used for the calculations, a suitable combination of values for
the physical parameters used in the experimental conditions reported by Green et al. [16], Tretheway
and Meinhart [41], Dutta and Beskok [14], and Hunter [42] was selected. We begin by defining the
values under consideration for the electrokinetic parameter κ , which is a dimensionless quantity that
allows us to compare two characteristic length scales, i.e., the capillary radius a with respect to the
Debye length λD , taking into account electrolyte buffer concentrations from approximately 10−4M

to 10−6M [14,43], which correspond to Debye lengths in the range 30 � λD � 320 nm, and also
considering a radius range for the microcapillary of 10 � a � 100 μm. Then we propose the range
10 � κ � 100. The reason for the choice of the lower limit κ = 10 is to demonstrate the trends of the
physical phenomena related to the PEOF’s dispersion mechanism, while simultaneously considering
that the Debye length must be much smaller in magnitude compared with a to avoid overlapping of
the EDL developed at the boundary wall (i.e., κ � 1). Then we propose κ = 100 as the upper limit
to exemplify this case. For the values of the angular Reynolds number, we consider that the angular
frequencies ω must be kept below 1 MHz, as reported by Green et al. [16] in their experimental
study related to EOFs driven by oscillatory electric fields. From their work, we also consider an
angular frequency range O(102) < ω < O(104) Hz, and taking into account water as the solute’s
carrier (ν ∼ 10−6 m2 s−1) with 10 � a � 100 μm, we propose a dimensionless frequency range
O(10−1) � Rω � O(102), selecting Rω = 0.1, 1, 10, and 100 as representative values. To estimate
the dimensionless parameter associated with the slip length, we consider the experimental slip length
reported by Tretheway and Meinhart [41], λN = 1 μm. Thus, to obtain the largest dimensionless
slip length, we have fixed the slippage effect as δ = 0.1 by considering the lower limit of the radius
range. For a better understanding and support of our arguments, we present Figs. 2 and 3, along with
the relevant hydrodynamical PEOF features worth considering in our discussion of the results.

We now discuss the behavior of the dispersivity coefficient D in terms of the dimensionless
parameters involved in the analysis. Figure 4 depicts the dispersivity coefficient D versus the
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FIG. 3. Dimensionless velocity profiles caused by the PEOF in the periodic stage for 0 � t � 2π [Eq. (3)].
Red lines represent the case of no slippage with δ = 0 and blue lines denote the case of slippage with δ = 0.1.
Both cases are plotted for Rω = 100 and (a) κ = 10 and (b) κ = 100.

electrokinetic parameter κ for values of Rω (=0.1, 1, 10, 100) with a no-slip condition at the boundary
wall (δ = 0) and a fixed electric field amplitude (ξ = 1.0). We begin analyzing the dimensionless
low-frequency curves with Rω � 1. At these low frequencies, as the flow develops in one cycle
(0 � t � 2π ), the resulting changes in the velocity are in phase with respect to variations in the
electric field, leading to a well-defined parabolic PEOF velocity field for k = 10, which evolves
toward the almost constant distribution typical of the pluglike profile obtained for κ → 100 (see
Fig. 2, profiles I and IV).

As shown in Fig. 4(a), for increasing values of the parameter κ , D is a monotonically decreasing
function. This result occurs because as κ increases (or, equivalently, as the EDL thickness decreases),
velocity gradients are confined to a region that is located very near the capillary wall, while a uniform
distribution in the velocity dominates across the radial coordinate. This behavior leads to lower
velocity gradients with a subsequent reduction in the dispersion. In the same figure, for Rω = 10 and
100, it is shown that as the EDL thickness decreases, the dispersion also decreases; however, this
reduction has been attenuated in contrast with the cases of low frequencies. The factor responsible for
this situation is the lagging behavior present at high frequencies between the applied electric field and
the resulting velocity field. In detail, this result occurs because a unidirectional flow evolves toward a
steady state through the diffusion of momentum with a characteristic timescale a2/ν; subsequently,
we can argue that when the rate of variations of the applied external electric field Ex (t ) (represented

