
PHYSICAL REVIEW FLUIDS 3, 084202 (2018)

Liquid pumping induced by transverse forced vibrations of an elastic beam:
A lubrication approach

Rodica Borcia* and Michael Bestehorn
Chair of Statistical Physics and Nonlinear Dynamics, Brandenburg University of Technology,

Cottbus-Senftenberg, 03046 Cottbus, Germany

Sebastian Uhlig, Matthieu Gaudet, and Harald Schenk
Chair Micro- and Nanosystems, Brandenburg University of Technology,

Cottbus-Senftenberg, 03046 Cottbus, Germany
and Fraunhofer Institute for Photonic Microsystems, ISS, Cottbus, 03046 Cottbus, Germany

(Received 31 January 2018; published 20 August 2018; corrected 19 February 2019)

Two liquid pumps are investigated theoretically and numerically: a single thin liquid
layer actuated by a periodic force at an elastic beam and a two-layer geometry actuated by
an elastic beam. For the second geometry, the beam actuates the liquid from both sides. For
both pumps, the liquid film thickness is small compared to the lateral characteristic length of
the system. A lubrication theory is developed. The Euler-Bernoulli equation for transverse
deformations of an elastic beam is coupled to the fundamental hydrodynamic equations: the
Navier-Stokes equation and a continuity equation in the long-wave approximation. In this
way, one connects the transverse displacement of the beam with the hydrodynamic quantities
(pressure, velocity fields, and flow rates). Appropriate boundary conditions incorporate the
function of the valves. The derivation of the theoretical model is followed by numerical
simulations. We estimate flow rates (in two and three spatial dimensions) for different
system parameters and we compute the efficiency of a well-designed liquid pump.
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I. INTRODUCTION

The behavior of liquid thin films is of great importance for technological applications such as
oil recovery, inkjet printing, emulsion stability or control in micro- and nanofluidics, actuators, and
micropumps (see Refs. [1–8] and references therein). Micropumps have a large range of potential
use in microelectromechanical systems, especially in biological and medical fields such as pressure
sensors in cardiac implanted devices, human retinal prosthesis, or tactile sensing [9].

For thin liquid films, the most simple and suitable mathematical model which still captures the
main physics is the lubrication approximation known also as long-wave theory, valid for a mean
liquid thickness d much smaller than the lateral characteristic length of the liquid film L, so that
the aspect ratio δ defined as δ = d/L is much smaller than one. This approach is based on the
asymptotic reduction of the full set of basic hydrodynamic equations and boundary conditions to a
simplified system which consists of a single partial differential equation describing the spatiotemporal
evolution of the local thickness of the liquid film. Expanding the velocity and pressure fields
in powers of the small parameter δ and enslaving the velocity by the film thickness, one may
deduce the standard thin-film equation from the zeroth-order problem in δ (see Refs. [10,11] and
references therein). The lubrication approximation allows for a reduction of three-dimensional (3D)

*borciar@b-tu.de

2469-990X/2018/3(8)/084202(17) 084202-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.3.084202&domain=pdf&date_stamp=2019-02-19
https://doi.org/10.1103/PhysRevFluids.3.084202


BORCIA, BESTEHORN, UHLIG, GAUDET, AND SCHENK
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FIG. 1. (a) Schematic representation of a liquid micropump actuated at the upper boundary by an elastic
beam, fixed at the ends. The bottom boundary is a rigid impermeable plate. Laterally, the system is equipped
with two valves, valve 1 on the left side and valve 2 on the right side, which can establish the connection with
two reservoirs with pressures P1 and P2. Also shown is the schematic of the temporal cycle: (b) first half-time
and (c) second half-time.

problems to a 2D description in two horizontal coordinates. This drastically reduces the computing
time, making this method very convenient and attractive for numerical simulations of thin liquid
films.

The lubrication approach showed in the past considerable success in modeling long-wave
Marangoni convection induced by thermal effects in one-layer systems, stability of thin films under
gravity effects, structure formation [12–15], sliding drops on slightly sloped planes with small contact
angles [16,17], 3D drops, and also rivulet stability on homogeneous and heterogeneous substrates
with and without inclination [18–20]. Not only common liquids, but also liquid binary mixtures with
miscible components have been widely studied in the past decade in the frame of long-wave theory
[21–28]. Recent works on inertial lubrication approximation reported the role of external vibrations
(at the solid bottom boundary) on one- or two-layer liquid systems [29–36]. Thus, stability and
instability phenomena, pattern formation, force-driven flows, ratchet systems, coupling (interaction)
of modes, and drop motion control under vibrations were explored.

