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Turbulent magnetohydrodynamic flow in a square duct:
Comparison of zero and finite magnetic Reynolds number cases
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Three-dimensional turbulent magnetohydrodynamic flow in a duct with a square cross
section and insulating walls is investigated by direct numerical simulations. The flow evolves
in the presence of a uniform vertical magnetic field and is driven by an applied mean pressure
gradient. A boundary element technique is applied to treat the magnetic field boundary
conditions at the walls consistently. Our primary focus is on the large- and small-scale
characteristics of turbulence in the regime of moderate magnetic Reynolds numbers up
to Rm ∼ 102 and a comparison of the simulations with the quasistatic limit at Rm = 0.
The present simulations demonstrate that differences to the quasistatic case arise for the
accessible magnetic Prandtl number Pm ∼ 10−2 and different Hartmann numbers up to
Ha = 43.5. Hartmann and Shercliff layers at the duct walls are affected differently when a
dynamical coupling to secondary magnetic fields is present. This becomes manifest by the
comparison of the mean streamwise velocity profiles as well as the skin friction coefficients.
While large-scale properties change only moderately, the impact on small-scale statistics is
much stronger as quantified by an analysis of local anisotropy based on velocity derivatives.
The small-scale anisotropy is found to increase at moderate Rm. These differences can be
attributed to the additional physical phenomena which are present when secondary magnetic
fields evolve, such as the expulsion of magnetic flux in the bulk of the duct or the presence
of turbulent electromotive forces.
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I. INTRODUCTION

Flows of electrically conducting fluids that interact with an external or self-generated magnetic
field are termed magnetohydrodynamic (MHD) flows. They are of fundamental importance in most
astrophysical phenomena and have their relevance in several industrial applications [1,2]. On the
technological scale, magnetic fields are often applied to manipulate conducting flows, for example,
in continuous casting of steel and aluminium [1], Czochralski crystal growth [3], and electromagnetic
pumping of liquid metals [4]. One of the dimensionless parameters that characterize these flows is
the magnetic Reynolds number Rm, which is given by the ratio of the magnetic diffusion timescale
to the advection timescale. It is defined as

Rm = tdiff

tadv
= L2/λ

L/U
= UL

λ
, (1)

where L and U represent the characteristic length and velocity scales in the flow and λ = (μ0σ )−1 is
the magnetic diffusivity. Here, μ0 represents the magnetic permeability of free space and σ denotes
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the electrical conductivity of the fluid. The magnetic Reynolds number is the magnetic analog to the
hydrodynamic Reynolds number which relates viscous diffusion to advection timescale

Re = tvis

tadv
= L2/ν

L/U
= UL

ν
, (2)

with ν being the kinematic viscosity of the fluid. Kinematic viscosity and magnetic diffusivity can
be related through a third dimensionless number, the magnetic Prandtl number

Pm = ν

λ
= Rm

Re
. (3)

In MHD flows with Rm � 1, the secondary magnetic field which is generated by eddy currents,
is often negligible. As a consequence, although the magnetic field influences the evolution of the
turbulent velocity field through the Lorentz force density in the momentum balance, the magnetic
field remains basically unchanged. This so-called quasistatic limit applies in particular to several
technological applications of MHD turbulence for which the working fluid is a liquid metal. Early
MHD laboratory experiments of Hartmann et al. [5] and Murgatroyd [6] in liquid mercury belong
to this limit. These experiments focused on the impact of the magnetic field on the skin friction (or
pressure drop). Later experiments such as those by Brouillette et al. [7] and Reed et al. [8] aimed at
a deeper understanding of the transition to turbulence in the presence of a prescribed strong external
magnetic field and the impact on Reynolds stresses and turbulent fluctuations.

Analytical solutions of laminar MHD shear flows have been obtained by Shercliff [9] for
electrically insulated walls, Williams [10], and later Hunt [11] for electrically conducting walls. More
recent studies such as direct numerical simulations (DNS) of Kobayashi [12], Shatrov et al. [13],
and Krasnov et al. [14] focused on the statistical analysis of MHD turbulence in rectangular duct
flows. Liquid metals are high mass density fluids and in addition, although they are good conductors
of electric currents, they have very low viscosity such that resistive diffusion dominates viscous
diffusion by several orders of magnitude [15]. Thus typical values of the magnetic Prandtl number
are Pm ∼ 10−5 and, consequently, the flow Reynolds numbers have to be as high as Re � 105 to
obtain Rm � 1 [see Eq. (3)]. This will be the case in some of the technological applications, so
that the validity of the quasistatic approximation and the differences to a full magnetohydrodynamic
treatment in the same flow setup suggest a closer inspection and detailed comparison of finite-Rm
with quasistatic simulations. This sets the stage for the present study.

Here, we study a simple turbulent magnetohydrodynamic shear flow at a finite Rm > 0 by means
of three-dimensional DNS and compare the statistics with the quasistatic approximation of the same
flow at Rm = 0. We take a fundamental configuration, the Hartmann-like flow [5] (sometimes also
referred to as Shercliff flow) in a straight duct with a square cross section in the presence of a strong,
uniform magnetic field B0. The configuration is sketched in Fig. 1. Two types of boundary layers
are formed in the vicinity of the duct walls. Hartmann layers (HL) are generated at the walls normal
to B0 and Shercliff layers (SL) are at the walls parallel to B0 [5,9].

We will investigate the impact of the coupling between velocity and magnetic fields on large-scale
turbulence properties such as mean profiles of velocity and magnetic field, turbulent fluctuations, and
drag coefficients. Our analysis also includes physical phenomena such as magnetic flux expulsion
in the bulk [16] which are absent in the quasistatic limit. The explusion of magnetic flux has
been analyzed recently in a two-dimensional turbulent MHD channel flow [17]. Furthermore, we
investigate the impact of the dynamics of the magnetic field on the small-scale statistics. Both types
of boundary layers, HL and SL, have different properties and the turbulent flow as a whole becomes
anisotropic. This is quantified by local isotropy measures which are based on velocity derivatives.

