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Micromechanics of intruder motion in wet granular medium
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We investigate the effective friction encountered by an intruder moving through a
sedimented medium, which consists of transparent granular hydrogels immersed in water,
and the resulting motion of the medium. We show that the effective friction μe on a spherical
intruder is captured by the inertial number I given by the ratio of the timescale over which
the intruder moves and the inertial timescale of the granular medium set by the overburden
pressure. Further, μe is described by the function μe(I ) = μs + αIβ , where μs is the static
friction, and α and β are material-dependent constants which are independent of intruder
depth and size. By measuring the mean flow of the granular component around the intruder,
we find significant slip between the intruder and the granular medium. The motion of the
medium is strongly confined near the intruder compared with a viscous Newtonian fluid and
is of the order of the intruder size. The return flow of the medium occurs closer to the intruder
as its depth is increased. Further, we study the reversible and irreversible displacement of
the medium by not only following the medium as the intruder moves down but also while
returning the intruder back up to its original depth. We find that the flow remains largely
reversible in the quasistatic regime, as well as when μe increases rapidly over the range of
I probed.

DOI: 10.1103/PhysRevFluids.3.084303

I. INTRODUCTION

The motion of objects through wet granular materials consisting of athermal solids sedimented
in a fluid medium is encountered in a range of chemical and food processing industries, besides the
muddy bottoms of ponds and rivers [1,2]. In the quasistatic limit, the drag experienced by objects of
various shapes, and their interactions, have been investigated in granular media to study fundamental
granular physics and biolocomotion [3–8]. Further, drag experienced by an intruder moving in two
and three dimensions well above the quasistatic regime has been also investigated in dry granular
materials in gravity to find appropriate scaling laws [9–14]. However, the presence of the fluid
changes the physics of the system considerably because it introduces drag, lubrication, and pore
pressure into the system [15–17]. Viewed from the perspective of fluids, the presence of athermal
frictional grains in the medium makes the physics of the problem also completely different from that
of an intruder moving in a viscous fluid [18].

Intruder dynamics in a wet granular medium is doubly challenging because the rheology of the
medium is not well understood, and the flow around the intruder is time dependent, i.e., unsteady.
The intruder causes transient fluidization of the athermal medium, which is otherwise static. The
sedimented granular medium considered here is theoretically distinct from granular suspensions
where the grains are also athermal and can come into frictional contact [19,20], but where grains
have the same density as the fluid and can be considered to be uniformly distributed unless shear
gradients are present. Moreover, the momentum exchange between the fluid and the granular phase in
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FIG. 1. (a) Schematic of the experimental system consisting of an intruder descending through sedimented
granular hydrogels immersed in water. The depth z of the intruder is measured from the top of the sedimented
hydrogels denoted by zo to the bottom of the intruder. The height of the water column Hw and the granular
hydrogel medium Hh in the container are also shown. (b) A transect of the sedimented medium and the intruder
illuminated by a thin laser sheet. (c) The intruder depth z as a function of time t for a range of ξi , intruder density
relative to the medium.

the medium is also different when the medium is sheared because of the density difference. Thus, the
presence of solids leads to considerable differences from the motion of a particle sedimenting through
a Newtonian fluid, or for that matter when particulates are present in small concentrations [15].

Recently, it was demonstrated [21] that a sphere dragged through granular hydrogels immersed in
water can be described by an effective friction which scales with inertial number I [22] and increases
nonlinearly from a nonzero static value. The form was found to be similar to that derived from the
Herschel and Bulkley model [23], which is used to describe non-Newtonian fluids and muds [24].
Building on that study, we probe the dynamics of an intruder settling through granular hydrogels
immersed in water as a model of wet granular medium or mud consisting of soft granular medium
immersed in water. This is a much simplified system compared to experiments on intruders settling
in clay and cornstarch suspensions, which are more difficult to probe experimentally, as they show
further complex material dependence as well [1,25,26].