FIG. 4. Effective dispersion coefficient D = (E − 1)/Pe2 versus the electrokinetic parameter κ evaluated
for four different values of the dimensionless frequency Rω (=0.1, 1, 10, and 100). The relative amplitude of
the oscillatory electric field is fixed at ξ = 1.0, considering (a) the no-slip condition δ = 0 and (b) the Navier
slip condition for δ = 0.1. The curve corresponding to Rω = 1.0 has been plotted using Eq. (50).
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by the timescale ω−1) is slow compared with the rate of diffusion of momentum (that is, small
values of Rω, such as Rω � 1), the velocity is in a quasisteady state for each instantaneous value of
Ex . Now, for values of Rω ∼ O(10) to Rω ∼ O(102), the electric field changes with a greater rate
compared with the diffusion of momentum variations. Thus, the result is a distortion of the resulting
velocity distribution with greater velocity gradients in the cross section of the microcapillary, which
are not only confined to the boundary layer (see Fig. 2, velocity profiles in schemes II and V),
i.e., the lagging effect acts in opposition to the influence of the EDL thickness, notably affecting
the effective dispersion rate of change, and in the case of Rω = 10, the dispersion varies slightly
in terms of κ . In addition, a counterintuitive feature can be observed. One could consider that as
Rω increases, then D will continue to improve; however, it can be observed that for Rω = 100, the
dispersion curve is below that of Rω = 10. This behavior is describing a detrimental effect caused by
the angular frequency of the oscillatory electric field, which can restrict the conditions for a proper
solute dispersion.

Moreover, the presence of crossover frequencies (frequencies of the imposed oscillation at which
the total mass transport of each species is the same [43]) can be observed, which leads us to infer
the presence of the so-called crossover frequencies, a phenomenon that has previously been studied
concerning the mass transport phenomena related to pressure-driven oscillatory flows with the no-slip
condition at the macroscale [43] and in the field of EOF [19]. This behavior highlights the crucial role
performed by oscillatory forces, which cause the fluid motion in the species separation process due
to the presence of axial concentration gradients, as has been proven in the well-known analysis by
Kurzweg and Jaeger [44]. Hence, we expect to find this same important role in our PEOF dispersion
context. As shown in Fig. 4(a), for values in the proximity of κ = 10, the spread of a solute for low
frequencies (Rω � 1) is larger than that developed for a higher frequency (Rω = 100). This feature
is thoroughly explained in our D vs Rω analysis.

In Fig. 4(b), we show the effect of a hydrophobic surface at the solid boundary wall on the
effective dispersion coefficient. The slippage is quantified by the dimensionless parameter δ = 0.1.
The most pronounced feature in this case is the change in the relationship of D vs κ compared
to the case depicted in Fig. 4(a). In contrast to the case of no slippage, the effective dispersion
coefficient here is a monotonically increasing function of κ . Note that for Rω � 1, there is a
slight improvement in the dispersion coefficient from κ = 10 to κ = 100. However, for increasing
values of Rω, the dispersion coefficient markedly increases between these two values, and when
considering a dimensionless frequency Rω = 10, it results in an effective dispersion increase of
one order of magnitude. For Rω = 100, the dispersion enhancement between these two values of
κ is less remarkable; this trend describes a detriment in the rate of change of D caused by the
dimensionless frequency, which is always present regardless of the nature of the microcapillary
surface. In general, the effect of the Navier slip condition does not differ from the usual no-slip
condition in a macroscale context. However, according to the results shown in Fig. 4(b), the effect
on a PEOF cannot be neglected at high frequencies [Rω ∼ O(10),O(102)]. Thus, we can argue
that the presence of the slip velocity at the microcapillary wall, in conjunction with a dimensionless
frequency Rω ∼ O(10) and a small EDL thickness (k � 1), favors the presence of velocity gradients
through the fluid flow, which markedly affect and enhance the effective axial dispersion in the
PEOF.

Equation (34) has shown that the effective dispersion coefficient is composed of two parts: a steady
componentDs , which is a function of the parameter κ , and an oscillatory partDω, which is dependent
on Rω, δ, ξ , and κ . For instance, quantifying the steady part of the effective dispersion for κ = 10
results in Ds ∼ 0.002. Meanwhile, for κ = 100, Ds ∼ 5 × 10−5 is obtained. By definition, Ds and
Dω are positive; hence, it is possible to assert that Ds → 0 as κ → 100 regardless of the nature of
the microcapillary wall (the slip or no-slip condition). Subsequently, it is also possible to infer that
the resulting changes in the effective dispersion D shown in all of our plots are practically equivalent
to the corresponding variations in the oscillatory dispersion component. At this point, the strong
dependence between the velocity field u(r, t ) and the resulting dispersion is evident; therefore, it can
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FIG. 5. Effective PEOF dispersion coefficient D = (E − 1)/Pe2 as a function of the slip length, which
varies from δ = 0 (no-slip condition) to δ = 0.1, calculated for different values of Rω (=0.1, 1, 10, and 100)
with a relative amplitude of the oscillatory electric field of 1.0 and (a) κ = 10 and (b) κ = 100. The curve
corresponding to Rω = 1.0 has been plotted using Eq. (50).

be asserted that the oscillatory component of the velocity dominates the dispersion phenomenon in
the PEOF for any slip or no-slip condition considered at the boundary wall.

