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Models that describe two-fluid flow in porous media suffer from a widely recognized
problem that the constitutive relationships used to predict capillary pressure as a function of
the fluid saturation are nonunique, thus requiring a hysteretic description. As an alternative
to the traditional perspective, we consider a geometric description of the capillary pressure,
which relates the average mean curvature, the fluid saturation, the interfacial area between
fluids, and the Euler characteristic. The state equation is formulated using notions from
algebraic topology and cast in terms of measures of the macroscale state. Synchrotron-based
x-ray microcomputed tomography and high-resolution pore-scale simulation is applied
to examine the uniqueness of the proposed relationship for six different porous media.
We show that the geometric state function is able to characterize the microscopic fluid
configurations that result from a wide range of simulated flow conditions in an averaged
sense. The geometric state function can serve as a closure relationship within macroscale
models to effectively remove hysteretic behavior attributed to the arrangement of fluids
within a porous medium. This provides a critical missing component needed to enable a
new generation of higher fidelity models to describe two-fluid flow in porous media.

DOI: 10.1103/PhysRevFluids.3.084306

I. INTRODUCTION

Two-phase extensions of Darcy’s law were introduced on a phenomenological basis more than
a half-century ago [1–4]. These models are used routinely to predict the behavior of hydrologic
systems, evaluate geologic carbon sequestration, and guide the recovery of oil and gas [5–7]. A
widely recognized deficiency of these models is reliance upon nonunique and history-dependent
closure relationships. A prominent example is the relation used to describe the capillary pressure as
a function of the fluid saturation history [8–11]. It has been hypothesized that history dependence
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can be removed from the capillary pressure relation by incorporating additional state variables [10].
Despite experimental and computational efforts over the last two decades, a sufficient set of state
variable has not been established to confirm this hypothesis and no general unique state equation
exists to describe capillary pressure.

While models must be formulated and applied at macroscopic length scales that range from meters
to kilometers, it is known that the microscopic arrangement of fluids within geologic materials has
important consequences for fluid flow [12–22]. In particular, the snap-off and entrapment of fluid
subregions at the pore scale has been established as an important source of hysteresis [23–26]. The
impact of fluid connectivity on the system behavior has led to the development of approaches that
explicitly include the portion of disconnected fluids [27–31]. Relationships that include additional
state variables, such as interfacial area [25,32–37] and more recently the Euler characteristic [38–42],
have also been considered.

The overall goal of this work is to develop and validate a hysteresis-free geometric state equation
to describe the macroscale capillary pressure based on invariant measures. The specific objectives
of this work are (1) to provide a theoretical basis for a geometric state function, (2) to produce a
general functional form of the state equation in terms of macroscale measures of the state of a porous
medium, (3) to define a specific state equation consistent with the general form, (4) to evaluate the
state for a wide range of media and flow conditions, (5) to analyze state data in light of traditional and
alternative state equations, and (6) to investigate whether the proposed state equation can describe
not only equilibrium but also dynamic states of the system.

II. CAPILLARY PRESSURE

Mercury porosimetry techniques were developed to probe the geometry of a porous medium by
modifying the pressure difference between two fluids, pc = pn − pw [43]. At equilibrium and in
the absence of external forces, the pressure forces are balanced by capillary forces at points on the
interface between fluids, as given in the Laplace equation:

pn − pw = γwn

(
1

R1
+ 1

R2

)
, (1)

where R1 and R2 are the principal radii of curvature determined at points on the surface and γwn