The present paper presents a lubrication approach, a mathematical tool suitable for describing
the fluid dynamics in micropumps induced by transverse forced vibrations of an elastic beam. The
paper is organized as follows. Section II gives the derivation of the model equations for a micropump
in one-layer geometry in two spatial dimensions and the linear stability analysis. Stationary- and
time-dependent problems are also discussed here. Section III presents the extension of the model for
a two-layer geometry as well as the extension in the third spatial dimension. We will show how the
valves can be incorporated (realizing in this way a ratchet system), consider a porous elastic beam,
and finally compute physical quantities of interest for pumps such as flow rate, fluidic (power) work,
and pump efficiency. We summarize in Sec. IV.

II. TWO-DIMENSIONAL LUBRICATION THEORY: ONE-LAYER GEOMETRY

A. Derivation of the model: Linear stability analysis

We assume a liquid film actuated at the upper side by an elastic beam, fixed at the ends, as sketched
in Fig. 1. Initially, the system is at rest on a rigid (impermeable) plate placed at z = 0. The transverse

084202-2



LIQUID PUMPING INDUCED BY TRANSVERSE FORCED …

deformation in an elastic beam obeys the Euler-Bernoulli equation [8,37,38]

ρAab
∂2η̃

∂ t̃2
+ EI

∂4η̃

∂x̃4
= −b(p̃A − p̃), (1)

where η̃ designates the deflection of the upper boundary (the transverse displacement of the beam),
ρA the beam density, E the Young (elastic) modulus, and I the second moment of area of the beam’s
cross section. For a rectangular cross section having thickness a and depth b, the second moment of
the area is I = ba3/12. In Eq. (1) (written per unit length of the beam), the first term on the left-hand
side describes the inertial effects, the second one emphasizes the contribution of the internal (elastic)
forces, and the damping effects inside the beam are neglected. The terms on the right-hand side
of (1) describe the contribution of the external forces at the actuator, expressed in pressure terms.
On one side we have the externally applied pressure (for example, caused by electrostatic forces)
p̃A and on the other side the liquid pressure. The pressure field of the liquid p̃ couples Eq. (1)
coming from the vibration theory with the fundamental equations of hydrodynamics. We start from
the two-dimensional incompressible Navier-Stokes equations

∂ṽx

∂t̃
+ ṽx

∂ṽx

∂x̃
+ ṽz

∂ṽx

∂z̃
= − 1

ρ

∂p̃

∂x̃
+ ν

(
∂2ṽx

∂x̃2
+ ∂2ṽx

∂z̃2

)
, (2)

∂ṽz

∂ t̃
+ ṽx

∂ṽz

∂x̃
+ ṽz

∂ṽz

∂z̃
= − 1

ρ

∂p̃

∂z̃
+ ν

(
∂2ṽz

∂x̃2
+ ∂2ṽz

∂z̃2

)
(3)

and the continuity equation

∂ṽx

∂x̃
+ ∂ṽz

∂z̃
= 0, (4)

with the boundary conditions

ṽx |z̃=0 = ṽz|z̃=0 = 0, (5)

�̃v · �̃n|beam = ∂η̃

∂t̃
, �̃v · �̃t |beam = 0, (6)

ν being the kinematic viscosity, and �̃n and �̃t the normal and the tangential vectors at the deflected
beam

�̃n = 1√
1 + (

∂η̃

∂x̃

)2

(− ∂η̃

∂x̃

1

)
, �̃t = 1√

1 + (
∂η̃

∂x̃

)2

(
1
∂η̃

∂x̃

)
.

We consider the long-wave approximation δ = d/L � 1, where d represents the mean thickness
of the liquid film and L is the lateral length of the micropump. We scale the problem as
follows:

x̃ = xL, z̃ = zd, η̃ = ηd, t̃ = t
d2

ν
,

ṽx = vx

Lν

d2
, ṽz = vz

ν

d
, p̃ = p

ρL2ν2

d4
.