Exploiting the near transparency of the granular hydrogel medium, we visualize the motion of
the intruder as it accelerates, after being released from rest, and extract the encountered effective
friction. To understand the relation between the observed rheology and the micromechanics of the
medium, we visualize the motion of the medium around the intruder by adding tracer particles. We
show that the flow of the medium is strongly confined around the intruder and different than that for
a viscous fluid. We then describe the effect of intruder speed and depth on the rearrangement of the
medium, and its reversibility as a function of inertial number.

II. EXPERIMENTAL SYSTEM

Figure 1(a) shows the system used to investigate the settling dynamics of the spherical intruder
in a container filled with a granular medium sedimented in a fluid. The grains are composed of
hydrated polyacrylamide with diameters dh = 1.5 ± 0.5 mm, density ρh = 1004 kg m−3, Young’s
modulus E ∼ 10 kPa, and friction coefficient μh ∼ 10−2, similar to previous work [21,27]. The
grains sediment to the bottom of the container to a height Hh filled with distilled water. Water is
filled to a height Hw > Hh in all our experiments to prevent surface tension effects from playing any
role in the observed phenomena. Typically, we use a cylindrical container with Hw = 430 mm and
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TABLE I. List of intruder sizes and their density difference relative to the medium used in the measurements.

di (cm) di/dh 10−3 ξi

2.7 18.3 0.6, 1.8, 2.2, 3.8, 5.8, 7.1
4.0 26.7 2.4, 2.9, 3.1, 3.4, 3.6, 3.9
5.0 33.3 1.1, 1.9, 2.02, 2.2, 2.6, 3.1

Hh = 380 mm, and horizontal width L = 180 mm. These dimensions are chosen to be sufficiently
large to be unimportant to the dynamics studied.

The grains are visualized by using a thin illumination sheet generated by a laser and cylindrical
lens combination, and appear to be randomly packed [see Fig. 1(b)]. By measuring the volume
of water displaced, the volume fraction of the grains in the medium is found to be 0.6. Both the
random packing and volume fraction are consistent with typical spherical grain packings obtained
at high deposition rates [28] and lower than packing fractions found with frictionless spheres [29].
The density of the hydrogel medium ρm and the density of water ρw is found to be 1001 ± 1 and
998 ± 1 kg m−3 respectively at 24 ◦C. The change in their volume due to the overburden pressure

Pp = (ρh − ρw )gz, (1)

where z is the depth measured from the bed surface z0 to the depth zr , where the intruder comes to
rest, can be estimated assuming linear elasticity to be less than 0.01% at the deepest point z = Hh

in the container. We thus assume that the density of the hydrogel medium

ρm = φρh + (1 − φ)ρw (2)

is essentially constant throughout the system for the purpose of our study.
The intruders used in our studies consist of spherical shells, with diameter di = 27, 40, and 50 mm

filled with various amounts of glass beads to vary their density ρi without changing their size and
surface properties. The relative density difference between the intruder and the hydrogel medium is
then given by ξi = ρi/ρm − 1, where ρi is the density of the intruder and the values of ξi are listed
in Table I corresponding to the various intruders. Because the hydrogels are essentially transparent
and have a refractive index close to that of water, we can visualize the position of the intruder inside
the medium using back lighting and a digital camera. A movie of an intruder as it falls through
the medium can be found in the Supplementary Material [30]. The intruder is located by identifying
the centroid of the dark pixels associated with the intruder to within ±0.5 mm or less than ±0.01di in
the case of di = 5 cm. Then, the depth of the intruder z is recorded from the surface of the sedimented
hydrogel bed down to the bottom of the intruder. We use a well-defined protocol to initialize the
medium to obtain consistent results by stirring the granular hydrogel medium for a minute and
allowing them to settle for 20 min before performing measurements to avoid the initial transients.