is the interfacial tension between fluids. Typical porous media have a range of pore sizes, and
at the macroscale as the capillary pressure pc increases the saturation of the wetting fluid, sw,
decreases [44,45]. This reasoning provides the basis for Leverett’s J-function and van Genuchten’s
relation to predict the water retention curve in porous materials [1,2]. However, the relation pc(sw )
is material-specific and depends on the system history. A typical example of a hysteretic capillary
pressure relationship is shown in Fig. 1. Different capillary pressures are observed for a given
saturation depending on the flow history, meaning that a functional relationship pc(sw ) does not
exist. During drainage, higher capillary pressures are needed to force the menisci through the pore
throats, which are the narrowest parts of the pore space. Capillary pressures along the imbibition curve
are determined by the pore body sizes, which are associated with larger radii of curvature. Snap-off
and coalescence events occur frequently during displacement and alter the connectivity of the fluids.
Fluid connectivity is recognized as an important component of the system state, and key features of
the capillary pressure relationship correspond with the limits where fluid connectivity breaks down.
The residual nonwetting phase saturation corresponds to a situation where the nonwetting fluid is
completely disconnected and ceases to transmit a pressure gradient across a system. Similarly, the
irreducible wetting phase saturation is reached when wetting phase connectivity breaks down. These
values are often used as parameters in empirical functional forms used to fit experimental data for
capillary pressure and relative permeability to account for the role of fluid connectivity [2–4].
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FIG. 1. The shape of drainage and imbibition curves are determined in part by the fluid connectivity. The
irreducible wetting phase and residual nonwetting phase saturations correspond to limits where fluid connectivity
breaks down.

III. GEOMETRIC STATE MEASURES

Invariant geometric quantities provide a natural mechanism to characterize the complex arrange-
ments of fluid and solid phases within porous media [46–50]. The mathematical underpinnings for this
approach are provided by Hadwiger’s theorem, which demonstrates that only four averaged measures,
the Minkowski functionals (MFs), are needed to characterize the morphology of a three-dimensional
object [51–54]. We consider the nonwetting phase domain, �n ∈ �, with boundary �n, where � is
the domain occupied by a porous medium. The MFs can be considered as macroscale invariants that
are obtained directly from microscale invariants using integral geometry. The first pair of MFs are
the volume and the surface area:

Mn
0 = λ(�n) =

∫
�n

dr, (2)

Mn
1 = λ(�n) =

∫
�n

dr, (3)

where λ denotes the Lebesgue measure. The second pair of MFs are averages of the two microscale
surface invariants on �n; these are the mean curvature and the Gaussian curvature. The associated
MFs are

Mn
2 =

∫
�n

(
1

R1
+ 1

R2

)
dr and (4)

Mn
3 =

∫
�n

1

R1R2
dr. (5)

Each of the MFs measures the size of �n in various dimensions: volume (�3), surface area (�2),
integral mean curvature (�), and the Euler characteristic

χn = Mn
3

4π
. (6)

The Euler characteristic relates to the total curvature by the Gauss-Bonnet theorem, and serves as an
average measure for the connectivity of the fluid based on the possible channels and disconnected
regions [48,55,56]. Topological theory links the Euler characteristic to the number of connected
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FIG. 2. Sequence showing the pore-level evolution of the nonwetting fluid geometry during imbibition of
the wetting fluid. As the volume fraction of the nonwetting fluid volume decreases, corresponding changes in
the surface area, mean curvature, and connectivity also occur.

components Bn
0 , loops Bn

1 , and cavities Bn
2 :

χn = Bn
0 − Bn

1 + Bn
2 . (7)

The quantities Bn
0 , Bn

1 , and Bn
2 are topological invariants known as the Betti numbers. The pore-level

view illustrated in Fig. 2 provides insight into the relationship between the Betti numbers and the
nonwetting fluid connectivity. In this case, the volume fraction of the nonwetting fluid is decreasing
from Fig. 2(a)–2(d) due to imbibition of the wetting fluid. The geometric evolution of the nonwetting
fluid occurs based on incremental changes to the volume, surface area, curvature and connectivity.
These changes are coupled. In the well-connected system shown in Fig. 2(a), redundant connectivity
is evident based on the presence of loops. As the fluid volume fraction decreases, connections
made through the pore throats are broken due to snap off, eventually leaving only nonwetting fluid
components that are disconnected from each other in Fig. 2(d). The Euler characteristic quantifies
these effects.