Next we show the effects of the slip length δ on the PEOF dispersion D considering different flow
conditions under two EDL thicknesses, which are quantified by κ = 10 and κ = 100, as plotted in
Figs. 5(a) and 5(b), respectively. Thus, varying δ on the abscissa axis is equivalent to representing the
transition from a hydrophilic capillary wall toward a hydrophobic wall in a PEOF. Figure 5(a) shows
that for low frequencies (Rω � 1), the nature of the microcapillary wall does not exert any influence on
the effective dispersion coefficient; hence, the value of D varies slightly for any value of δ. For Rω ∼
O(10), a different behavior occurs; the Rω = 10 curve shows that as the slip length increases, the
dispersion coefficient follows a quasilinear behavior and increases one order of magnitude compared
with the case of very small values of Rω. It can also be observed that this curve is always above the low-
frequency curves, in contrast to the Rω = 100 curve, where the detrimental behavior mentioned above
and a slight dispersion improvement from δ = 0 to δ = 0.1 are evident. Now we focus on Fig. 5(b),
where we again find that under low frequencies (Rω � 1), the value of D becomes independent of
δ; however, at the dimensionless frequency Rω = 10, a strong nonlinear dispersion enhancement
between δ = 0 and δ = 0.1 can be observed, which is attenuated as Rω increases. For Rω = 100,
we observe an almost constant rate of change for D with a subsequently less remarkable dispersion
enhancement.

A comparison of Figs. 5(a) and 5(b) indicates that the transition from the no-slip condition toward
a finite degree of slip provides higher rates of spread when considering thick EDL thicknesses, i.e.,
κ = 100, for dimensionless frequencies Rω > 1. This is particularly true at Rω = 10, where it can be
observed (see Fig. 7) that an increase of two orders of magnitude in the effective dispersion coefficient
exists when estimated for δ = 0 or δ = 0.1. To justify the apparent suitability of κ = 100 with Rω > 1
for the dispersion enhancement, it is important to consider that having a slip condition at the boundary
surface is defined as a reduction in the efficiency with which the wall is able to inhibit the motion of
the fluid [2]. This situation is graphically depicted in Fig. 3, where the velocity profiles of the PEOF
analyzed by Rojas et al. [32] are plotted under the assumption of zero and nonzero slip (δ = 0.1) at
the microcapillary wall (δ = 0.1) for a dimensionless frequency Rω = 100. Note how the presence
of the subsequent slip velocity promotes an increase in the mean velocity of the fluid, and for κ � 1,
this increase is notably accentuated. Due to the strong dependence between the PEOF hydrodynamics
and the effective dispersion, we find that such a pronounced flow enhancement leads to a notable
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FIG. 6. Effective PEOF dispersion coefficient D = (E − 1)/Pe2 as a function of Rω, considering also three
different slip lengths at the microcapillary wall δ (=0, 0.05, and 0.1) with ξ = 1 and (a) κ = 10 and (b) κ = 100.
For each curve, the effective dispersion coefficient corresponding to Rω = 1.0 has been calculated using Eq. (50).

increase in the effective dispersion coefficient as κ → 100. Thus, it is possible to corroborate our
assertion made based on the analysis presented in Fig. 4(b), which indicates that the hydrodynamic
slippage with κ � 1 is an important parameter to enhance the effective dispersion coefficient, in
conjunction with a dimensionless frequency Rω ∼ O(10). Another feature worth analyzing in Fig. 5
is the fact that κ appears to have an influence on the relative position of the Rω = 100 curve. For
κ = 10, the Rω = 100 curve appears below the low-frequency curves (Rω = 0.1, 1). Meanwhile, for
κ = 100, the Rω = 100 curve appears above the low-frequency curves. Thus, it is possible to infer
that the EDL thickness can attenuate as well as reinforce the dispersion detriment trend found at
frequencies of Rω ∼ O(102).

From our analysis developed from Figs. 4(b) and 5, we can assert that the dimensionless slip
length represents a key factor in the value of the effective dispersion coefficient in a PEOF. On the
one hand, for slip lengths that are different from zero, it drastically modifies the relationship between
the dispersion coefficient and the EDL thickness. On the other hand, as κ → 100 with Rω > 1,
we observe a significant dispersion enhancement. However, the magnitude of this improvement
appears to be conditioned by Rω itself. Thus, the dimensionless frequency plays an important role
in establishing how important this enhancement will be; however, it can contribute to deteriorating
the dispersion process to such a degree that the effective dispersion for Rω ∼ O(102) results in
being worse than that in a PEOF quasisteady state characteristic of Rω ∼ O(10−1) or Rω ∼ O(1).
Thus, to obtain a better understanding of the effects of the dimensionless frequency on the effective
dispersion, we have plotted D as a function of Rω.