The following point should be kept in mind. Flows at realistic magnetic Prandtl numbers and
moderate magnetic Reynolds numbers are still inaccessible to DNS studies since at least six orders
of magnitude in scales have to be fully resolved. Therefore, we will artificially increase the magnetic
Prandtl number to Pm ∼ 10−2, which will be in line with an increase of the magnetic Reynolds
number to Rm ∼ 102. This allows us to obtain an operating point for our comparison of the differences
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FIG. 1. Schematic drawing of the MHD duct flow configuration, with a uniform imposed vertical magnetic
field, B0 = B0ez. Also sketched are the Hartmann (HL) and Shercliff (SL) layers, which are formed at the
field-normal and side walls of the square duct respectively. In dimensionless units, y ∈ [−1, 1] and z ∈ [−1, 1].

between the quasistatic limit and the full magnetohydrodynamic cases in a DNS setting. We will
come back to this point in our final discussion of the results. One reason why DNS in an MHD
duct flow has a limited range of accessible parameters is the more comprehensive treatment of the
boundary conditions for the magnetic field in this geometry. In a nutshell, one has to solve the Maxwell
equations outside the flow domain and assure continuity of magnetic field lines when they penetrate
the duct. As shown in Ref. [18], this leads to the application of a boundary element technique. The
DNS in that work was limited to Rm � 100 and Re � 5000. Here, we will extend our previous study
to higher magnetic and hydrodynamic Reynolds numbers.

The outline of the paper is as follows. We first describe the governing physical model along with
some details of the computational procedure in Sec. II. Results of the large-scale statistics are given
in Sec. III. Here the velocity field structure, the magnetic flux expulsion, and friction coefficients will
be investigated. Section IV is dedicated to the small-scale statistics. This is followed by a summary
and a brief outlook in Sec. V.

II. EQUATIONS OF MOTION AND NUMERICAL METHOD

A. Magnetohydrodynamic equations

We consider the turbulent flow of an electrically conducting fluid (such as a liquid metal) in a
straight duct of square cross section (2L × 2L), driven by an applied mean pressure gradient G < 0
in the streamwise x direction. The flow is assumed to be incompressible with a constant mass density
ρ. Upon this flow, a constant and uniform magnetic field B0 = B0ez is imposed, which is generated
by external electric currents (see also Fig. 1). Motion of the fluid across the magnetic field generates
eddy currents in the fluid whose density is given by j (x, t ). These currents in turn generate their own
magnetic field, which will be referred to as the secondary magnetic field and denoted by bs (x, t ).
The total magnetic field is given by

b(x, t ) = B0 + bs (x, t ) = B0ez + bs (x, t ). (4)

This total magnetic field interacts with the eddy currents j to produce a Lorentz force with a
volumetric density of j × b on the fluid. The volume flow rate in the duct is assumed to be constant
and periodic boundary conditions are applied in the streamwise direction. Thermal effects and
gravitational forces are neglected throughout this study. The flow domain, i.e., duct interior, is denoted
by �i and the duct exterior by �e. The physics of the problem is governed by the Navier-Stokes
equation for the fluid velocity field u(x, t ) and the magnetic induction equation for the evolution
of the magnetic field. The velocity and the magnetic field are constrained by the divergence-free
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condition. Furthermore, Ampère’s law describes the relation between the current density j and the
magnetic field b.

We choose the half channel width L as the characteristic length scale, the average streamwise
velocity U as the velocity scale, and the magnitude of the imposed field B0 as the scale for the
magnetic field. In addition, the scales L/U , ρU 2, and σUB0 are used for time, pressure, and current
density, respectively. The governing equations can be written in the dimensionless form as

∂u
∂t

+ (u · ∇)u = −Gex − ∇p + 1

Re
∇2u + Ha2

Re
( j × b), (5)

∂bs

∂t
= ∇ × (u × b) + 1

Rm
∇2bs , (6)

∇ · u = 0, (7)

∇ · b = 0, (8)

j = 1

Rm
∇ × b, (9)

where ∇p refers to the pressure gradient induced in the flow field in addition to the imposed mean
pressure gradient G. The third dimensionless parameter which appears in the momentum equation
is the Hartmann number

Ha = B0L

√
σ

ρν
. (10)

Note that Rm and Re are related by the magnetic Prandtl number Pm = Rm Re−1 = νλ−1, which is
purely dependent on the fluid properties. However, in this paper, we will treat Rm (instead of Pm)
as the independent parameter.

B. Boundary conditions and treatment of magnetic field outside the duct

No-slip boundary conditions are assumed for the fluid flow at all walls Σ . These walls are
additionally electrically insulating. Both conditions result in

u = 0 and j · n̂ = 0 for x ∈ Σ, (11)

where n̂ is the unit vector in the wall-normal direction. In the streamwise x direction, we apply
periodic boundary conditions. In addition, the following constraint on the flow across the cross
section Ac = 2×2 is applied: ∫

Ac

uxdA = 1. (12)

The solution of Eq. (6) requires boundary conditions for the magnetic field at the duct walls Σ , which
are not automatically implied by condition (11). Hence, it is necessary to consider the magnetic field
in the exterior region in order to obtain the necessary boundary conditions for b. The magnetic field
in the exterior is curl free. Thus bs can be represented by a magnetic scalar potential ψ which leads
to b = B0 − ∇ψ . The resulting equation for the secondary magnetic field in the exterior is

∇2ψ = 0 in �e ∪ Σ. (13)

Taking advantage of the periodicity in the x direction, we can use a Fourier transformation as

[bs , ψ](x, t ) = �
⎧⎨
⎩

k= Nx
2 −1∑

k=0

[
b̂

s

k, ψ̂k

]
(y, z, t ) exp(iαkx)

⎫⎬
⎭, (14)
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which, when inserted into Eq. (13), yields a Helmholtz equation for each streamwise wave number
of the exterior magnetic field, (∇2 − α2

k

)
ψ̂k = 0, (15)

along with the definition

b̂
s

k (y, z, t ) =

⎛
⎜⎜⎝

−iαkψ̂k

− ∂ψ̂k

∂y

− ∂ψ̂k

∂z

⎞
⎟⎟⎠. (16)

Here, αk = 2πk/lx represents the streamwise wave number, where lx = Lx/L is the length of the
duct. Additionally, we introduce the following notation used in the two-dimensional Fourier space.
The rectangular boundary is denoted by Γ , the coordinate along the path of this boundary is denoted
by l. Furthermore, r = yey + zez denotes the position vector in the yz plane and n refers to the
direction that is outward normal to Γ . Very far away from the duct walls, the magnetic field satisfies
the far-field condition b̂

s

k → 0 and ψ̂k → 0, respectively. Then the solution can be expressed as a
boundary integral equation for ψ̂k at the rectangular boundary as

β
(
r ′)ψ̂k (r ′) = P.V.