The basis for characterization of the nonwetting fluid is provided by a generalized form of Steiner’s
formula that applies for sets with positive reach [55]

λ(�n ⊕ ςδ ) − λ(�n) =
3∑

i=1

aiM
n
i δi, (8)

where ςδ is a spherical ball with radius δ and ⊕ denotes the Minkowski sum. Steiner’s formula predicts
the volume of the parallel set �n ⊕ ςδ for a particular geometric configuration. The coefficients ai

are determined by the shape of �n. Equation (8) shows that sufficiently small changes in the volume
of �n are locally smooth and continuous functions of the MFs [51,55]. The assumption that �n has
positive reach means that for some positive δ the ball ςδ could be rolled around the boundary without
intersecting �n. The nonwetting fluid will in general meet this criterion. As an illustrative example,
consider the two-dimensional object shown in Fig. 3. In this case, the blue region is produced by
rolling a small ball around the boundary of the red object (i.e., �n). The area of the blue region is
determined only by the properties of the red region boundary and the size of the ball. This is the
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FIG. 3. Two-dimensional analog for Eq. (9): the change in area (blue region) obtained by rolling a small
ball around the boundary for a 2D object (red region) is determined by the shape of the red object boundary and
can be expressed in terms of averaged measures of the boundary shape.

meaning of Eq. (8). The red object has positive reach because the blue region does not overlap with
the red object at any point along the boundary. However, the red object is not a convex set; if a large
enough ball were rolled along the boundary, the holes in the middle of the object would be closed
by the operation �n ⊕ ςδ . This would irrevocably alter the topology of the object. For this reason
Eq. (8) will hold only if the ball ςδ is sufficiently small. When the boundary of the wetting and solid
phases include grain contacts, the associated sets will not have positive reach. This motivates our
choice to characterize the nonwetting fluid.

Since the MFs are extensive properties, it is useful to divide Eq. (8) by the total volume,

�εn = λ(�n ⊕ ςδ ) − λ(�n)

V
=

3∑
i=1

aiM
n
i δi

V
, (9)

where �εn is the change in the nonwetting phase volume fraction that results from the operation
�n ⊕ ςδ . Equation (9) is a kinematic statement that holds locally; the volume of an object changes
only as a consequence of net movement of the object boundary. The associated change in volume
can be expressed in terms of the invariant properties of the boundary: surface area, integral mean
curvature, and total curvature. Based on these arguments, Eq. (9) provides a geometric relationship
to predict the change in volume for a particular object.

From the standpoint of model development, it is further necessary to connect geometry to thermo-
dynamics so that processes involving energy dissipation can be described. The thermodynamically
constrained averaging theory (TCAT) provides a framework to accomplish this objective. TCAT
models are developed by applying rigorous averaging procedures to directly connect microscale
thermodynamics and continuum mechanical forms with their macroscale counterparts [57–59].
Within TCAT, capillary pressure is the product of the average mean curvature of the interface
between fluids, Jwn

w , and the interfacial tension between the two fluids. Relevant geometric measures
are listed in Table I. Based on these measures, a clear connection to thermodynamics is established:

TABLE I. Relevant geometric measures included in TCAT.

Quantity Description

ε Porosity
εn Volume fraction of the nonwetting fluid
εwn Surface area per unit volume for the wn interface
εns Surface area per unit volume for the ns interface
J wn

w Average mean curvature of wn interface
J ns

s Average mean curvature of ns interface
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phase volume fractions and specific interfacial areas are needed to predict the internal energy of the
macroscopic system using appropriate thermodynamic expressions. The possible values for these
quantities are constrained by geometric laws.

The first three Minkowski functionals can be expressed directly in terms of the quantities listed
in Table I,

Mn
0 = εnV, (10)

Mn
1 = (εwn + εns )V, (11)

Mn
2 = (

Jwn
w εwn + J ns

s εns
)
V, (12)

where V is the volume of �. A nondimensional form is obtained by introducing the Sauter mean
diameter as a reference length scale, D = 6ε/(εns + εws ), and defining δ́ ≡ δ/D. In terms of these
alternate quantities, Eq. (9) becomes

�εn = a1(έwn + εnsD)δ́ + a2
(
J́ wn

w έwn + J ns
s εnsD2

)
δ́2 + a3χ́

nδ́3. (13)

Three nondimensional quantities have been introduced:

έwn = εwnD, (14)

J́ wn
w = Jwn

w D, and (15)

χ́n = χnD3/V . (16)

Based on Eq. (13), different objects will yield different coefficients ai according to Minkowski’s
quermassintegral [51]. For example, it is not obvious that two different objects with identical
Minkowski functionals would also have the same coefficients. Thus it remains to be demonstrated
that Eq. (9) will produce unique relationships between the Minkowski functionals that will hold
for two-fluid flow. In this work this postulate is tested computationally by considering a very
large number of geometric states. We consider the case where the porosity ε is constant and the
role of the fluid volumes is included from the saturation, sw = εw/ε = (1 − εn)/ε. We further
assume that J ns

s (sw, έwn, χ́n) and εns (sw, έwn, χ́n). We therefore pose the geometric state function
as J́ wn

w (sw, έwn, χ́n). This form reflects the fact that the solid is immobile and movement of the
nonwetting phase boundary occurs only at the interface between the two fluids. Numerical results
used in conjunction with experimental data will be used to show that this relationship is able to
characterize the possible nonwetting fluid configurations in porous media.