The above scaling does not belong to standard lubrication theories presented in Refs. [10,11]. Our
scaling belongs to inertial lubrication theory (see, for example, Ref. [31]), capturing also the inertial
effects in the mathematical model.
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After scaling Eqs. (2)–(6) we find, in the zeroth order δ0 (and neglecting all the nonlinearities),

∂vx

∂t
= −∂p

∂x
+ ∂2vx

∂z2
, (7)

∂p

∂z
= 0, (8)

∂vx

∂x
+ ∂vz

∂z
= 0, (9)

vx |z=0 = 0, vz|z=0 = 0, (10)

∂η

∂t
= vz|z=1+η − vx |z=1+η

∂η

∂x
, (11)

vx |z=1+η = 0. (12)

Using (9), Eq. (11) can be written in the conservative form

∂η

∂t
= −∂q

∂x
, (13)

with q(x, t ) = ∫ 1+η

0 vxdz the mass flux (flow rate) per unit length. This condition constitutes a more
convenient form of the kinematic condition (11) and ensures the conservation of mass on a domain
with a deflecting upper boundary.

From Eq. (8) we can can deduce that the pressure p depends only on x coordinate. Making use
of the no-slip boundary conditions (10) and (12), we assume vx as a Hagen-Poiseuille flow [34]

vx (x, z, t ) = Az(1 + η − z).

Substituting the above ansatz into the flow rate, we obtain

A = 6q

(1 + η)3
.

Integrating Eq. (7) in the z direction between 0 and 1 + η, we arrive at

∂q

∂t
= −(1 + η)

∂p

∂x
− 12q

(1 + η)2
. (14)

Thus, we have derived a closed system of (1), (13), and (14) for the variables η, q, and p, which
reads

∂2η

∂t2
+ α

∂4η

∂x4
= −β(pA − p), (15)

∂η

∂t
= −∂q

∂x
, (16)

∂p

∂x
= − 12q

(1 + η)3
− 1

(1 + η)

∂q

∂t
, (17)

with the parameters α = Ea2d4

12ρAν2L4 and β = ρL2

ρAda
.

Performing in the above system of equations a linear stability analysis for the case without driving
pA = 0 around the fixed point η(0) = q (0) = p(0) = 0, assuming for the small perturbations plane
waves in the horizontal direction⎛

⎝η(1)(x, t )
q (1)(x, t )
p(1)(x, t )

⎞
⎠ =

⎛
⎝η∗

q∗
p∗

⎞
⎠exp(ikx)exp(λt ),
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where k denotes the wave number, λ is the (complex) growth rate of the instability, and η∗, q∗, and
p∗ are complex amplitudes, we get, for the solutions of the characteristic equation,

λ1,2 = −6β ±
√

36β2 − αk6(β + k2)

β + k2
.

Both solutions have Re(λ) < 0, i.e., the fixed point η(0) = q (0) = p(0) = 0 is linearly stable for all k.

B. Stationary problem

Now the beam is deformed by two couples of forces acting at the actuator, given by pA. For the
stationary problem, the system (15)–(17) reduces only to the stationary Euler-Bernoulli equation

α
d4η

dx4
= −βpA. (18)

To solve (18), we apply a finite-difference method on a uniform grid with N intervals and the grid
size �x = 1/N [39–41]. The beam is fixed at the ends. Thus, we assume as boundary conditions

η(0) = η(N ) = 0, dη/dx|0 = dη/dx|N = 0.

It remains to solve an inhomogeneous linear system

A�η = B, (19)

where

�η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η(1)
η(2)

...

...

...
η(N − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the beam deformation vector discretized on the N − 1 mesh points,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 −4 1 0 0 · · · · · · · · · · · · · · · 0

−4 6 −4 1 0
. . .

. . .
. . .

. . .
. . .

...

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 1 −4 6 −4 1

...
. . .

. . .
. . .