∮
Γ

[
Gk (r ′, r )b̂s

nk (r ) + ψ̂k (r )
∂Gk (r ′, r )

∂n

]
dl(r ), (17)

where b̂s
nk (r ) = −∂nψ̂k (r ) and β(r ′) is a constant that depends on the location of the pole r ′ on the

boundary contour Γ . One has β(r ′) = 3/4 when r ′ is a corner point of Γ and β(r ′) = 1/2 otherwise
(see Bandaru et al. [18], Iskakov et al. [19] for further details). Gk represents the Green’s function
of the Helmholtz operator and is given by

Gk (r ′, r ) = 1

2π
K0(αk|r ′ − r|), (18)

with K0 being the MacDonald function which corresponds to the complex Hankel function of order
zero, H0 [20]. It can be seen that the evaluation of both, β(r ′) and Gk (r ′, r ), requires the knowledge
of only the geometry of the duct. Hence they are known a priori. Equations (16) and (17) together
constitute the nonlocal boundary conditions that are necessary for the solution of (6) and hence the
need to explicitly solve for the magnetic field in the duct exterior can be avoided.

In this paper, results for moderate Rm are compared with those for the quasistatic limit Rm → 0.
For the latter case bs is neglected and thus b = B0. The electric field is expressed as the gradient of
a scalar potential φ and consequently Ohm’s law becomes j = −∇φ + u×B0. The scalar potential
φ is obtained from the Poisson equation

∇2φ = ∇ · (u × B0), (19)

with Neumann boundary conditions ∂nφ = 0 at Σ . This equation sustains a divergence-free current
density field and is solved instead of the induction equation (see also Tympel et al. [21] for further
details).

C. Numerical method and direct numerical simulations

The duct domain (lx×2×2) is discretized into a rectangular Cartesian grid and the variables
are approximated at the grid points (collocated grid arrangement). A uniform grid is used in the x

direction, whereas grid stretching is applied in the y and z directions to resolve the thin boundary
layers near the walls. The governing equations are solved by a second-order finite-difference scheme
with explicit time stepping except for the integral equation (17), which is solved using a boundary
element method [18]. We provide here a brief note on the coupling of the magnetic induction
equation (6) with the boundary conditions. First, it must be noted that across the boundary Σ , all
the three components of the magnetic field are continuous whereas only the tangential components
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TABLE I. Parameters for the DNS. All runs are performed on a domain size of 2π×2×2. The magnetic
Reynolds number Rm, the Reynolds number Re, the Hartmann number Ha, the magnetic interaction parameter
(or Stuart number) N = Ha2/Re, the magnetic Prandtl number Pm, as well as the number of grid points in the
three space directions are listed. For Run 5, �x+ = 8.9 and �y+

min = �z+
min = 1.1 in inner viscous units taken

with respect to the wall shear stress at the Shercliff layers.

Rm Re Ha N Pm Nx Ny Nz

Run 0 14 500 0 0 512 192 192
Run 1 0 14 500 29 0.06 0.0 512 192 192
Run 2 400 14 500 29 0.06 2.8×10−2 512 192 192
Run 3 0 14 500 43.5 0.13 0.0 512 192 192
Run 4 200 14 500 43.5 0.13 1.4×10−2 512 192 192
Run 5 400 14 500 43.5 0.13 2.8×10−2 512 192 192

of the electric field are continuous (see Ref. [22]). Because of this, Eq. (6) is valid on Σ only for
the component of bs normal to the boundary and hence is used to compute bs

n at each time step. The
bs

n so computed is used in the Fourier space (as b̂s
nk) to compute ψ̂k through Eq. (17), which is in

turn used to compute the two tangential components of the magnetic field through Eq. (16). This
procedure automatically ensures that the wall-normal component of j vanishes [Eq. (11)].

Table I summarizes the essential parameters of our series of five direct numerical simulations
(DNS). A streamwise length of lx = 2π is found to be sufficient for a complete decay of the spatial
correlations of the turbulent velocity fluctuations. Furthermore, a series of grid sensitivity studies
indicated no significant differences when the streamwise and cross-stream resolutions were enhanced
(see the Appendix). The simulation runs are chosen at a moderate Reynolds number Re = 14500
along with two different Hartmann numbers Ha = 29 and Ha = 43.5. These parameters were also
used in a large-eddy simulation study by Kobayashi [12] at Rm = 0 and correspond to a fully turbulent
regime and a partly turbulent regime respectively for the two Hartmann numbers.

It is worthwhile to note that the simulations with Rm > 0 impose a significant computational
overhead. The computational cost per time step for Rm > 0 increased only by a factor of about 1.6
as compared to the quasistatic simulation. However, the use of explicit time stepping necessitates a
significantly smaller time step for Rm ∼ 102. Additionally, as will be apparent in the next section,
convergence of statistics for Rm > 0 requires a much longer runtime, leading to an overall increase
in computational cost. A total of about 1.8 million core hours were necessary for the moderate Rm
simulations presented here.

III. LARGE-SCALE STATISTICS

A. Temporal variation of velocity and magnetic fields

The first step in the comparison is an investigation of the large-scale structure of velocity and
magnetic fields. Figure 2 displays the evolution of the kinetic energy, which is obtained as the mean
square of fluctuations about the streamwise average, the rescaled total enstrophy and the rescaled
variance of the secondary magnetic field bs with respect to time. The rescaling is chosen such that
these quantities will be directly comparable as we will see later in the discussion of the energy
balance. Runs 1, 2, 3, and 5 are shown. The quantities are defined as

Ekin(t ) = 1
2 〈(u − 〈u〉x )2〉V , (20)

E�(t ) = 1

2Re
〈ω2〉V , (21)

Eb(t ) = N

2Rm
〈(b − B0)2〉V = N

2Rm
〈(bs )2〉V , (22)
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FIG. 2. Evolution of volume-averaged quantities vs time. Data for runs 1, 2, 3, and 5 are shown. (a) Kinetic
energy of fluctuations. (b) Rescaled total enstrophy. (c) Energy of the secondary magnetic field bs . The subscript
V indicates averaging over the whole duct. Quantities are given in (20)–(22). The hydrodynamic Reynolds
number is Re = 14 500 in all cases.
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FIG. 3. Instantaneous contours of the streamwise velocity ux (x0, y, z, t0) at duct cross section x0 = π . Left:
run 3 at Rm = 0. Right: run 5 at Rm = 400. The contour range for both panels is indicated by the color bar to
the right. Hartmann number Ha = 43.5.

where 〈·〉V is a duct volume average, 〈·〉x an average in streamwise direction, and ω = ∇ × u. After
an initial period, all runs are relaxed into a statistically stationary state which is used for the statistical
analysis.