The curves of D as a function of Rω (Figs. 6–8) are distinguished by a bell-shaped distribution.
In general, such curves are composed of a constant region for low frequencies Rω � 1, where the
dispersion coefficient remains practically constant. As the dimensionless frequency increases, there
is a nonlinear increase in the effective dispersion coefficient until it reaches a maximum value
between Rω = 10 and Rω = 20. Subsequently, the dispersion nonlinearly decreases before reaching
our imposed limit at Rω = 100. This bell-shaped distribution explicitly shows the physical conditions
under which the externally applied frequency ω enhances the rate of spread on the one hand and
when it acts as a restrictive factor on the other.

The physical explanation for the distribution D − Rω shown in Figs. 6–8 lies in the lagging
between the imposed signal of the oscillatory electric field and the resulting hydrodynamic field. In
general, these curves show that as Rω increases, the delayed fluid response respects the electrical
excitement that initially exerts a positive influence on the effective dispersion, particularly at
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FIG. 7. Effective PEOF dispersion coefficient D = (E − 1)/Pe2 as a function of Rω with (a) the no-slip
condition and (b) the Navier slip condition, both with κ (=10, 50, and 100) and a relative amplitude of the
oscillatory electric field ξ = 1. For each curve, the effective dispersion coefficient corresponding to Rω = 1.0
has been calculated using Eq. (50).

Rω ∼ O(10) (see Fig. 2, profiles II and V), promoting the development of important velocity gradients
whose physical background was explained in Fig. 4. However, the subsequent detrimental behavior
depicted for Rω ∼ O(102) remains to be explained. For this purpose, we must consider that the
dimensionless frequency Rω determines the importance of the inertial effects of the fluid relative
to its momentum diffusion. The above means that as Rω increases, the resistance of the fluid for
achieving strong velocity variations in the core region of the microcapillary is strong. Therefore, at
high frequencies, such as Rω ∼ O(102), this effect markedly constrains the resulting field u(r, t )
because it limits the instantaneous oscillations of the velocity profiles in a uniform profile, whose
shape tends to be independent of the time t , mainly in the central region of the microcapillary
(see Fig. 2, profiles III and VI). Consequently, the development of velocity gradients is null in

FIG. 8. Effective PEOF dispersion coefficient D = (E − 1)/Pe2 as a function of Rω. The variation in the
electric field amplitude is analyzed considering ξ = 0, 0.5, and 1, with the slip length at the microcapillary wall
fixed at δ = 0.1 for (a) κ = 10 and (b) κ = 100. For each curve, the effective dispersion coefficient corresponding
to Rω = 1.0 has been calculated using Eq. (50).

084503-15



J. MUÑOZ, J. ARCOS, O. BAUTISTA, AND F. MÉNDEZ

the mentioned region of the capillary. The above implies that the lagging effect initially enhances
the rate of spread because it contributes to reaching an optimal region for the dispersion, which is
characterized by the balance between the velocity oscillations and the constraining effects proper for
such a phase shift between the alternating electric field and the motion response of the fluid. This
results in the highest values of D, and finally, the lagging is so strong that it completely constrains the
velocity oscillations and diminishes the resulting velocity gradients. Hence, the dispersion coefficient
becomes smaller. The amplitude of this bell-shaped distribution and the corresponding magnitude
of D depend on the nature of the slippage at the surface of the microcapillary δ, the amplitude of
the imposed electric field ξ , and the electrokinetic parameter κ . The last parameter exerts some
interesting effects on the relationship D − Rω that are worth discussing.

In our analysis developed for Fig. 5, we observed the influence of the parameter κ on the position
of the curve Rω = 100 in the plot D vs δ, showing that an EDL thickness quantified by κ = 10 for
Rω ∼ O(102) could provide effective dispersion values below those developed at lower frequencies,
where there is a phase synchronization between the oscillatory electric field and the fluid response.
Meanwhile, for κ = 100 and Rω ∼ O(102), a detrimental effect also exists, which is not drastic. The
diminishing dispersion can apparently be attenuated or reinforced by the electrokinetic parameter
κ . To explain this situation, we must again focus our attention on the hydrodynamic behavior of
the PEOF. It has previously been shown that for Rω ∼ O(102), there is a uniformity in the velocity
profile in the central region of the microcapillary; if we also observe Fig. 2, where the characteristic
profiles for these frequencies are shown, it will be observed that the EDL thickness also has an
influence on such velocity behavior and that its value determines how far from the microcapillary
axis such uniformity spreads. For κ = 100 and Rω = 100 (Fig. 2, profile VI), uniform velocity
profiles are constrained to the central region of the microcapillary and the region near the boundary
wall is characterized by important velocity oscillations. In contrast, for κ = 10 (Fig. 2, profile III),
we observe a uniform velocity in the central region of the microcapillary with less remarkable
velocity gradients. Now, comparing profile III against profile I [characteristic of Rω ∼ O(10−1)],
it is clear that the first profile is more uniform than the latter; thus, more important concentration
gradients caused by hydrodynamic field I than field III can be expected. Meanwhile, let us compare
the flow field for κ = 100; profile VI offers larger concentration gradients than distribution IV
[Rω ∼ O(1)] because the uniformity in profile VI only affects the central region in the proximities
of the microcapillary axis. This hydrodynamic justification is clarified through Fig. 6, where the
effective dispersion coefficient shown for Rω ∼ O(102) can be situated below [see Fig. 6(a)] and
above the dispersion values developed at Rω ∼ O(10−1) [see Fig. 6(b)].