III. INTRUDER PROBED RHEOLOGY

Figure 1(c) shows the measured depth z of intruders with various ξi as they descend individually
through the granular medium after being released from rest at the surface of the medium at time
t = 0 s. The data here are scaled with respect to the medium height Hh to give a sense of the location
of the intruder with respect to the container bottom which then corresponds to z/Hh = 1. In all cases,
the intruder is observed to descend rapidly at first before slowing down, then creeping for hours,
and finally coming to rest. One can note that the intruder comes to rest at depth zr well above the
container bottom as the intruder density is increased over the range of ξi shown. (We monitored
the intruder also over days in a few cases and found that the intruder fluctuates in place to within a
fraction of the grain size, which we attribute to small variation in the room temperature which can
cause expansion and contraction to the grains and the container.) The intruder reaches the bottom of
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FIG. 2. The yield stress τo as a function of overburden pressure Pp for various combinations of intruder
densities and size. The slope corresponds to the effective static friction μs . The error bars are the same as the
symbol size and thus not drawn separately.

the container at a ξi higher than Table I. Because the density of the medium is essentially constant
with depth and ξi > 0, we infer that the intruder is held in place, because the medium exhibits a yield
stress which needs to be exceeded for the intruder to move.

A. Statics

We obtain the depth at which the intruder comes to rest zr as a function of relative excess density
of the intruder ξi , and then estimate the stress applied by the intruder τo ∼ Fg/Ai , where Fg is the
force due to the nonbuoyant weight of the intruder given by Fg = π (ρi − ρm)gd3

i /6, and Ai is the
area over which Fg is distributed. Because di � dh, we assume that A ∼ πd2

i /4, and therefore

τo ≈ 2
3 (ρi − ρm)gdi. (3)

Further, the overburden pressure Pp due to the weight of the hydrogels at the depth where the intruder
comes to rest is given by Eq. (1).

Figure 2 shows τo plotted versus Pp corresponding to various intruder density and size. We observe
that τo grows linearly with Pp, and all the data collapse onto a single line. Accordingly, one can define
a coefficient of static friction μs corresponding to the ratio of the stress acting on the intruder in
the direction of motion and the normal stress in the perpendicular direction similar to Ref. [21]. At the
point where intruder has just come to rest, we assume that the stress acting on the intruder then just
equals the yield stress of the medium. Because the intruder was moving in the downward direction,
we assume this stress is in the vertical direction. Then, in considering the normal stress, we make the
assumption that the overburden pressure Pp due to the weight of the grains above is approximately
isotropic. Thus, we assume that the normal stress acting on the intruder in the horizontal direction is
thus Pp as well. Thus, the slope of the plot shown in Fig. 2 corresponds to the μs , given by

μs = τo

Pp

, (4)

similar to the definition proposed in Ref. [21]. However, care should be exercised when interpreting
this definition in terms of internal friction angles of the medium because of the differences in
prefactors associated with the geometry of the intruder. Here, we simply use this definition to
characterize and nondimensionalize the drag experienced by the intruder with respect to the other
force important in the problem. From the fit, we find μs = 1.3 ± 0.02. Hence, the observed μs are
constant within experimental errors due to the residual variation in the room temperature rather than
intruder depth measurement errors.
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FIG. 3. The ratio of the relative magnitude of the inertial term and the gravitational terms becomes steadily
smaller as the intruder slows down. The data correspond to depth vs time curve shown for ξi = 3.1 × 10−3 in
Fig. 1(c).

It is noteworthy that the linear dependence of the yield stress with depth observed in Fig. 2(a) is
consistent with the study of Brzinski et al. [31] performed with an intruder penetrating a dry granular
bed. There, it was shown that granular materials exert a force on the intruder which is locally normal
to the surface of the object, while the tangential contributions are much smaller. In addition, normal
forces increase with the gravitational loading pressure of the medium. With these two assumptions,
the total force acting on a spherical intruder immersed in a dry granular medium was found to increase
linearly with the depth of the intruder. Thus, our experiments reveal that in the static limit, the wet
granular medium composed of granular hydrogels sedimented in water behaves similarly to the dry
granular medium with frictional contacts.