One expects that the flow at Rm = 400 shows significant differences from the flow at Rm = 0.
However, it turns out that the differences for both Hartmann numbers remain small. The flow at
moderate Rm is seen to settle to a slightly higher level of fluctuation kinetic energy Ekin in comparison
to the quasistatic case, whereas the total enstrophy E� remains almost the same. The energy in
the secondary magnetic field [see Fig. 2(c)] is observed to be comparable to the fluctuation kinetic
energy and hence much smaller as compared to the kinetic energy of the mean flow. The small effect
of the magnetic field on the fluid motion is due to the small values of the interaction parameter N .

One distinctive feature of the statistically steady state at moderate Rm is the large temporal
variation in the volume-averaged quantities occurring on a slower time scale as compared to the flow
at Rm = 0. This can be seen clearly in Fig. 2(a) and confirms a similar observation made in our earlier
preliminary study conducted at Re = 5000 and Ha = 15 (see Ref. [18]). Though the exact reason
for such behavior is unclear, such variations may possibly be caused by the propagation of Alfvèn
waves in the magnetohydrodynamic flow. These linear waves have a timescale tA and the ratio

tA

tadv
= U

vA

=
√

RmRe

Ha
= 55.4 (23)

is much larger than unity in the present cases. Here, the Alfvèn velocity is defined as vA = B0/
√

ρμ0.
We now turn to the instantaneous distributions of the velocity and magnetic fields. Figure 3 shows

the comparison of the instantaneous axial velocity distribution in the middle cross section (x = π )
at Ha = 43.5. It is interesting to observe that the flow at Rm = 400 (right) shows a significantly
different structure in the core region of the cross section. This corresponds to the existence of
large-scale turbulence in the core region at Rm = 400 in contrast to an almost laminar state at
Rm = 0 (left). The effect of the moderate Rm on the boundary layers, however, is not immediately
apparent from this picture. The corresponding magnetic field lines for run 5 are shown in Fig. 4 at
the same instant. One can see that the field lines are stretched significantly in the direction of the
mean flow, particularly in the core region. A maximum axial magnetic field amplitude of bx ≈ 12
develops here, with the maximum close to the Hartmann walls but not inside the boundary layers.
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FIG. 4. Instantaneous magnetic field line plot at Rm = 400 and Ha = 43.5 for run 5 taken at the same time
as in the right panel of Fig. 3. The contour coloring represents the magnitude of the streamwise magnetic field
component bx . The mean flow is from the upper left to the lower right.

Furthermore, the magnetic field also displays a significant amount of turbulence due to the fact that
Pm in our case is still fairly large.

B. Mean magnetic field and flux expulsion

Mean quantities refer to fields that are averaged with respect to time and streamwise (x) direction
in this and the subsequent subsection. They are denoted by 〈·〉x,t . Figure 5 (left) shows the distribution
of mean axial magnetic field 〈bx〉x,t in the duct cross section for Rm = 400. It can be seen that the
resulting field is an order of magnitude larger than the imposed magnetic field B0ez, with a change

FIG. 5. Structure of the mean magnetic field at Rm = 400 and Ha = 43.5. Left: Contours of the mean axial
magnetic field 〈bx〉x,t in the duct cross section. Right: Projected field lines of the mean magnetic field in the
cross section, colored by its magnitude 〈b⊥〉x,t .
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FIG. 6. Profiles of the mean magnetic field components. Left: Mean axial magnetic field 〈bx〉x,t along
y = 0. The dashed lines indicate the analytical solution for the corresponding laminar flow [23,24]. Right:
Mean wall-normal magnetic field 〈bz〉x,t profiles vs z along lines y = 0 (solid lines) and versus y along z = 0
(dashed lines), respectively. The Hartmann number is Ha = 43.5 and run 3 is the quasistatic run.

of sign which occurs across the plane at z = 0. We note that there is no net axial magnetic field in the
cross section and 〈bx〉x,t = 0 at the walls. The structure of the mean axial magnetic field is similar to
that obtained with a laminar flow (an analytical series solution exists for the MHD duct flow at finite
Rm with insulating walls [23,24]). It is also important to recall that such high magnitudes of bx are not
converted into a significant magnetic energy (as compared to the kinetic energy), as discussed earlier.
In Fig. 5 (right), the field lines of the cross-stream magnetic field, i.e., b⊥ = (by, bz), are shown.
They are projected onto the y-z plane and shown together with the distribution of their magnitude,
which is given by

〈b⊥(y, z)〉x,t =
√

〈by〉2
x,t

+ 〈bz〉2
x,t (24)

for the magnetic Reynolds number Rm = 400.
A significant amount of cross-stream magnetic flux is expelled from the center of the duct and

the duct corners, which is indicated by deep-blue filled contours. In line with this expulsion, the
cross-stream magnetic flux is seen to be enhanced in the side regions and near the Hartmann walls
close to y = 0. This leads to a deflection of the magnetic field lines toward the side walls. Such a
redistribution of magnetic flux in turn has a significant effect on the mean flow distribution. The
profiles of the mean axial magnetic field 〈bx〉x,t are shown in Fig. 6. A steep variation over the
Hartmann layer is observable in Fig. 6 (left) with little variation in the spanwise direction. Also
plotted in Fig. 6 (left) are the analytical series solutions for bx , when the flow is considered to be
laminar at these parameters. It is observed that the qualitative behavior of these profiles is similar to
that of the laminar case. Turbulence, however, is seen to reduce the peak value of the magnetic field
significantly. Moreover, the peak value of 〈bx〉x,t is found to scale as 〈bx〉max

x,t ∼ Rm Ha−1.
At this point, it is instructive to note that the tangential component of the magnetic field has a

significant amplitude at the duct walls. This is in contrast to the often used assumption of pseudo-
vacuum boundary conditions (bt = 0) for the magnetic field at the walls, as in several dynamo
simulations [25,26].