Figures 6(a) and 6(b) also show the influence of the slip length variations on the curve D vs
Rω under two EDL conditions for κ = 10 and κ = 100, respectively. In both figures, the dispersion
enhancement under the influence of the hydrodynamic slippage is evident; when a zero slip length
is considered, the influence of the EDL thickness is a dominant parameter on the dispersion and,
accordingly, the effective dispersion has a more relative importance for κ = 10 than for κ = 100,
where the corresponding effective dispersion practically does not exist compared with the nonzero
slip curves. Moreover, Fig. 6 allows us to provide more details about the influence of slippage on
the dispersion in terms of the parameter Rω to complement the slippage analysis outlined in Fig. 5.
It can be observed in Figs. 6(a) and 6(b) that the presence of the slip condition at the boundary wall
always represents a positive contribution to D. However, for dimensionless frequencies Rω � 1, this
contribution practically makes no difference with respect to the resulting axial dispersion developed
under the no-slip condition. When considering Rω > 1, the difference between the slip condition and
the no-slip condition is more evident, and forRω ∼ O(10), we observe the highest effective dispersion
coefficient regardless of the EDL thickness and the slip length values. Specifically, there is always
a maximum in the interval 10 < Rω < 20; additionally, note that such maxima, in conjunction
with the slope of the distribution D − Rω, are influenced by the dimensionless slip length value.
Moreover, note that an EDL thickness quantified by κ � 1 with slippage at the boundary wall does
not necessarily always offer a better enhancement of D than that of a thicker EDL (such as κ = 10).
However, at dimensionless frequencies Rω ∼ O(10) and Rω ∼ O(102), there is a difference between
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one and two orders of magnitude in the effective dispersion coefficient for κ = 10 [Fig. 6(a)] and κ =
100 [Fig. 6(b)]. Figure 7 shows that in the limit of the thin EDL thickness (κ � 1) and Rω ∼ O(10−1),
the approximate solution for the hydrodynamics corresponds to a pluglike velocity profile u =
(1 + ξ sin t̂ )(1 + λN/λD ), such as the one depicted in Fig. 2, scheme IV. This behavior in the velocity
results in a dispersivity D ∼ O(1/κ2) ≈ 0 without any contribution to the molecular diffusivity, as
shown in Fig. 7(b) when the green curve (κ = 100) passes by Rω = 1 × 10−1. It should be noted
that the approximate solution for the velocity u in the limit of κ � 1 and Rω � 1 is the Helmholtz-
Smoluchowski velocity us

HS for the quasisteady electro-osmotic flow solution under the slippage
condition [32]. However, under these limits, the concave and convex fluid velocity profiles can appear
inside the capillary, as Vargas et al. [45] have demonstrated when the magnetohydrodynamic effects
are considered. Moreover, the variations in the ζ potentials of the walls would notably modify the
axial distribution of the effective dispersion coefficient D and contribute to the molecular diffusivity,
as recently reported by Arcos et al. [46].

The effective dispersion coefficient, as a function of Rω, is plotted considering the no-slip condition
[Fig. 7(a)] and a slip condition [Fig. 7(b)] for three values of the parameter κ . By comparing these
figures, it is evident that by using a hydrophobic surface, the effective dispersion coefficient can be
enhanced by two orders of magnitude in contrast to that caused by the case of the no-slip condition.
Of course, this value is found when the dimensionless frequency has a value of Rω ∼ 10. Another
characteristic that can be observed is that in the case of δ = 0 and κ = 10 [Fig. 7(a)], for almost any
frequency in the range 0.1 � Rω � 10, the effective dispersion coefficient remains almost constant.
Additionally, Fig. 7(a) shows that as κ → 100 and with Rω < 1, a thinner EDL layer results in
a marked reduction in the already small D values, approximately one order of magnitude with
respect to the κ = 10 curve. However, as the dimensionless frequency is increased, the characteristic
bell-shaped behavior, with the enhancement or detrimental effects of the PEOF lagging, can also be
observed. This behavior is more pronounced as κ → 100; consequently, the interval 10 < Rω < 30
is the range of frequencies that provide the highest dispersion values, and in this range is where a
thinner EDL layer could improve the effective dispersion coefficient. Note that two crossovers occur
between curves of κ = 10 and κ = 100, in the region where the peak of the bell-shaped distribution
is found. Moreover, it can be observed that κ = 100 has transitioned from being the EDL condition
with the worst dispersion values to offering the highest value ofD. Another crossover occurs between
the curves κ = 50 and κ = 100 in Fig. 7(a) for a dimensionless frequency 3 � Rω � 6.