B. Dynamics

We next focus on the friction experienced by the intruder during the dynamic settling phase.
Considering the mean forces acting on the intruder, we have

Fd = Fg − Fb − me

d2z

dt2
, (5)

where Fd is the drag force acting on the intruder, Fg = ρiπd3
i g

6 is the gravitational force, Fb = ρhπd3
i g

6
is the buoyant force due to the medium displaced, me is its effective mass which depends on the
density of the intruder and the medium, and d2z

dt2 is the acceleration of the intruder.
Figure 3 shows an example of the ratio of the acceleration term in Eq. (5) divided by (Fg − Fb ) to

understand the relative strength. Here, the added mass effect has to be included in any estimate of the
effective mass of the intruder me because ρh ≈ ρw. Thus, me ≈ (ρi + ρm/2)π/12d3

i , where we have
used a form of added mass correction in a Newtonian fluid. With this assumption, the effective mass
can be estimated to be approximately 1.5 times the mass of the intruder. Except at very early times,
when the intruder begins to accelerate from rest near the medium surface and overburden pressure
is small, the relative strength is relatively very small. Thus, the acceleration term is small as the
intruder slowly comes to rest. Nonetheless, we include this correction in general in estimating Fd .
Now, the drag force encountered by the moving intruder is proportional to the shear stress, due to the
effective friction acting on a local surface element of the intruder, integrated over its entire surface
area. However, for simplicity, we approximate the effective shear stress as the drag force divided by
the cross section of the intruder. Therefore, we divide Fd by the cross section area of the intruder Ai ,
and the overburden pressure as in the static case, to now obtain the effective friction μe as a function
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of the velocity vi of the intruder as it descends, through the medium, i.e.,

μe = Fd/Ai

Pp

, (6)

where we have made the same assumption as in obtaining the static effective friction given by Eq. (4)
that the stress exerted on the intruder, in the directional normal to its motion, is approximately given
by the overburden pressure Pp.

Figure 4(a) shows μe probed by the intruder as a function of vi for various intruder sizes and
relative densities listed in Table I. We observe from the log-linear form of the plot in Fig. 4(a) that
the data at low velocities approach a constant value. This is consistent with the findings in Fig. 2
that μs is observed to be constant, irrespective of the density and the size of the intruder. At higher
speeds, we observe that μe increases in all cases but does not collapse onto a single curve.

In Ref. [21], it was shown that the drag experienced by an intruder as it moves with a constant
speed vi is given by an effective friction, which is only a function of the inertial number I , where I is
given by the timescale over which the intruder moves through its diameter and the inertial timescale
set by the overburden pressure. Assuming that the shear rate of the medium can be estimated using
the velocity of the intruder and its diameter, i.e., vi/di , it was found that

I = vi√
Pp/ρh

. (7)

Given that the original form of I [32] was defined using uniform shear conditions and constant shear
rates, this interpretation and generalization to the unsteady flow conditions in the case of intruder
dynamics is not a priori obvious.

We plot the effective friction μe as a function of I in log-linear and linear-linear format in
Fig. 4(b). We observe that the data collapse onto a single curve. Thus, we fit the functional form
found in Ref. [21]

μe(I ) = μs + α Iβ, (8)

where α and β are empirical constants. The value of β in particular can provide insight into the
nature of the medium as probed by the intruder. This is a similar form to the Hershel-Bulkley
model [23] for stress and strain rate scaling since μe is proportional to the stress at a given depth,
and I is proportional to the shear rate. In that model, β is called the consistency index with β < 1
corresponding to a shear-thinning fluid and β > 1 corresponding to a shear thickening fluid. In the
case where β = 1, the Hershel-Bulkley model reduces to the Bingham plastic model of a viscoplastic
material, in which the medium behaves like a viscous fluid above yield with viscosity proportional
to α. We observe that the data collapse onto the curve with the effective friction μe approaching
a constant value μs = 1.3 ± 0.02 independent of the intruder size. Further, the fit to Eq. (8) yields
α = 32 ± 1 and β = 0.84 ± 0.01 [24]. In this case, the value of β suggests that the medium is
shear thinning. Thus, the increase of friction with I is sublinear, as was also found in the previous
experiments with an intruder dragged with constant speed in similar sized granular medium [21].