IV. INK BOTTLE EXAMPLE

Ink bottles such as the example shown in Fig. 4 are often used to illustrate the reason for history
dependence in the capillary pressure relation. The ink bottle geometry is a surface of revolution of
a piecewise smooth function ρ(x) > 0, which determines the width of the channel as a function of
position x. The ink bottle shown in Fig. 4(a) is produced by considering five equally sized circles
with radius R, positioned to create a sequence of pore bodies connected by throats of various sizes.
The minimum width for each of the three throats is H1, H2, and H3, respectively. For the case at hand
we choose R = 1.0 mm, H1 = 0.6 mm, H2 = 0.4 mm, and H3 = 0.2 mm. The {x, y} coordinates
for the circle centers are given by

c(1) = {R,H1 + R}, (17)

c(2) = {
c(1)
x +

√
4R2 − (H1 + R)2, 0

}
, (18)

c(3) = {
c(2)
x +

√
4R2 − (H2 + R)2,H2 + R

}
, (19)

084306-6



GEOMETRIC STATE FUNCTION FOR TWO-FLUID FLOW …

FIG. 4. (a) The ink bottle geometry is defined based on the position of five equally sized spheres in a
symmetric system with radius R to create a two-pore system connected to three throats with widths H1, H2,
and H3. (b) Meniscus configurations within the ink bottle can be determined analytically.

c(4) = {
c(3)
x +

√
4R2 − (H2 + R)2, 0

}
, (20)

c(5) = {
c(4)
x +

√
4R2 − (H3 + R)2,H3 + R

}
. (21)

The position of the ink bottle wall is given by ρ(x), which is determined based on the five circles,

ρ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c(1)
y + R sin

(
arccos x−c

(1)
x

R

)
for x < x1

−R sin
(

arccos x−c
(2)
x

R

)
for x1 � x < x2

c(3)
y + R sin

(
arccos x−c

(3)
x

R

)
for x2 � x < x3 ,

−R sin
(

arccos x−c
(4)
x

R

)
for x3 � x < x4

c(5)
y + R sin

(
arccos x−c

(5)
x

R

)
for x4 � x

(22)

where the contact points between the circles are

x (1) = c(1)
x +

√
R2 − (H1 + R)2/2, (23)

x (2) = c(2)
x +

√
R2 − (H2 + R)2/2, (24)

x (3) = c(3)
x +

√
R2 − (H2 + R)2/2, (25)

x (4) = c(4)
x +

√
R2 − (H3 + R)2/2. (26)

From the standpoint of an experiment, there are two basic ways to impact the geometric state
within a porous medium. First, one can can inject fluid into the system from the boundary, explicitly
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controlling the volume of fluid injected and allowing the fluid pressures to adjust. Second, one can
control the pressure for each fluid at the boundary, allowing the fluid volumes to adjust until a stable
equilibrium is achieved. Any sensible description of the system must be able to describe either sce-
nario. We consider the quasistatic case for which the difference in fluid pressures is exactly balanced
by the capillary pressure based on the Laplace equation. The fluid pressures are constant within
their respective phase regions and the curvature is constant over the meniscus (i.e., pc = −γ wnJwn

w ).
The macroscale fluid-fluid interfacial tension is constant and the contact angle is zero degrees.