C. Mean velocity field

Figure 7 shows the contours of the distribution of mean axial velocity 〈ux〉x,t in the duct cross
section. At Rm = 400, the thin Hartmann and Shercliff boundary layers, similar to those for case
Rm = 0, are retained. However, there are some significant changes in their structure when the
magnetic Reynolds number is increased. These changes can be clearly seen in Fig. 7(c), where the
difference 〈ux〉x,t (Rm = 400) − 〈ux〉x,t (Rm = 0) is plotted. One can observe that, in the Hartmann
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FIG. 7. Contours of the mean axial velocity 〈ux〉x,t in the cross section at Ha = 43.5. (a) Rm = 0.
(b) Rm = 400. (c) Difference 〈ux〉x,t (Rm = 400) − 〈ux〉x,t (Rm = 0). The contour range spans from 〈ux〉x,t = 0
at the light end to 〈ux〉x,t = 1.35 at the dark end in panels (a) and (b).

layers, the mean velocity is increased in the central region around y = 0 when Rm �= 0 but decreases
everywhere else. This behavior is in line with the cross-stream magnetic field distribution in the
Hartmann layers, as the component bz results in an axial Lorentz force that acts to accelerate the
flow in this region.

A higher velocity in the central region of the duct can be attributed to the expelled magnetic flux in
that region and hence a lower decelerating force. Furthermore, a higher velocity in the Shercliff layers
as well as in regions further toward the duct center can be explained by the mean flow redistribution,
that occurs in order to maintain a constant flow rate in the presence of the net flow reduction near the
Hartmann walls. Mean velocity profiles are also shown in Fig. 8. They clearly indicate an enhanced
mean velocity at the side wall regions where the Shercliff layers are formed and the simultaneous
decrease occurring at the walls where the Hartmann layers are present. However, given that Rm ∼ 102

is significantly larger compared to the quasistatic case, the quantitative effect on the mean axial flow
velocity is surprisingly small. To summarize, our analysis reveals systematic modifications of the
mean axial velocity distribution when Rm increases, with varied trends observed for different regions
of the duct cross section.

Figure 9 shows a comparison of the vectors of the transverse components of the mean flow in
the cross section for the Rm = 0 and Rm = 400 cases. As in the quasistatic case, the four pairs
of counter-rotating rolls (without diagonal symmetry) are still retained in the Rm = 400 case, but

FIG. 8. Comparison of the profiles of the mean axial velocity 〈ux〉x,t along the lines z = 0 (left panel) and
y = 0.5 (right panel). The Hartmann number is again Ha = 43.5 and run 3 is the quasistatic case. Only one half
of the cross section is plotted in both panels.
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FIG. 9. Vectors of the mean secondary flow in the cross section at Ha = 43.5. (a) Rm = 0. (b) Rm = 400.

The maximum magnitude of the cross-stream velocity max (
√

〈uy〉2
x,t

+ 〈uz〉2
x,t ) ≈ 0.019 for both the cases.

with significant differences. The rolls at moderate Rm have a vertically elongated structure with the
horizontal span limited to about |y| � 0.25, whereas in the Rm = 0 case they span the entire width
of the duct cross section. Furthermore, although the maximum magnitude of the mean transverse
velocity is approximately the same in both cases (and occurs close to the Hartmann walls), the velocity
distribution is more homogenized in the Rm = 400 case with much larger velocities observed both
at the interface of the rolls and extending until z = 0. The reason for such a structural change seems
to stem from the dynamics in the Hartmann layer. At first it must be recognized that the bottleneck
for the secondary flow in the larger vortex is close to the Hartmann walls as can be seen from the
high density (as well as longer) horizontal vectors in this region. This horizontal flow close to the
Hartmann walls is inhibited effectively in the moderate Rm case by the enhanced horizontal Lorentz
force (in the y direction) that extends to about y ≈ 0.25. The latter is caused predominantly by the
〈jz〉x,t 〈bx〉x,t component of the Lorentz force that points in the direction opposing the horizontal flow
in the Hartmann layers. Because of this, the flow in the larger vortex is limited to a shorter horizontal
span, but as a result also has a stronger vertical velocity outside Hartmann layers.

D. Skin friction coefficients

In view of applications, the skin friction coefficient is one of the central quantities when
characterizing turbulent wall-bounded flows. In the following, we present this analysis for the magne-
tohydrodynamic duct flow at hand. As we have already seen in the previous paragraphs, differences
can be observed between the quasistatic and full magnetohydrodynamic case. Furthermore, it is
expected that the behavior at the Hartmann and Shercliff layers will be different. The skin friction
coefficients of both types of layers are defined as follows:

Cf,HL = 1

Re

〈
∂ux

∂n

∣∣∣∣
z=−1

+ ∂ux

∂n

∣∣∣∣
z=+1

〉
x,y,t

, (25)

Cf,SL = 1

Re

〈
∂ux

∂n

∣∣∣∣
y=−1

+ ∂ux

∂n

∣∣∣∣
y=+1

〉
x,z,t

. (26)
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TABLE II. Comparison of the skin-friction coefficients at Re = 14 500. The numbering of the DNS runs
corresponds with that in Table I.

Cf,HL Cf,SL Cf

Run 0 5.64×10−3 5.64×10−3 5.64×10−3

Run 1 6.40×10−3 3.66×10−3 5.03×10−3

Run 2 6.24×10−3 4.08×10−3 5.16×10−3

Run 3 5.90×10−3 4.08×10−3 4.99×10−3

Run 4 6.04×10−3 4.69×10−3 5.37×10−3

Run 5 5.31×10−3 5.13×10−3 5.22×10−3

The modified mean velocity field (which we discussed in the last subsection) has a substantial effect
on the skin friction coefficients. These trends are summarized in Table II, where we list the skin
friction coefficients with respect to either pair of walls as well as the overall skin friction coefficient.
The latter quantity is defined as the arithmetic mean,

Cf = 1
2 (Cf,HL + Cf,SL). (27)

As expected, Cf,HL at Rm = 400 decreases whereas Cf,SL increases as compared to the quasistatic
case. However, the net effect on the overall skin friction coefficient Cf seems to be almost negligible
due to the opposing trends in both types of boundary layers. The same behavior is observed in the
case of the smaller Hartmann number, Ha = 29, when the flow is fully turbulent, although the impact
at both the boundary layers differs.