It is also noteworthy here that the observed μe(I ) collapses onto the form with same α and β,
irrespective of the depth of the intruder. To show this explicitly, we have plotted μe versus I obtained
at various depths, and thus Pp, in Fig. 4(c). We observe that the data for all z collapse onto same
curve given by α and β obtained to describe Fig. 4(b).

If one starts from the Hershel-Bulkley relation given by τ = τo + kγ̇ β [23], where τ is the shear
stress, γ̇ is the strain rate, and k and β are medium-dependent constants, then by dividing by the
overburden pressure Pp, further assuming γ̇ = vi/di , and rearranging in terms of I using Eq. (7), we
have k = αP

1−β/2
p d

β

i ρ
β/2
h . Thus, given α is found to be independent of Pp, our measurements appear

to imply a particular dependence of k with depth in the case of the granular hydrogel medium.
In order to check if the observed evolution of the friction coefficient μe is determined by the

viscous properties of the grains in the fluid, we examined a dimensionless viscous number J in
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FIG. 4. (a) The effective friction μe as a function of intruder speed vi is observed to approach a constant
value at low speeds. Inset: Same plot in linear scale. (b) The effective friction μe as a function of inertial number
I along with Eq. (8). Inset: Same plot in linear scale shows that the data collapse onto a single curve both at low
and high velocities as a function of I . The key is the same as in panel (a). (c) μe as a function of inertial number
I for di = 5 cm for various depths. μe is observed to collapse onto the same curve, irrespective of depth. The
measurement errors are smaller than the marker size and not drawn for clarity.
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curve. The observed scatter is far greater than measurement error, which is smaller than symbol size.

analogy with the one proposed for uniformly sheared neutrally buoyant suspensions [33], but by
assuming a shear rate γ̇ given by the speed of the intruder and its diameter just as in defining I for
our system. Thus,

J = ηsvi

Ppdi

, (9)

where ηs is the viscosity of the fluid, which in the case of our system is assumed to be 8.90 × 10−4 Pa s.
We plot μe versus J in log-linear style Fig. 5, and in linear-linear style in the inset. At low J , the
measured μe is observed to converge to a constant value μs = 1.3 as is also observed in Fig. 2(b).
However, the data do not collapse onto a single curve as they do in the case of I as shown in Figs. 4(b)
and 4(c). Thus, inertial effects are found to be important in these nonbuoyant wet granular systems,
even though the density of the grains are well within 1% of the density of the fluid.

Having established the effective friction experienced by the intruder, as a function of speed and
the important timescale, we next investigate the observed dynamics from the perspective of the
rearrangements of the medium as a result of the intruder motion.

IV. INTRUDER DRIVEN MEDIUM FLOW

For the complementary study of the medium dynamics, we found it more convenient to modify
the experimental system somewhat. We use a container with a rectangular cross section with height
Hw = 32 and Hh = 30 cm and horizontal dimensions 50 and 25 cm to simplify the visualization
shown schematically in Fig. 6(a). Further, we also attach a thin rigid rod to the intruder and use it to
push and pull the intruder with a prescribed speed and through a prescribed depth along the vertical
central axis of the container, rather than allowing the intruder to fall in gravity. This protocol enabled
us to obtain data under well-defined conditions more quickly and more flexibly over a wide range of
intruder speeds. Further, it enabled us to examine the reversibility of the flow by measuring the flow
when the intruder is moved back to its original depth.