Fluid displacement within the ink bottle proceeds with the nonwetting fluid invading from the
right boundary of Fig. 4 as the difference between the fluid pressure increases, and the wetting fluid
exiting at the left. Geometric measures for the nonwetting fluid are determined based on the position
of the contact line in the x direction. Meniscus configurations can be determined based on ρ(x) and
its derivative. When the common curve is at x, the meniscus curvature is

r (x) = ρ

√
1 +

(
dρ

dx

)2

. (27)

The height of the spherical cap is

h(x) = r − ρ

(
dρ

dx

)
. (28)

Note that for the quasistatic displacements shown in Fig. 4(b) the position of the common curve
will always be within a pore throat. The nonwetting fluid volume fraction, interfacial areas per unit
volume, and mean curvature for each interface are each determined by the position of the common
curve,

εn(x) = π

V

[ ∫ x

0
ρ2 dx ′ + 1

6
h(3ρ2 + h2)

]
, (29)

εwn(x) = 2πrh

V
, (30)

Jwn
w (x) = 2

r
, (31)

εns (x) = 2π

V

∫ x

0
ρ

√
1 +

(
dρ

dx ′

)2

dx ′, (32)

J ns
s (x) = 2π

εnsV

∫ x

0
ρ

(
1

r1
+ 1

r2

)√
1 +

(
dρ

dx ′

)2

dx ′, (33)

where r1(x) and r2(x) are the two principal radii of curvature for the ink bottle wall. Since
the geometry is a surface of revolution, r1 = ρ. Within the pores r2 = R. Within the throats
r2 = −R. Quasistatic displacements within the ink bottle can be described analytically based on
these expressions.

As pc increases, the meniscus squeezes through the pore throats leading to a decrease in sw. Pore
filling occurs spontaneously during drainage based on the sequence of blue menisci in Fig. 4(b).
The red and blue menisci are associated with the red and blue portions of the curve in Figs. 5(a)
and 5(b), respectively. Based on Fig. 5(a) the equilibrium meniscus curvature is apparently lower
during imbibition as compared to drainage. However, the fluid volume can change only due to
movement of the meniscus and changes in the geometric state are kinematic in nature. While
traditionally pc(sw ) considers only stable equilibrium menisci (red), under quasistatic conditions
the same configurations are obtained independent from flow direction, which includes blue portions
of the curve in Figs. 5(a) and 5(b). The apparent hysteresis is removed when the geometric trajectory
of the system is considered.
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FIG. 5. (a) Apparent hysteresis in the ink bottle results from the observation of apparently different
equilibrium states for drainage and imbibition; (b) the integral mean curvature is a one-to-one function of
the saturation.

To see more clearly how the Minkowski functionals remove the apparent hysteresis in the ink
bottle, we consider the integral mean curvature

Mn
2 = (

Jwn
w εwn + J ns

s εns
)
V. (34)

Figure 5(b) shows that there is a one-to-one relationship between Mn
2 and sw. While the curvature

Jwn
w is not a one-to-one function of sw, it can be clearly inferred based on Mn

2 , εwn, εns , and
the curvature of the solid J ns

s . Since all quantities in Eqs. (29)–(33) are functions of x, only a
single degree of freedom exists for the ink bottle problem; each quantity is uniquely determined by
the position of the common curve. It is also important to note that for the ink bottle geometry the
integral mean curvature and surface area are not independent quantities since the ink bottle is a surface
of revolution. Ink bottles are generated by rotating two-dimensional objects with fewer geometric
degrees of freedom; radial symmetry leads to menisci that are perfect spherical caps. For a spherical
meniscus, the surface area is directly determined by the curvature. This contrasts with real porous
media where the surface area and mean curvature are independent quantities. Furthermore, the ink
bottle provides only a single channel for flow such that complex fluid connectivity is impossible (i.e.,
χn = 1). This is an important reason why fewer geometric invariants are needed to characterize states
within the ink bottle. It is therefore essential to consider more complex geometries to understand the
possible geometric states within porous media.

V. POROUS MEDIA AND FLOW CONDITIONS

The microscopic details of fluid and solid materials can be observed experimentally from
microcomputed tomography (μCT) [39,60–62]. The resulting data can be used to measure interfacial
curvatures, surface areas, the Euler characteristic, and phase connectivity. Six different solid materials
and relevant properties are listed in Table II. These include one synthetic sphere pack and five
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TABLE II. Summary of rock geometries and simulation conditions considered in this work.

Media ε D (mm) Size (voxels) Sim. Config.