As shown in Fig. 7(b) (δ = 0.1), the notable increase in the effective dispersion coefficient is
evident in comparison with the case of δ = 0. The results show that the bell-shaped distribution has
been scaled up to such a level that a value of κ = 10 now offers less favorable conditions for the
dispersion of a solute in the PEOF. As mentioned previously, there is at least one order of magnitude
between the D values for κ = 10 and κ = 100. However, approximately for Rω < 0.4 [see details
in Fig. 7(b)], κ = 10 offers a slightly better dispersion.

Finally, the influence of the relative amplitude ξ on the effective dispersion coefficient is shown
in Fig. 8. From Eq. (49), it is evident that D ∼ O(ξ 2), which is similar to the case of an oscillatory
pressure-driven flow; therefore, depending on the assumed values of ξ , it can be small in the limit
ξ � 1, which means that the dispersion is dominated by the steady component of the velocity.
Therefore, this figure depicts a nonlinear increase in D as ξ takes values of 0, 0.05, and 1. In both
figures, we consider the presence of a hydrophobic surface at the microcapillary wall, but we have
set κ = 10 in Fig. 8(a) and κ = 100 in Fig. 8(b). Note that for ξ = 0, the steady component of the
dispersion is the same as the effective dispersion coefficient (Ds = D), represented by a straight
line in both figures. Thus, the oscillatory component of the electric field E0ξ Im[eiωt ] is the main
factor responsible for the resulting changes in the effective dispersion coefficient in a PEOF, which
is consistent with the relevance of the oscillatory component of the velocity u(r, t ) shown in our
analysis concerning Fig. 4. Additionally, it can be observed that D is independent of the changes in
the electric field amplitude for Rω < 1 with κ = 100. However, for κ = 10, a dependence between
ξ and the dispersion coefficient exists under such low frequencies. Although a difference between
one and two orders of magnitude for D exists in Figs. 8(a) and 8(b) in both cases, it can be observed
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FIG. 9. Effective PEOF dispersion coefficient D as a function of � for Sc (=100, 500, and 2000) with
κ = 10, ξ = 1.0, and (a) the no-slip condition δ = 0 and (b) the slip condition δ = 0.1. The points where
Sc = � were calculated considering Eq. (50) for the oscillatory dispersion component.

that the effective dispersion and its maximum are also influenced by the amplitude ξ , in addition to
the parameter δ. This maximum is located in the interval 10 < Rω < 20 regardless of the value of ξ .

A. Mass separation of species

To analyze the PEOF relative dispersion coefficient for the mass separation of species, as proven
in the well-known analyses by Thomas and Narayanan [43] and Kurzweg and Jaeger [44], the
angular Reynolds number Rω in Eqs. (49) and (50) is replaced by Rω = �/Sc, where � = a2ω/D

represents a dimensionless frequency referring to the transverse mass diffusion time D/a2 and
the Schmidt number Sc = ν/D, which relates the timescale of the diffusion of species to that of
the viscous diffusion. The dispersivity of species by mass under the PEOF condition with slippage at
the microcapillary wall was obtained for different values of the Schmidt number. Considering a fixed
kinematic viscosity for the carrier [water, ∼O(10−6) m2 s−1], mass diffusivities of solutes in water
D ∼ O(10−8–10−9) m2 s−1, and a typical microcapillary radius of 10 � a � 100 μm, the Schmidt
number assumes values of Sc = 100, 500, 2000. Because ω < 1 MHz [16], the frequency � takes
values of 102 � � � 105. Curves of D vs � for κ = 10 and κ = 100 are shown in Figs. 9 and 10,
respectively.