It is interesting to see how the skin friction coefficient varies with the Hartmann number, when
Rm is finite but moderate. The behavior in the quasistatic case is well known from the existing
experiments and numerical studies: On the one hand, skin friction at the Shercliff walls decreases
with an increase of the Hartmann number due to the suppression of turbulence in the side layers. On
the other hand, the skin friction at the Hartmann walls increases with Hartmann number due to the
so-called Hartmann flattening effect of the mean profile. However, in the case of Rm = 400, we find
that skin friction coefficient variation remains small when Ha is enhanced moderately. The change
becomes larger when Ha is further increased. This is shown in Fig. 10, where the variation of Cf,HL

and Cf,SL with the Hartmann number is plotted. In fact, for the Hartmann walls, it is observed that

FIG. 10. Variation of the individual skin-friction coefficients Cf,HL and Cf,SL with the Hartmann number at
Rm = 0 and Rm = 400.
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FIG. 11. Comparison of the total turbulent stress components τ11 = −〈u′
xu

′
x + NRm−1b′

xb
′
x〉x,t (left panel)

and τ12 = −〈u′
xu

′
y + NRm−1b′

xb
′
y〉x,t (right panel) along the line z = 0.

the skin friction coefficient decreases for Ha = 29 and then increases again for Ha = 43.5. Such data
can be potentially useful when predicting the skin friction coefficients in the case of Rm ∼ 1 (that
are encountered in practical applications), by interpolation.

IV. SMALL-SCALE STRUCTURE

A. Turbulent stresses

We now turn to the effect of a moderate Rm on the turbulent stresses. We apply the standard
Reynolds decomposition of all fields

u′(x, y, z, t ) = u(x, y, z, t ) − 〈u(y, z)〉x,t , (28)

b′(x, y, z, t ) = b(x, y, z, t ) − 〈b(y, z)〉x,t , (29)

p′(x, y, z, t ) = p(x, y, z, t ) − 〈p(y, z)〉x,t , (30)

where the subscript prime indicates the fluctuation. Averaging the momentum equation (5) in the
homogeneous directions x and t yields the Reynolds-averaged Navier-Stokes equation as

∂t U + ∇ · (UU ) = Gex − ∇
〈
p + N

Rm
b2
〉
x,t

+ Re−1∇2U + ∇ · τ + N

Rm
∇ · (B B), (31)

where the mean velocity and magnetic fields are denoted as U = 〈u〉x,t and B = 〈b〉x,t respectively.
The total turbulent stress tensor is given by

τij =
〈
−u′

iu
′
j + N

Rm
b′

ib
′
j

〉
x,t

. (32)

The two terms in the above equation correspond to the hydrodynamic part (Reynolds stress) and the
magnetic stress respectively. It must be noted that Eq. (31) is not valid in the quasistatic case and in
turn τij will just contain the Reynolds stress part. We are primarily interested in those components
of the tensor that affect the mean axial velocity, that is, τ1j . Furthermore, since N/Rm ∼ 10−3, the
contribution of the magnetic stresses to the total turbulent stress can be considered negligible.

Figure 11 shows the distribution of the dominant turbulent stress components τ11 and τ12 along
the spanwise direction (z = 0), for the cases with Ha = 43.5. With increase in Rm, both the stress
components show a significant increase in the Shercliff layer and beyond up to about |y| ≈ 0.7.
This is possibly due to the enhancement of streamwise fluctuations by the large value of induced
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bx . Closer to the duct center, τ11 shows negligible variation with Rm, whereas τ12 becomes slightly
lower as Rm increases.

B. Turbulent energies and electromotive forces in magnetohydrodynamic case

In the following, we investigate the energy balance of the small-scale fluctuations more closely.
In the MHD case, we have contributions due to velocity and secondary magnetic field, respectively.
We define the total turbulent energy k for a finite-Rm duct flow as

k = ku + kb = 1

2
〈u′ 2〉x,t + N

2Rm
〈b′ 2〉x,t . (33)

Definition (33) contains contributions from both the kinetic energy as well as the magnetic energy
of fluctuations. These definitions differ from the volume averages Ekin(t ) and Eb(t ) which we have
defined in (20) and (22), respectively. In the present MHD cases, the kinetic energy part will dominate,
as we discussed earlier. The transport equation for the evolution of k(x, t ) is given by

Dk

Dt
= ∂k

∂t
+ (u · ∇)k = Pk − εk + ∇ · T k, (34)

where the production Pk , dissipation εk , and the transfer term T k are defined as

Pk = −〈u′
iu

′
j 〉x,t

∂〈uj 〉x,t

∂xi

− N

Rm
〈b′

ib
′
j 〉x,t

∂〈bj 〉x,t

∂xi

, (35)

εk =
〈

1

Re

(
∂u′

i

∂xj

)2

+ N

Rm2

(
∂b′

i

∂xj

)2
〉

x,t

, (36)

T k = N

Rm
hb −

〈[
1

2
u′ 2

i + N

2Rm
b′ 2

i + p′
]

u′
〉
x,t

+ N

Rm
〈(u′

ib
′
i )b

′〉x,t + 1

Re
∇ku + 1

Rm
∇kb, (37)

with h(x, t ) being the turbulent cross-helicity which is defined as

h(x, t ) = 〈u′
ib

′
i〉x,t , (38)

in the first term on the right-hand side of (37). In all expressions, we used index notation and Einstein
sum convention. For a comparison with the quasistatic MHD flow at Rm = 0, it is useful to list the
corresponding energy balance, which is given by

Dku

Dt
= P

(q )
k − ε

(q )
k + ∇ · T (q )

k . (39)

The three terms of the balance of the turbulent kinetic energy density now take the following form:

P
(q )
k = −〈u′

iu
′
j 〉x,t

∂〈uj 〉x,t

∂xi

, (40)

ε
(q )
k =

〈
1

Re

(
∂u′

i

∂xj

)2
〉

x,t

+ N [〈 j2〉x,t + 〈u〉x,t · 〈 j × B0〉x.t ], (41)

T (q )
k = −

〈[
1

2
u′ 2

i + p′
]

u′
〉
x,t

+ 1

Re
∇ku − N〈φ j〉x,t . (42)

A comparison of the distribution of the turbulent kinetic energy 〈ku〉x,t in the cross section for Rm = 0
and Rm = 400 is shown in Fig. 12. It can be seen that the case of Rm = 400 shows a significant
spatial redistribution of the turbulent kinetic energy as compared to the quasistatic case. The kinetic
energy increases over most part of the cross section and the increase is particularly pronounced in the
side wall regions (SL). It should be noted here that, in flows with mean shear, the main contribution
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FIG. 12. Contours of the turbulent kinetic energy ku(y, z) in the duct cross section at Ha = 43.5. Left:
Rm = 0. Right: Rm = 400. The contour levels for both panels are given by the color bar.

to the turbulent kinetic energy production always arises from the streamwise velocity fluctuations,
i.e., from the component u′

x . For example, for the flow at hand at Rm = 400, streamwise fluctuations
〈u′ 2

x 〉x,t contribute with about 80% to the production of k.
We conclude that turbulent energy is redistributed and enhanced in the streamwise fluctuations

with negligible effect on the turbulent energy contributions arising from the transverse components
at a moderate Rm. The higher levels of turbulent kinetic energy can be attributed to the higher rate
of production of k. This is shown in Fig. 13, where the first term on the right-hand side of Eq. (35) is
compared to that of (40) for the quasistatic MHD flow. Profiles are shown along the horizontal line
z = 0. An increase of Rm is in line with a gradual rise of the production rate of the turbulent energy
density k.