In the experiments discussed here, we use di = 5 cm and a rod with diameter 5 mm. Because
of the large difference in size, the rod was observed to have negligible impact on the overall trends
discussed. We visualize the motion of the medium by adding neutrally buoyant opaque tracer particles
with diameter 5 mm to the medium. This size was chosen to be large enough so we could easily
follow the trajectory as the tracer moved with the granular medium but small enough compared to
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FIG. 6. (a) Schematic of the experimental system used to measure the medium rearrangements. The boxes
represent the displacements shown in panel (b) and velocity field in panel (c). (b) Tracers in a vertical plane
are observed to follow a systematic trajectory as the intruder is moved from a depth zA (blue filled circle) to zB

(empty circle) and back up to zA (green filled circle) as shown in the inset. The net displacement of the tracers
after the cycle is shown by a red arrow and is observed to decrease with distance from the intruder. (c) The
velocity field of the medium and its curl (vi = 0.01 mm s−1). The arrows indicate the direction of the flow. The
magnitude of the curl is given by the color bar.

the gradients in the mean flow. The velocity measurements are performed by moving the intruder
vertically from a prescribed depth zA down to a prescribed depth zB , before returning it back up to
its original position as shown schematically in Fig. 6(a).

Sample trajectories recorded for tracers which are located at increasing horizontal distance r/di

from the line of motion are shown in Fig. 6(b), corresponding to the red dotted box shown in Fig. 6(a).
Here, the intruder is moved with vi = .01 mm s−1 from a depth zA/di = 2 to zB/di = 4 before being
returned to zA after a wait time of 20 min. This intruder speed corresponds here to the quasistatic limit
where the effective friction μe appears constant. Corresponding movies of the motion of the tracers
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tracked as the intruder is moved down and back up to its original position at various speeds can be
found in the Supplementary Material [30]. The trajectory of the tracers, while not fully periodic, is
observed to be quite well defined. In this example, close to the intruder, the tracers move away and
then get drawn up closer to the center as the intruder moves down. Then, during the second half of
the cycle, the tracers are pushed away and then drawn down as the intruder is returned to its original
position. In the representative examples shown, this overall excursion is observed to decrease with
distance of the tracers from the line along which the intruder moves.

A. Velocity fields

We obtain the mean flow field around the moving intruder at various speeds using tracer trajectories
over a short time interval during which the tracer displacement can be approximated to be linear.
Then, according to our cylindrical coordinate system, the velocity component vz is along the vertical
z axis, and the velocity component vr along the horizontal distance r from the axis of intruder
motion is the same in all the radial directions in the horizontal plane. This is because of the azimuthal
symmetry of the flow around the axis of a spherical intruder moving along a line, as well as because
the flow decays rapidly compared to the rectangular cross section of the container.

A snapshot of the flow field of the medium around the intruder as it descends is shown in Fig. 6(c)
using velocity normalized to unity for clarity. Here, the velocity field was obtained by measuring
the tracer displacements in a 104 s time interval in which the intruder moves from zA to zB , and
averaging over 10 cycles as the intruder passes through the same depth z/di = 2.5. To highlight the
vorticity of the medium flow, we also superimpose the curl of the velocity field according to the
color map which is also shown in Fig. 6(b). One observes from the arrows that the medium is pushed
forward along with the intruder directly above and below the intruder but reverses directions rapidly
near the intruder with a vortexlike flow structure near the equatorial plane of the intruder. If one
considers the Reynolds number Re = ρf vidi/ν, where ν is the viscosity of water, then Re = 0.5 and
laminar flow with no slip at the surface can be expected. If one considers the effect of the hydrogels
is to increase the effective viscosity [34], then Re would be even lower. Thus, the flow due to the
presence of the granular medium appears to be significantly different compared to that for a viscous
Newtonian fluid. Further, the recirculating region and the qualitative flow structure also appear to be
different than observed in clay suspensions where a negative wake has been noted [35] and in dry
granular medium where cavitation can occur readily behind fast-moving intruders [36].