As shown in Figs. 9 and 10, as the molecular diffusion becomes smaller or the Schmidt number
increases, the maximum of the bell-shaped curve moves toward the right, with a higher dimensionless
frequency required to achieve the highest dispersivity. From these figures, we find that the mass
dispersivity D of the species becomes constant as the frequency of oscillation increases from � ∼
O(102) to � ∼ O(103) when Sc → 2000, and then it proceeds to increase toward a maximum
value. The mass diffusivity of the species D or the Sc does not exert any influence on the maxima
of D; however, it determines the frequency � at which such maxima are achieved. Regardless of
the presence or absence of the slippage effect at the wall, for each Sc curve, there is a specific range
of frequencies where the dispersivity is dominant over the other Sc curves. As the D curve tends
from Sc = 2000 to Sc = 100, its range of dominance is located at lower frequencies �. For example,
in Fig. 9(b), at � ≈ 1 × 103, 4 × 103, 2 × 104, three different substances provide the same highest
dispersivity values. The change in the dominance of the dispersivity of one substance over another
is indicated by the crossover frequencies in Figs. 9 and 10. Figure 9(b) shows that when the slippage
is present, the dispersivity D is approximately two times greater than when the slippage is absent
[Fig. 9(a)]. By comparing Figs. 10(a) and 10(b) under conditions of slippage and κ → 100, it is
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FIG. 10. Effective PEOF dispersion coefficient D as a function of � for Sc (=100, 500, and 2000) with
κ = 100, ξ = 1, and (a) the no-slip condition δ = 0 and (b) the slip condition δ = 0.1. The points where Sc = �

were calculated considering Eq. (50) for the oscillatory dispersion component.

possible to confirm that the influence of the slip condition produces a difference in the dispersivity
of up to two orders of magnitude with respect to the no-slippage case. We have also found that
the presence of the slip condition does not exert any significant influence over the dimensionless
frequency � at which the maximum dispersivity is achieved with respect to the no-slip condition case.

Another practical scope of our study is related to the separation ratio of two different species
[47] versus �, for slow (like sucrose) and fast (like ethanol) diffusers in water as the carrier.
The diffusivities of ethanol and sucrose in water are D = 1.2 × 10−9 and 0.523 × 10−9 m2 s−1,
respectively. With these previous values, we found that the corresponding Schmidt numbers are
Sc = 730.833 and 1676.86, respectively. The relative dispersion coefficient as a function of the
dimensionless frequency without and with the slippage condition for two different values of the
electrokinetic parameter κ (=10 and 100) is shown in Figs. 11(a) and 11(b), respectively.

Figure 11(a) shows the relative dispersion coefficient Dslow/Dfast for κ = 10 and for the case
of δ = 0 the curve shows a practically uniform behavior for lower values of � where the slow

sl
ow
/

fa
st

sl
ow
/

fa
st

FIG. 11. Relative dispersion coefficient for a Scslow substance (sucrose) with respect to a Scfast substance
(ethanol), under the no-slip condition δ = 0 (blue curve) and with the slip condition δ = 0.1 (black curve) with
ξ = 1.0 and (a) κ = 10 and (b) κ = 100.
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TABLE I. Maximum dispersivity of PEOF with and without
slippage (cases 1 and 2, respectively).

Parameter Case 1 Case 2

δ 0.1 0
Rω ∼12.0 ∼15.3
κ 100 100
ξ 1.0 1.0
D ∼3.2 × 10−1 ∼3.7 × 10−3

and fast diffusers have practically the same importance as the parameter � increases. There is
a region (� � 1 × 104) where the slow diffuser gains relevance over the fast diffuser, favoring
the mass separation of species when the slippage condition is not considered (blue curve). As �

increases, the slippage at the boundary wall represents a PEOF condition that allows the fast diffuser
to gain prominence for � � O(104). There is a crossover frequency after which the slippage effect
considerably enhances the importance of the slow diffuser for � � O(104) with respect to the
no-slip case. This frequency is in the range 4 × 104 < � < 5 × 104, where we find the presence of
a maximum denoting the most favorable condition for mass separation of species for the case with
δ = 0.1 and κ = 10. For κ = 100 [Fig. 11(b)] and δ = 0 (blue curve), we have a different behavior
in comparison with Fig. 11(a); in this case, as � increases, there is not a constant region. Instead,
starting from a ratio Dslow/Dfast ∼ 1.0, the slow diffuser starts to lose importance as � increases,
and after reaching a minimum, this importance will be recovered for � � O(104). In contrast,
κ = 100 with a slip condition quantified by δ = 0.1 (black curve) represents two PEOF conditions
that promote the importance of the slow diffuser as � increases from approximately � ∼ O(103),
favoring the mass separation of species at � � O(104). Furthermore, from Fig. 11(b), the presence
of a crossover frequency after which the δ = 0 and δ = 0.1 curves present a similar behavior under a
close range of dimensionless frequencies can be observed, after which we find a divergence favoring
the dispersivity for the δ = 0.1 curve. From these results, we can argue that controlling the Debye
length of the EDL in addition to the electric field frequency is fundamental for the mass separation
of two species with different diffusive properties diluted in a PEOF, and the slippage at the boundary
wall determines how efficient this separation will be.