Castlegate 0.205 0.111 512 × 512 × 512 A, D 23 123
Estaillades 0.111 0.124 834 × 834 × 556 A, B, D 23 599
Gildehauser 0.188 0.133 852 × 852 × 569 A, B, D 38 788
Robuglass 0.345 0.173 988 × 988 × 598 A, B, D 49 515
Sand pack 0.376 0.368 512 × 512 × 512 A, C, D 64 650
Sphere pack 0.369 1.00 900 × 900 × 900 A, C, D 59 341

different μCT images: robuglass, sandpack, carbonate rock (Estaillades), and two sandstones
(Gildehauser and Castlegate). The robuglass, Gildehauser and Estaillades data sets were processed
using gradient-based segmentation, which is known to provide a valid representation of the resolved
rock geometry [63]. The remaining three data sets are associated with previously published work
and are publicly accessible [64,65].

For each geometry, we rely on direct numerical simulation within the observed rock geometries to
generate a large number of states as needed to evaluate J́ wn

w (sw, έwn, χ́n) [66]. On the basis of pore-
level occupancy and connectivity, close agreement was previously demonstrated between simulated
geometries and those observed from experiment using fast μCT [39]. Since different physical
processes produce different fluid arrangements, multiple simulation conditions were considered,
including (a) equilibrium simulations with a random initial condition [41], (b) steady-state flow
with an initial condition from μCT experiment [39], (c) steady-state flow with an initial condition
from morphological opening [38,67–69], and (d) displacement with changing saturation driven by
pressure boundary conditions. The initial conditions and simulation types are listed in Table II,
along with the total number of distinct fluid configurations generated. Additional descriptions of the
simulations are provided in the Supplemental Materials along with the geometric data generated for
each material [70].

VI. MACROSCALE CLOSURE RELATIONS

For each porous medium three constitutive relationships were evaluated: J́ wn
w (sw ), J́ wn

w (sw, έwn),
and J́ wn

w (sw, έwn, χ́n). To adequately assess the uniqueness of a relationship with three possible
degrees of freedom, a large number of states must be considered. The present study includes a total
of 259 016 fluid configurations for six different porous media. Averaged measures were determined
from simulated microstates using an in situ analysis framework [71,72]. The measured values of
J́ wn

w , sw, έwn, and χ́n are shown in Figs. 6(a)–6(f). Generalized additive models (GAMs) were used
to construct locally smooth spline surfaces to approximate each of the three possible state functions
based on the data shown in Fig. 6. The GAMs were used to approximate each relationship, evaluate
the error, and to make comparisons among the three approximations [41,73]. The GAM can be
considered as a numerical approach to evaluate the coefficients in Eq. (8) and determine if the
relationship is unique for all microstates.

The nonuniqueness of J́ wn
w (sw ) and J́ wn

w (sw, έwn) can be assessed visually based on Fig. 7. A
collection of curves are generated by simulating imbibition based on a set of initial conditions
determined based on morphological drainage. In each case, the meniscus curvature decreases during
the imbibition process, but distinctly different geometric states are obtained along each trajectory.
The relationship J́ wn

w (sw ) is clearly nonunique since multiple values of J́ wn
w are observed at constant

sw. Furthermore, from Fig. 7(b) we see that J́ wn
w (sw, έwn) is also nonunique; for a set of states with

sw = 0.65 [one for each curve in Fig. 7(a)] we see that the different J́ wn
w may be observed for the

same values of both sw and έwn. Examining the Euler characteristic demonstrates that different fluid
connectivity is observed within this set of states, suggesting the underlying reason for the behavior.
This also illustrates the importance of generating redundant geometric states to test the uniqueness
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FIG. 6. The relationship between geometric state variables is explored based on the possible fluid microstates
in six porous media, each with a distinct solid microstructure (white).

of the geometric relationship. A limiting factor in previous studies is that an insufficient number of
points were generated for a particular volume fraction.

In Fig. 8 two different error measures are used to assess each model. Generalized cross validation
(GCV) considers how accurately each data point is predicted by all remaining data points [74].

FIG. 7. Traditional models assume that the macroscale capillary pressure is a function only of the saturation
of the wetting fluid. Two-fluid displacement simulations within a sand pack show that: (a) At fixed saturation,
sw , the relative mean curvature J́ wn

w can attain many possible values depending on the system history;
(b) J́ wn

w (sw, έwn) is nonunique for sw = 0.65.
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FIG. 8. The geometric state function J́ wn
w (sw, έwn, χ́n) is unique for each geometry, which is not the case

for J́ wn
w (sw ) and J́ wn

w (sw, έwn). Locally smooth approximations were generated for each relationship using
generalized additive models (GAMs) to compare the accuracy of macroscopic constitutive models. Error
measures are given by (a) the coefficient of variation R2 and (b) generalized cross validation (GCV).