We now take a closer look at the turbulent magnetic component. The corresponding evolution
equation is given by [27]

∂b′

∂t
= ∇ × (u′ × 〈b〉x,t + 〈u〉x,t × b′) + 1

Rm
∇2b′ + ∇ × (u′ × b′ − 〈u′ × b′〉x,t ). (43)

FIG. 13. Variation of turbulent kinetic energy production Pk in the spanwise direction y along z = 0. Run 3
is the quasistatic case.
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FIG. 14. Contour of the turbulent magnetic energy kb(y, z) (left) and x component of turbulent electromotive
force Ex (y, z) = 〈u′

yb
′
z − u′

zb
′
y〉x,t (right) in the y-z cross section for Rm = 400 and Ha = 43.5 (run 5).

In the left panel of Fig. 14, we plot contours of the turbulent magnetic energy kb(y, z). The evolution
of kb(y, z) is obtained by multiplication of (43) with b′. We observe the strongest contributions in
the corner regions of the duct cross section, exactly where the field lines are bent most strongly due
to flux expulsion as shown in Fig. 5 (right).

The last term of Eq. (43) stands for the curl of the turbulent electromotive force E = 〈u′ × b′〉x,t .
In the right panel of Fig. 14, we plot the x component of the electromotive force Ex . For the magnetic
Reynolds numbers at hand and with a streamwise magnetic field component present, the ingredients
exist which could generate a dynamo, which is however not observed here. The largest amplitudes
of Ex are observed again in the Shercliff layers. However, the overall magnitude remains very small.

C. Local isotropy measures

We will now turn to the analysis of the effect of the moderate Rm on the local isotropy. Different
mechanisms which generate deviations from the local isotropy of small-scale statistical properties
are at work in the present duct flow. On the one hand, it is well known from the existing low-Rm
DNS studies of flows in periodic boxes [15] that the application of a uniform magnetic field leads to a
more rapid decay of the gradients along the magnetic field lines and hence to an increase of the local
anisotropy in the direction parallel to the external magnetic field. On the other hand, wall-bounded
shear flows enhance streamwise fluctuations due to the turbulence production mechanism. This
leads to the well-known formation of streaky structures in the streamwise direction and hence can
be considered as a further anisotropy generation in that direction.

The physical mechanisms leading to both of these effects are different. Their relative dominance
depends on the ratio of two timescales,

tJ

tadv
= 1

N
with tJ = ρ

σB2
0

. (44)

Timescale tJ is the Joule damping timescale, tadv the advection time scale [see Eq. (1)]. Typically,
this ratio is much larger than unity in MHD turbulence in ducts or channels, as only a small value
of N can sustain turbulence without a relaminarization of the flow. Hence, the effect of shear is
expected to be more pronounced. This fact has also been confirmed by Krasnov et al. [28] in the
study of MHD channel flow with a spanwise magnetic field. In our present study, tJ /tadv ≈ 7.7, thus
indicating a weaker anisotropy contribution that is induced by the magnetic field.
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FIG. 15. Effect of a moderate Rm on flow anisotropy. Time-averaged anisotropy coefficients obtained from
Eq. (45) are shown along the line z = 0.5 for the case of Ha = 43.5.

There are several possible measures of anisotropy. One of the suitable measures is the ratio of
mean squares of velocity gradients, defined as

Aij =

〈(
∂u′

i

∂z

)2
〉
(1 + δi3)〈(

∂u′
i

∂x ′
j

)2
〉
(1 + δij )

, (45)

with the z direction being the direction of the external magnetic field B0 and the angular brackets
refer to streamwise and time averaging. The multiplication factors ensure that these ratios remain
within unity. These ratios compare the relative levels of anisotropy between the directions j and z

for the velocity component ui . A smaller ratio will imply that gradients in the direction used for the
derivative in the numerator are smaller and hence a relative anisotropy in that direction. Furthermore,
the behavior of these ratios might be different for the different components of velocity fluctuations,
and all components of the velocity gradient tensor should be therefore considered.

Figures 15(a) to 15(c) (top row) shows the distribution of these ratios along the horizontal line
z = 0.5, for the spanwise and wall-normal directions for the case of Ha = 43.5. At Rm = 400, one
can see that no differences appear close to the Shercliff wall. However, away from the wall, the
anisotropy along the imposed magnetic field direction (z direction) clearly decreases. The situation
is the same considering each of the fluctuation components. The reason for this reduced level of
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FIG. 16. Isosurfaces of near-wall vortical structures which are obtained by the λ criterion with λ2 = −0.75
for Rm = 0 (left) and Rm = 400 (right) with the common parameters Ha = 43.5 and Re = 14500. View is
along the y direction (flow is from left to right).

anisotropy in the z direction is the existence of a significant mean component 〈by〉x,t ∼ O(1) in the
case with Rm = 400, which is absent in the quasistatic run 3. In addition, the difference increases
as we move away from the wall which is in line with the increasing 〈by〉x,t in that direction. It
should be noted that these ratios are plotted only in the region where the flow is fully turbulent for
Ha = 43.5, i.e., y ∈ [−1,−0.5], since these ratios are no more relevant in the core region of the duct.
As discussed in Sec. III, velocity fluctuations are suppressed strongly and hence their gradients are
small as well.