. . .
. . . 0 1 −4 6 −4

0 · · · · · · · · · · · · · · · 0 0 1 −4 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is an (N − 1) × (N − 1) band matrix, and B(j ) = 0 except for four nonzero components rep-
resenting the actuated pressure at the elastic beam: B(N/4 − 1) = −βpA�x4/α, B(N/4 + 1) =
βpA�x4/α, B(3N/4 − 1) = βpA�x4/α, and B(3N/4 + 1) = −βpA�x4/α. The 7’s in the corners
of the matrix A appear from the second-order central difference formula

ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2

�x4
= −β

α
pA

applied for the components η(1) and η(N − 1), taking into account the discretized boundary
conditions η(1) = η(−1) and η(N + 1) = η(N − 1).
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FIG. 2. Deformation of an elastic beam for the stationary problem. (a) Actuated pressure along the beam
pA for N = 100, the corresponding beam deformation η, and the second derivative of the beam deflection
d2η/dx2. (b) Beam deformations for two different discretizations, showing the same maxima (of 7.3 μm) for
pA = 30.8N 2. The other parameters are L = 1 mm, a = 10 μm, d = 75 μm, ρ = 103 kg/m3, ν = 10−6 m2/s,
ρA = 2.336 × 103 kg/m3, and E = 1011 N/m2.

The system (19) is solved by standard routines. We take the parameters for a water pump with a
silicon elastic beam having L = 1 mm, a = 10 μm, d = 75 μm, ρ = 103 kg/m3, ν = 10−6 m2/s,
ρA = 2.336 × 103 kg/m3, and E = 1011 N/m2, which leads to the model parameters α = 112.87 ×
102 and β = 570.77.
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The load at the actuator is distributed as shown in the top panel of Fig. 2(a). Two couples of
forces act along the beam. Each couple of forces creates a torque about the zeroth of the second
derivative of the deflected elastic beam d2η/dx2 [see Fig. 2(a)]. Assuming the actuated pressure
pA = 30.8N2 ensures the same loading moment on the elastic beam, creating a maximal deformation
of η̃max = 7.3 μm, independently of the number of the mesh points [as one can see from Fig. 2(b)]. For
a smooth variation along the deformed elastic beam, in the following we set N = 100 (�x = 0.01).

C. Time-dependent problem

For the time-dependent problem, we consider the same parameters as in the preceding section.
The loading forces at the actuator vary periodically in time according to p

(j )
A sin2(2πf t ) (with f =

200 Hz, i.e., the excitation frequency at the string 2f = 400 Hz) acting at, respectively, j = N/4 −
1, N/4 + 1, 3N/4 − 1, 3N/4 + 1.

We solve (15)–(17) numerically in the following way. We choose the time step size small enough
to ensure the independence of the results from the time integration. For each time step we solve (15),
as presented in the precedent section. For the discretization of the temporal derivatives, we use the
explicit Euler method and q is computed from (16) with q(t, N ) = 0, with valve 1 open and valve 2
closed [Fig. 1(b)], and q(t, 0) = 0, with valve 1 closed and valve 2 open [Fig. 1(c)]. The pressure field
at t + �t follows from (17) with p(t, 0) = P1, with valve 1 open and valve 2 closed, and P (t, N ) =
P2, with valve 1 closed and valve 2 open (with P1 < P2 for the device from Fig. 1 working in the
pump regime). We set P1 = 200 (P̃1 = 0.63 × 104 N/m2) and P2 = 300 (P̃2 = 0.95 × 104 N/m2).
For each time step, the three coupled equations are solved by iterative loops, until the relative errors
for computing η(x, t + �t ) fall below a certain fixed accuracy: |η(t + �t ) − η(t )|/η(t ) < 10−12.
This results in 15–20 iterations loops per time step.

The facility presented in Fig. 1 pumps the liquid from the reservoir with lower pressure, with
the time period T = 0.44 (T̃ ∼= 2.5 × 10−3 s). One micropump cycle consists of two half-times.
During the first half-time, the elastic beam, initially (at t = 0) horizontal, moves (due to the actuated
forces) in the upper direction. Valve 1 is open and valve 2 is closed. The liquid is pumped from
the reservoir with the liquid pressure P1. The maximum of the flowing rate is achieved at t = 0.12.
When the deformation of the beam reaches its maximum, the flow rate inside the channel is almost
zero. When the beam starts to move down, a return flow occurs in the micropump channel. In this
moment valve 1 closes and valve 2 opens and the second half-time starts. The liquid is now pumped
out to the reservoir with the pressure P2. The pump reaches its flow rate maximum at t = 0.34.
After that the flow rate decreases to zero and the elastic beam returns to the horizontal position.
When the actuated beam starts again to deform in the upper direction, a return flows again occurs
in the system. Therefore, valve 1 opens and valve 2 closes and in this way a new cycle of the pump
begins. Figure 3 presents time series (during one complete period) of beam deformation and flow
rate distribution along the micropump channel from the first half-time, with valve 1 open and valve
2 closed [Figs. 3(a) and 3(b)], and from the second half-time of the micropump, with valve 1 closed
and valve 2 open [Figs. 3(c) and 3(d)]. The maximal flow rate achieved for the water micropump
with the parameters mentioned in Sec. II B is 4.6 × 10−6 m2/s.