B. Longitudinal PEOF homogenization of solute in a microcapillary

Finally, we are interested in the longitudinal electro-osmotic homogenization of a solute in a
microcapillary, where the dispersion mechanism is desirable to uniformly spread out a given portion
of solute within the whole volume of a microcapillary. The transport of the solute under the influence
of the molecular diffusion can be very long. For example, the time τm required to provide a uniform
concentration of an analyte that was previously injected as a solute band is given by τm ∼ L2/D0,
where D0 is a reference molecular diffusion and L is the capillary length. By considering a
microcapillary with a length L = 2.5 cm and ethanol as the analyte with D0 = 1.2 × 10−9 m2 s−1,
the long-scale diffusion time is τm = 5.21 × 105 s, which is equivalent to 6 d.

Now, to determine two long-scale homogenization times τ1 considering slippage (case 1) and
τ2 without slippage (case 2) for the PEOF, we show in Table I the values of the parameters
used to obtain the maximum dispersivity D (see also Fig. 7). Then considering an electro-
osmotic velocity uHS = 0.0012 m s−1, D = 1.2 × 10−9 m2 s−1, and a radius of the microcap-
illary of 100 μm, we obtain a Pe = 100 [9]; subsequently, the effective diffusivity E was
evaluated according to E = 1 + Pe2D, where such effective diffusivities for cases 1 and 2 were
E1 ∼ 3200 with δ = 0.1 and E2 ∼ 37 with δ = 0, respectively. Recalling that E = Ē/D0, we
have Ē1 ∼ 3.84 × 10−6 m2 s−1 and Ē2 ∼ 4.44 × 10−8 m2 s−1. Thus, it is possible to define two
long-scale PEOF homogenization times as τ1 ∼ L2/Ē1 ∼ 162.76 s (∼3 min) and τ2 ∼ L2/Ē2 ∼
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14 076.58 s (∼4 h). There are significant differences among τm, τ1, and τ2; instead of 6 d,
which is required for the homogenization of a solute band due to the molecular diffusion
mechanism, we have obtained a time of approximately 4 h by considering the sole influence of
an external pulsatile body force inducing an EOF. However, considering a hydrophobic surface
at the boundary wall of the microcapillary allows developing a time of approximately 3 min,
confirming that the presence of a slip condition cannot be neglected in the PEOF microscale context.

V. CONCLUSION

In the present work, we derived an analytical expression for the effective dispersion coefficient
in a PEOF with slippage at the microcapillary wall in the long-scale behavior. We can draw the
following conclusions from this study.

The dimensionless frequency Rω is a fundamental parameter that allows controlling the effective
dispersion in a PEOF. For certain values of this parameter, conditions are found where there is a
maximum of D or a detrimental behavior of it. In the present study, Rω ∼ O(10) promotes the
best conditions for the effective dispersion for any fluid flow condition, regardless of the value
of the dimensionless slip length δ, the relative amplitude of the oscillating electric field ξ , or the
electrokinetic parameter κ .

When considering the no-slip condition at the microcapillary wall, the electrokinetic parameter
κ has a marked effect on the hydrodynamics of the PEOF. This parameter exerts a dominant
influence on the resulting dispersion coefficient in general and it offers the most favorable conditions
for the spread of a solute when κ ∼ 10. Additionally, the effects of the EDL thickness on the
PEOF lagging are particularly important at high frequencies, where its influence can attenuate or
accentuate the characteristic detrimental behavior of D associated with dimensionless frequencies
Rω ∼ O(102).

The slip condition enhances the effective dispersion coefficient in a PEOF, particularly for κ � 1
and for values of Rω ∼ O(10). Considering slippage, for the same value of the relative amplitude
of the oscillatory electric field, the effective dispersion coefficient can be greater by two orders of
magnitude than that where the no-slip condition is assumed.

Note that in terms of the present analysis, there is a lack of support from experimental and
theoretical studies and thus this issue is pending for future work. However, to validate this work,
we have obtained, as a limiting case, the dispersion coefficient of an EOF driven by dc, as derived
previously by Ng and Zhou [11], which is shown in Eq. (41).
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APPENDIX: PARAMETERS FOR THE DISPERSION COEFFICIENT
OF THE OSCILLATORY COMPONENT

The expressions (49) and (50) for Dω involve a series of parameters, which are defined as

�1 =
√

2κ (1 − i)(i − iRω )I1(κ )�2

×
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The parameters appearing in Sec. III C for the dispersion coefficient due to the oscillatory part of the
PEOF, where a singularity is present in Eq. (50) at Rω = 1.0, are
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The parameters �j (j = 1, . . . , 11) through (A10)–(A15) are defined through Eqs. (A16)–(A26) in
the forms
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In Eqs. (A25) and (A26), �1 and �2 have the forms
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