The GCV will be 0.0 if the surface perfectly predicts the data. A second measure is the coefficient
of determination, R2, which measures the fraction of the variance in the underlying data points
predicted based on the GAM. The value of R2 will be 1.0 for a unique surface. The fact that J́ wn

w (sw )
is not unique for any of the six materials is confirmed by the large GCV (0.0878 � GCV � 1.613)
and a relatively small R2 (0.53 � R2 � 0.96). The sphere pack, sand pack, and carbonate allow
for the widest range of possible fluid configurations at any given saturation, and show the largest
unexplained variance for J́ wn

w (sw ). The two sandstones and robuglass samples show the least variance.
Traditionally the unexplained variance would be attributed to hysteresis. In all cases, the unexplained
variance is reduced by including the interfacial area, J́ wn

w (sw, έwn), with 0.057 � GCV � 0.30 and
0.80 � R2 � 0.99. When all three independent MFs are included, J́ wn

w (sw, έwn, χ́n), the accuracy
improves dramatically with 0.0015 � GCV � 0.053 and 0.96 � R2 � 1.0. The only material for
which J́ wn

w (sw, έwn, χ́n) captures less than 99% of the variance in the underlying data is the carbonate,
shown in Fig. 6(b). Since J́ wn

w (sw, έwn) explains only 80% of the variance for fluid configurations
within the carbonate, this is also the material for which adding the Euler characteristic provides the
most significant improvement. The implication is that a significant fraction of the variance in the
carbonate is due to changes in fluid connectivity that are not predicted by changes in interfacial area.

In all six cases, J́ wn
w (sw ) is observed to be nonunique. While this is mitigated when us-

ing J́ wn
w (sw, έwn), the Euler characteristic must be included to obtain a unique relationship.

Non-uniqueness in J́ wn
w (sw, έwn, χ́n) is observed only when sw → 1. This occurs because the

quantities έwn, χ́n approach zero in the limit of vanishing saturation, whereas no limit exists for
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J́ wn
w [41]. Numerical errors associated with the measurement of the interfacial area, curvature, and

Euler characteristic are expected to account for a contribution to the error. Since the experimental
and simulated nonwetting fluid configuration make use of a closed three-dimensional object, errors
due to system size do not undermine the effort to test the validity of J́ wn

w (sw, έwn, χ́n).
The notion of a representative elementary volume (REV) is important to produce generalizable

geometric state information based on microscopic measurements. In this work, we have shown that the
form J́ wn

w (sw, έwn, χ́n) is valid based on nonwetting fluid configurations in water-wet porous media
based on state-of-the-art μCT data. While the physical size of the systems considered in this work
remains relatively small, future advancement of μCT and computing technologies will lead to growth
in 3D image sizes that will continue for the foreseeable future. Based on this trajectory, REV-scale
observations of porous medium microstructure are likely. These trends favor the development new
models that are able to leverage the additional geometric information that is now available for
flow in porous media. While factors such as length-scale heterogeneity will remain an important
consideration for flow in porous media (i.e., characterization of geologic reservoirs), macroscopic
strategies to address this problem are already under active development.

VII. CONCLUSIONS

We present a geometric state function to predict the mean curvature of the interface between fluids
in porous medium based on a relationship between invariants established by integral geometry. The
relationship accurately captures a broad range of possible fluid configurations, and can be combined
with modern averaging methods to formulate a class of model that evolves interfacial areas using
conservation equations and kinematic equations, applies to all water saturation levels, and does
not require equilibrium assumptions [58,59,75]. To take full advantage of the equation of state
developed, an evolution equation for the Euler characteristic would be needed. It is expected that
this development and the proven need for this remaining quantity will catalyze efforts to develop
the missing kinematic relation for the Euler characteristic. The geometric result suggests that it is
possible to overcome shortcomings associated with empirical and history-dependent constitutive
relationships for two-fluid flow in porous media.
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