III. EXTENSION TO THREE SPATIAL DIMENSIONS AND A TWO-LAYER SYSTEM

A. Derivation of the model

A sketch of the two-layer pump under consideration is shown in Fig. 4. For the moment, the
system is assumed to be closed. The elastic beam actuates the liquid from both sides. The beam is
fixed at the ends. At x = 1 the presence of an orifice permits the liquid to flow from the lower layer
to the upper layer and vice versa.

We also take into account the depth of the channel b (namely, the third spatial dimension) and we
use a Hagen-Poiseuille ansatz for the velocity profile vx parabolically in both the z and y directions,
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FIG. 3. Beam deformation and liquid flux rates (distributions along the pump channel) at different times,
resulting from numerical simulations in two spatial dimensions: (a) t = 0.04, (b) t = 0.12, (c) t = 0.23, and
(d) t = 0.36. The upper panels display also flow rate distributions by colors ranging from green for maxima to
salmon pink for minima.

fulfilling no-slip conditions at y = 0 and y = δy ,

vx (x, y, t ) = Bz(1 + η − z)y(δy − y), (20)

(b) (c)

(a)

FIG. 4. (a) Schematic representation of a two-layer micropump. The elastic beam actuates now the liquid
from both sides. The beam is fixed at the ends. At x = 1 the presence of an orifice permits the liquid to flow
from the lower layer to the upper layer and vice versa. Also shown is the schematic of the temporal cycle after
the implementation of the valves: (b) first half-time and (c) second half-time.
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with δy = b/L. Substituting (20) into the total flow rate

q =
∫ δy

0

∫ 1+η

0
vxdy dz,

we find

B = 36q

δ3
y (1 + η)3

.

By integrating the Navier-Stokes equation

∂vx

∂t
= −∂p

∂x
+ ∂2vx

∂x2
+ δ2 ∂2vx

∂y2
(21)

in the z direction between 0 and 1 + η and in the y direction between 0 and δy , we get, for the 3D
problem,

1

δy

∂q

∂t
= −(1 + η)

∂p

∂x
− 12q

δy

[
1

(1 + η)2
+ δ2

δ2
y

]
. (22)

From the last term on the right-hand side we can see that the third spatial dimension becomes
significant for δ2/δ2

y � 1.
We apply the Euler-Bernoulli equation for the two-layer system

∂2η

∂t2
+ α

∂4η

∂x4
= −β(pA − p1 + p2) (23)

and the mass conservation law twice for the lower and the upper side of the fluid, respectively,

∂η

∂t
= −∂q1

∂x

1

δy

, (24)

∂η

∂t
= ∂q2

∂x

1

δy

. (25)

The subscripts 1 and 2 denote the pressure (and flow rate) in the lower and the upper side of the liquid,
as can be seen from Fig. 4. Subtracting (25) from (24) and using one of the boundary conditions
q1(t, 0) = −q2(t, 0) = 0 or q1(t, 1) = −q2(t, 1) = 0, we deduce that q1 = −q2 = q.

We apply the integrated Navier-Stokes equation (22) for the thin liquid layers with the heights
1 + η and 1 − η, leading to, respectively,

1

δy

∂q1

∂t
= −(1 + η)

∂p1

∂x
− 12q1

δy

[
1

(1 + η)2
+ δ2

δ2
y

]
, (26)

1

δy

∂q2

∂t
= −(1 − η)

∂p2

∂x
− 12q2

δy

[
1

(1 − η)2
+ δ2

δ2
y

]
. (27)

Multiplying (26) with 1/(1 + η) and (27) with 1/(1 − η) and subtracting the obtained equations, we
get the spatial evolution equation of �P = p1 − p2,

∂ (�p)