To quantitatively understand the nature of the medium micromechanics, we plot the measured
velocity component vz along the equatorial plane in Figs. 7(a) and 7(b) as a function over various vi

and z, respectively. For reference, the calculated velocity for an intruder moving through a viscous
fluid [15]

vz = vi

(
d3

i

16x3
+ 3di

4x

)
(10)

is also plotted in Figs. 7(a) and 7(b). We observe that the flow of the grains in the medium shows
considerable slip near the intruder surface at r/di = 1/2 in contrast with the viscous fluid case where
vz = vi . The overall form of the medium velocity is similar over a wide range of vi with a reverse flow
occurring at r ∼ 0.75di . The reversal is observed to occur closer to the intruder and grow stronger
as the depth z of the intruder increases. Thus, we find that the flow in the case of granular medium
immersed in a fluid is strongly confined near the moving intruder and considerably different than a
Newtonian fluid.

Further, comparing the observed velocities measured by varying intruder velocity versus intruder
depth, one observes that vz/vi scales somewhat over three orders of magnitude in intruder speeds,
although the scaled speeds are systematically lower in the case of the slower intruders. But in the
case of vz/vi measured at various z, the data do not collapse with systematic and significant variation
with depth. In particular, it can be noted that vz/vi decreases monotonically at small depths, whereas
at larger z, vz/vi decreases rapidly and becomes negative before decaying to zero over the same
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FIG. 7. (a) The vertical component of the medium velocity vz as a function of horizontal distance along the
equatorial plane of the intruder as it moves down with various speed vi (z/di = 3). The velocity of the medium
is significantly lower compared to that of a sphere moving with the same speed in a viscous fluid (solid line).
(b) vz as a function of horizontal distance along the equatorial plane of the intruder at various depths (vi =
10−3 m/s). Greater variation is observed with respect to changes in intruder depth compared with intruder
velocity. The measurement errors are smaller than the marker size and not drawn for clarity.

distance from the intruder center. Thus, a counterflow develops faster and closer to the intruder with
increasing overburden pressure. It is noteworthy that the inertial number I in fact varies over three
orders of magnitude from 4.8 × 10−4 to 4.8 × 10−1, corresponding to the speed variation probed
in Fig. 7(a), and I varies less than factor of two from 4.2 × 10−2 to 5.6 × 10−2, while the depth is
varied in Fig. 7(b). Thus, we do not find a collapse of the flow field around the intruder with I as we
found in the case of the effective friction in Fig. 2(b).

B. Flow reversibility and plastic deformation

Next, we examine the displacement of the medium as the intruder is moved from zA to zB , and
then also after the intruder is moved back up to its original depth zA to study the rearrangements of
the medium as a result of the fluidization by the intruder.

The displacement �zm
AB of the tracer particles as the intruder is moved down by zB − zA is shown

in Fig. 8(a) as a function of distance r/di in the horizontal place from the center of the intruder. The
data corresponding to varying vi , and thus I , are shown in Fig. 7 from the quasistatic regime to the
inertia-dominated regime. One observes the displacement of the medium near the intruder is of order
of the radius of the intruder over the range of vi probed. At lower speeds or lower I , one observes
that the displacement becomes negative before decaying to zero. But as speed or I is increased,
the displacement not only increases overall but stays positive over greater distances. In fact, at the
highest I , �zm

AB appears to simply decay to zero. These trends are consistent with variations of the
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FIG. 8. (a) Vertical displacement of the medium normalized by the intruder diameter �zm
AB/di for various

I when the intruder moves down from zA to zB . (b) The displacements at r/di ≈ 0.5 [indicated by vertical
dashed line in panel (a)] are plotted as a function of I and observed to increase systematically in magnitude.
(c) Vertical displacement of the medium normalized by the intruder diameter �zm

AB/di for various I when the
intruder moves down from zA to zB and then returns back up to original depth zA. (d) The displacement near
the intruder corresponding to r/di ≈ 0.5 [the vertical dashed line in panel (c)] is plotted as a function of I and
is observed to decrease and change sign with I . The symbols shown in panels (a) and (c) also correspond to the
velocity key in Fig. 7(a). The measurement errors are smaller than the marker size and not drawn for clarity.

flow observed by increasing depth z in Fig. 7(b), where increasing depth, which results in lower I ,
also leads to a reversal in the flow.