∂x
= −∂q

∂t

1

δy

(
1

1 + η
+ 1

1 − η

)

− 12q

δy

[
1

(1 + η)3
+ 1

(1 − η)3
+ δ2

δ2
y

1

1 + η
+ δ2

δ2
y

1

1 − η

]
. (28)
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FIG. 5. Pressure difference �P = p1 − p2 in the middle of the channel versus flow rate q achieved
at x = 1 during one complete period for a water micropump with L = 1 mm, a = 10 μm, d = 75 μm,
ρ = 103 kg/m3, ν = 10−6 m2/s, ρA = 2.336 × 103 kg/m3, E = 1011 N/m2, pA = 30.8N 2, N = 100, and an
excitation frequency of 400 Hz. The comparison between the numerical results is given by 2D and 3D models.

Hence we obtain, as 3D model equations for the two-layer geometry presented in Fig. 4,

∂2η

∂t2
+ α

∂4η

∂x4
= −β(pA − �P ), (29)

∂η

∂t
= − ∂

∂x

(
q

δy

)
, (30)

∂ (�p)

∂x
= − ∂

∂t

(
q

δy

)(
1

1 + η
+ 1

1 − η

)

− 12
q

δy

[
1

(1 + η)3
+ 1

(1 − η)3
+ δ2

δ2
y

1

1 + η
+ δ2

δ2
y

1

1 − η

]
, (31)

with the boundary conditions η(t, x = 0) = η(t, x = 1) = ∂η/∂x|x=0 = ∂η/∂x|x=1 = 0, q(t, x =
0) = 0, and �P (t, x = 1) = 0. The linear stability analysis for the case without driving pA = 0 in
the above system of equations shows the same result as in Sec. II A: The fixed point η(0) = q (0) =
p(0) = 0 is linearly stable for all k.

B. Closed geometry

For the water pump with the parameters indicated in Sec. II B (with d = 75 μm for the water
film thicknesses in the lower and the upper layer), Fig. 5 plots the pressure drop �P = p1 − p2 in
the middle of the pump channel on the maximal flow rate q, achieved at x = 1, for two depths of the
pump channel: b � 75 μm (δ/δy � 1, i.e., in the limit of the 2D model) and b = 75 μm (δ/δy = 1,
in the limit of the 3D model) during one complete period. Figure 5 shows positive and negative
flow rates inside the channel and a symmetrical behavior around q = 0: The liquid is pumped from
the lower to the upper side and vice versa. For δ/δy = 1, the pressure drop �P in the 3D model is
two times larger than in the 2D description. For δ/δy = 1, the viscous diffusion in the transversal
direction becomes stronger and we need a larger �P to cover the losses through diffusion.

For the parameters considered until now, ηmax/d < 0.01 � 1, which explains the linear depen-
dence shown by Fig. 5. Now we consider an ethanol pump with a silicon elastic beam having
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FIG. 6. Same as in Fig. 5 in the frame of the 2D model for an ethanol micropump with L = 2.294 mm,
a = 29 μm, d = 30 μm, ρ = 790 kg/m3, ν = 1.52 × 10−6 m2/s, ρA = 2.336 × 103 kg/m3, E = 1011 N/m2,
pA = 0.095N 2, N = 100, and an excitation frequency of 34 Hz. Insets a–e show the beam position at different
times during one complete period.

the parameters L = 2.294 mm, a = 29 μm, d = 30 μm, ρ = 790 kg/m3, ν = 1.52 × 10−6 m2/s,
ρA = 2.336 × 103 kg/m3, and E = 1011 N/m2. For this case, the model parameters are α = 38 and
β = 2 × 103. For actuating forces pAcos2(2πf t ) with the excitation frequency 2f = 34 Hz and
pA = 0.095N2 (N = 100), one achieves, for the maximal deformation in the string, η̃max = 9.2 μm,
almost 30% from the liquid thickness d = 30 μm. For this case, we obtain, during one complete
period, the representation shown by Fig. 6, which emphasizes in the insets the beam positions at
different times during one complete period. Two- and three-dimensional results for the ethanol pump
with b � 30 μm (δ/δy � 1) and b = 30 μm (δ/δy = 1) are presented in Fig. 7. By comparing the
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FIG. 7. Pressure difference �P = p1 − p2 in the middle of the channel versus flow rate q achieved at
x = 1 during one complete period for an ethanol micropump with L = 2.294 mm, a = 29 μm, d = 30 μm, ρ =
790 kg/m3, ν = 1.52 × 10−6 m2/s, ρA = 2.336 × 103 kg/m3, E = 1011 N/m2, pA = 0.095N 2, N = 100, and
an excitation frequency of 34 Hz. The comparison between the numerical results is given by 2D and 3D models.
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FIG. 8. Same as Fig. 5 for the two-layer micropump with the boundary conditions explained in Sec. III C
in the two-dimensional model and for different counterpressures −�P (0). The other parameters are L =
2.294 mm, a = 29 μm, d = 30 μm, ρ = 790 kg/m3, ν = 1.52 × 10−6 m2/s, ρA = 2.336 × 103 kg/m3, E =
1011 N/m2, pA = 0.095N 2P0, N = 100, P0 = 0.1185 × 105N/m2, and an excitation frequency of 34 Hz.

maxima of the flow rates from Figs. 5 and 7, we can see that the flow rate in the water pump is one
order of magnitude larger than in the ethanol pump.

C. Implementation of the valves: Ratchet systems

For the remaining paper we work in the frame of the 2D model (δ/δy � 1) with the parameters
of the two-layer ethanol pump with a silicon elastic beam with the parameters mentioned in the
preceding section. The valves are incorporated with the help of the boundary conditions. Three ideal
valves are implemented on the liquid pump depicted in Fig. 4: two on the left lateral wall in the upper
and the lower layer and the third one between the elastic beam and the right lateral wall. Thus, the
pump works in two cycles: During the first half cycle [Fig. 4(b)], the valves on the left lateral walls
are closed, the internal valve is open, and the beam moves from the maximal deflected position to the
horizontal position (see insets a–c in Fig. 6). For this half cycle, one applies the boundary conditions

q(t, x = 0) = 0, �P (t, x = 1) = 0.

For the second half cycle [Fig. 4(c)], the lateral valves are open, the internal valve is closed, and the
beam is actuated from the horizontal position in the upper direction until its maximal deformation
is reached. Now we apply the boundary conditions

�P (t, x = 0) = �P (0), q(t, x = 1) = 0,

with �P (0) an input parameter that is negative for the pump regime.
In this way we realize the flow only in one direction inside the pump (only positive flow rates),

creating in this way a ratchet system (Fig. 8). The transition jumps from the first half-time to the
second half-time (i.e., to the working time of the pump) from Fig. 8 become stronger with the increase
of the counterpressure −�P (0).

The averaged flow rate q̄ along the x direction on the second half-time of the micropump (during
the working time) has been plotted for two excitation frequencies. The curves plotted in Fig. 9
show an almost linearly monotonic decrease with the counterpressure −�P (0) (characteristic for
pumps [42]), steeper at higher excitation frequency. Indeed, the flow rate is increasing to the forcing
frequency because the volume displaced by each pump stroke is delivered more often. Multiplying
the values from the ordinate in Fig. 9 with the ethanol density, with the width (depth) of the pump
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FIG. 9. Averaged flow rate q̄ versus counterpressure −�P (0) for an ethanol micropump in two-layer ge-
ometry with L = 2.294 mm, a = 29 μm, d = 30 μm, ρ = 790 kg/m3, ν = 1.52 × 10−6 m2/s, ρA = 2.336 ×
103 kg/m3, and E = 1011 N/m2. The average has been done in the x direction and during the second half-time
of the micropump.

channel, and with the factor 2 (in the first half-time of the cycle the lateral valves communicating with
the external reservoirs are closed), we can calculate the mass of ethanol per unit volume evacuated
per cycle by the two-layer pump sketched in Fig. 4.