To highlight the trend with speed vi , we plot the net displacement �zm
AB of the tracer particles near

the intruder r/di ≈ 0.5 in Fig. 8(b) as a function of I . One observes that the medium displacement
grows systematically with intruder speeds or I as the medium appears to get more fluidized at higher
speeds.

Further information is gained by then examining the net displacements of the medium when
the intruder is moved back up to its original depth zA. Thus, the intruder is first moved from zA

to zB , and then after a 20-min wait, moved back to its original depth zA with the same speed. We
accordingly plot �zm

ABA versus I in Fig. 8(c) and �zm
ABA at r/di ≈ 0.5 in Fig. 8(d). Thus, examining

the displacements over the entire cycle, we find that �zABA is small overall, while changing from net
positive to negative as I increases. The measurements reported here are averaged over 10 different
runs and the observed fluctuations are less than the small but systematic variation observed here.
Thus, while the plastic displacements change systematically from being positive to negative, the
overall magnitude remains small even though the inertial number is varied over a wide range by
changing the intruder velocity. It is noteworthy that �zABA is not zero even at the lowest speeds,
where inertial effects as measured by I are negligible, which is consistent with studies of diffusion in
sheared suspensions [37]. There it was found that cyclically sheared suspensions with solid particles
become irreversible for sufficiently large concentrations due to chaotic particle interactions. Flow
reversibility can occur in case of athermal frictionless hard core particles suspended in a fluid in the
limit of zero Reynolds number. However, the hysteresis inherent in case of contact between frictional
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nonbuoyant grains can lead to irreversibility even at low speeds because of the sensitivity to initial
condition in disordered multibody systems as we observe here.

V. CONCLUSIONS

In summary, we have developed experiments to measure the friction encountered by an intruder
moving through a wet granular medium as a function of its speed and material properties. This
system further enables us to visualize the resulting rearrangement of the surrounding medium using
direct optical imaging. When the intruder is released at the surface of the medium, it is found to drop
slowly and come to rest well above the bottom of the container depending on its size and density. We
estimate the drag experienced by the intruder in terms of an effective friction that can be described
by a formula with a nonzero yield stress component corresponding to the static limit, and a second
component which increases as a power law with intruder speed corresponding to increasing inertial
effects. We find that the system dependence of the friction can be then collapsed onto a single curve
using the inertial number rather than the viscous number, even though the density of the grains in
the medium is only slightly greater than the fluid.

By visualizing and measuring the displacement of the medium, significant slip is found near the
intruder surface. The flow of the medium is found to be strongly confined close to the intruder in
comparison to a viscous fluid and much smaller in magnitude compared to a viscous fluid. At low
speeds, the motion of the medium is found to remain essentially reversible and then remains so
even as the inertial number increases and the effective rheology of the medium changes away from
the quasistatic regime. While the effective friction encountered by the intruder depends only on the
inertial number, the variation of the medium flow with depth and intruder velocity are not found to
be linked via the inertial number; i.e., the velocity profiles corresponding to the same inertial number
differ, when observed by varying intruder speed or intruder depth. Nonetheless, it can be observed
that medium flow does become increasingly localized, either by decreasing speed or by increasing
depth, as may be anticipated based on their effect on the inertial number.

Thus, our study provides not only quantitative data on intruder dynamics in sedimented wet
granular medium and empirical formulas on the probed rheology but also perspective on the nature
of the resulting unsteady flow of the surrounding medium.
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