D. Porous beam

We assume now that the elastic beam in Fig. 4 is porous (with the permeability K), simulating
leakage. The kinematic boundary condition (13) is extended to

∂η

∂t
= −∂q

∂x
− K

ρν
(p1 − p2) (32)
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FIG. 10. Same as Fig. 5 for a porous elastic beam with K = 0.17 × 10−12 m. The other parameters are
L = 2.294 mm, a = 29 μm, d = 30 μm, ρ = 790 kg/m3, ν = 1.52 × 10−6 m2/s, ρA = 2.336 × 103 kg/m3,
E = 1011 N/m2, and �P (0) = 0.
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FIG. 11. Efficiency of the ethanol micropump designed in Fig. 4 for L = 2.294 mm, a = 29 μm, d =
30 μm, ρ = 790 kg/m3, ν = 1.52 × 10−6 m2/s, ρA = 2.336 × 103 kg/m3, and E = 1011 N/m2. The contour
lines of the efficiency are plotted as a function of (a) the counterpressure −�P (0) and the excitation frequency
(with pA = 0.095N 2P0, N = 100, and P0 = 0.1185 × 105N/m2) and (b) the actuated pressure pA and the
excitation frequency [with −�P (0) = P0].

(Darcy’s law). The presence of the porosity decreases the flow rates (Fig. 10). For K = 0.17 ×
10−12 m, our two-dimensional simulations reveal a 4% decrease of the maximal flow rate (from
1.14 × 10−6 m2/s to 1.1 × 10−6 m2/s) for the ethanol two-layer micropump. Higher permeabilities
in the system will lead to lower flow rates.

E. Efficiency of a micropump

For the pump geometry depicted in Fig. 4, the only dissipation mechanism is the shearing friction
inside the fluid. From hydrodynamic considerations, the energy dissipation due to frictional forces

084202-14



LIQUID PUMPING INDUCED BY TRANSVERSE FORCED …

inside the fluid per unit time is

ẆD = ρν

∫ L

0

∫ h

0
vx

∂2vx

∂z2
dz dx. (33)

From the derivation of the lubrication model (Sec. II A) we have

vx = 6q

h3
z(h − z)

and

∂2vx

∂z2
= −12q

h3
.

According to the scaling introduced in Sec. II A, we obtain, for the energy dissipated along the pump
channel per unit time,

ẆD = −12
∫ L

0

∫ h

0
vx

q

h3
dz dx = −12

∫ L

0

q2

h3
dx. (34)

We define the efficiency E of the micropump

E = Wliq

Wliq + |WD| , (35)

where Wliq represents the liquid work performed in the second half cycle

Wliq =
∫

2nd half-time
[−�P (0)]q(0)dt,

with −�P (0), q(0) calculated at x = 0, and the dissipated energy (as an absolute value) evaluated
over the second half of the micropump

|WD| =
∫

2nd half-time
|ẆD|dt.

The diagrams plotted in Fig. 11 show contour lines of the efficiency as a function of the
counterpressure −�P (0), the excitation frequency, and the pressure at the actuator pA. The pump
efficiency increases with the increase of the counterpressure −�P (0) and decreases with the
increase of the excitation frequency or the actuated pressure pA, when the viscous friction inside the
fluid becomes higher. For excitation frequencies varying between 10 and 20 Hz, pA = 0.095N2P0,
N = 100, P0 = 0.1185 × 105N/m2, and counterpressures −�P (0) between 105 and 2 × 105N/m2,
the efficiencies of the liquid pump depicted in Fig. 4, with the parameters mentioned in Sec. III B,
are in the same range as those calculated for a water pump by air lift [43] for water temperatures
between 30◦ and 60◦.

IV. CONCLUSION

We have developed a lubrication theory for two pump geometries: a single thin liquid layer actuated
by a periodic force at the elastic beam and a two-layer geometry actuated by an elastic beam. For
the second geometry, the beam actuates the liquid from both sides. The Euler-Bernoulli equation
for transverse deformations of an elastic beam has been coupled to the fundamental hydrodynamic
equations: the Navier-Stokes equation and the continuity equation in the long-wave approximation.
In this way, we connect the transverse displacement of the beam with hydrodynamic quantities
(pressure, velocity fields, and flow rates). Appropriate boundary conditions incorporate the function
of the valves. Easy to implement, convenient and suitable for time-consuming problems (even in three
spatial dimensions), the derived lubrication model is very attractive not only for the fundamental
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research. This tool can also become a competitive engineering software for useful applications in
micromachinery.

The derivation of the theoretical model was followed by numerical simulations. Thus, we have
estimated flow rates (in two and three spatial dimensions) for different system parameters and we
have shown how to consider a porous elastic beam (simulating leakage) and how to compute the
efficiency of a well-designed liquid pump.
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