Comparison for the streamwise and spanwise directions is shown through Figs. 15(d) to 15(f)
(middle row). Here, gradients in the streamwise direction are reduced significantly due to the large
amplitude of the generated 〈bx〉x,t , except in the region close to the walls where 〈bx〉x,t has a low
amplitude. Finally, the comparison of the x and z directions in the bottom row of the figure shows a
significant enhancement of streamwise anisotropy away from the side walls. This behavior remains
qualitatively the same throughout the turbulent portion of the flow in the cross section. This behavior
was also confirmed from an analysis of the contours of the difference of the ratios for Rm = 400 and
Rm = 0, which is not shown here. Mostly negative values exist to a large extent except in the region
close to the centerline z = 0, indicating the increase in effect of the streamwise field. This is also in
line with the results of Kassinos et al. [29], where homogeneous MHD turbulence subjected to mean
shear in fixed and rotating frames was studied. At the centerline (z = 0), the effect is negligible as
this is a symmetry line where 〈bx〉x,t = 0 as seen earlier.

This enhancement of shear-induced anisotropy at Rm = 400 should result in correspondingly
longer streamwise vortical structures. This is indeed the case, as is evident from the comparison
of isosurfaces of λ2 = −0.75 shown in Fig. 16. These surfaces are considered to indicate coherent
vortical structures [30]. The structures are more elongated in the x direction for the case of Rm = 400.
Here, λ2 is the second largest eigenvalue of the tensor �ik , which is given by

�ik = SijSjk + �ij�jk, (46)

with the rate of strain tensor Sij and the vorticity tensor �ij . They are defined as

Sij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, �ij = 1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (47)

An alternative measure of the anisotropy due to mean shear in wall-bounded flows is the skewness
of the wall-normal derivative of the streamwise velocity fluctuation. This is a measure of the
streamwise anisotropy without any relative comparison to other directions. Here the skewness is
defined as

M3 =
〈(

∂u′
x

∂z

)3〉
〈(

∂u′
x

∂z

)2〉3/2 . (48)
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FIG. 17. Profiles of the skewness of the wall normal derivative ∂u′
x/∂z along the line y = −0.75.

In a perfectly locally isotropic turbulence, the third-order moment (as well as all other odd-order
moments) must vanish. Hence, a finite value indicates a deviation from a locally isotropic state. The
skewness measure has often been used as an indicator of local anisotropy in shear flow turbulence
(see, e.g., Refs. [31,32]). Figure 17 shows the distribution of the skewness of the derivative ∂zu

′
x

along the vertical line y = −0.75, in the turbulent zone for the runs at Ha = 43.5. Positive values of
skewness indicate a higher probability for the velocity fluctuation component ∂zu

′
x to increase as we

move away from the wall boundary. The curves show a steep decay from large values near the wall
and flatten thereafter. At the centerline, skewness must vanish due to symmetry reasons. Outside the
Hartmann boundary layer, significantly larger values of skewness (at least about 40%) are observed
at Rm = 400 as compared to Rm = 0. In addition, at moderate magnetic Reynolds number, the
profile shows finite values up to z ≈ −0.4, whereas in the quasistatic case the skewness vanishes
very quickly. This indicates that the effect of mean shear extends deeper into the bulk flow when
Rm = 400. That this conclusion is valid across the duct cross section is verified from the mostly
positive values of the skewness difference at Rm = 400 and Rm = 0, which is shown in Fig. 18.

V. SUMMARY AND OUTLOOK

We have investigated the impact of a finite secondary magnetic field in a turbulent magnetohy-
drodynamic duct flow by means of three-dimensional direct numerical simulations, using boundary

FIG. 18. Contours of the difference between Rm = 400 and Rm = 0 in the skewness of wall normal
derivative ∂u′

x/∂z, in the duct cross section for Ha = 43.5.
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FIG. 19. Sensitivity of the statistically steady skin friction coefficient Cf vs time t . Left: Variation of the
grid resolution in the streamwise direction. Right: Variation of grid resolution in the cross section of the duct.
The domain size is 4π×2×2. Parameters are Rm = 0, Re = 14 500, and Ha = 43.5.

integrals to capture the boundary conditions of the magnetic field at the duct walls consistently. The
numerical simulations are compared with the quasistatic limit for which the secondary magnetic field
is completely neglected and the magnetic Reynolds number is zero. Our series of simulations were
conducted at a magnetic Prandtl number Pm that is much smaller than unity but still significantly larger
than the realistic values in typical liquid metal flow configurations. This problem which is accessible
to fully resolved simulations at Rm ∼ 102 is considered as a first attempt to better understand the
differences from the limiting quasistatic case of Rm = 0 in a one-to-one comparison. This is the
central motivation of the present work.

Some important differences have been found to occur in the mean flow characteristics such as
the increased Shercliff layer skin friction and reduced Hartmann skin friction due to the effects of
magnetic flux expulsion in the bulk region of the duct. However, it is remarkable that to a large
extent, the mean flow properties are not strongly affected by the finite magnetic Reynolds number.
For example, the magnitude of the difference in the streamwise velocity profiles remains small. On
the other hand, significant differences were found in the structure of the secondary mean flow. In a
nutshell, budgets and fields are slightly redistributed when compared to the quasistatic turbulent state.
This might be counterintuitive at a first glance, but is attributed to the low values of the interaction
parameter N in the present setup. Such low values of N were a necessary trade-off because further
increase in N will tend to laminarize the flow. Differences are much more significant when small-scale
statistics are considered. We found, for example, a strong enhancement in streamwise anisotropy
away from the boundary layers. Physical aspects that are present only in the case of finite Rm such as
the expulsion of magnetic flux or the generation of turbulent electromotive forces lead to a variation
of small-scale fluctuations in the flow.

It is clear that values of Rm ∼ 102 are neither encountered in most practical applications in
metallurgy or materials processing nor obtainable in laboratory experiments of MHD wall-bounded
flows in liquid metals. However, predictions for lower Rm values could be made to some extent
by interpolation from the current results. In this respect, our studies should be valuable. Our
investigations also show that for most practical applications (for which first-order quantities are
of interest), the quasistatic approximation remains the recipe to simulate the flow. For a deeper
understanding of the magnetohydrodynamic turbulence as well as for finite-time response effects
in strongly varying turbulent flows, a full magnetohydrodynamic description might be however
necessary.

Given the state-of-the-art computational resources, it will remain a challenge to extend the present
DNS toward realistic parameters. As stated in the introduction, most practical finite-Rm flows
have Pm � 10−5 and are in a regime with Rm � 10 and Re � 106. Numerical modeling of such
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FIG. 20. Sensitivity to the cross-stream grid resolution of the profiles of: Left: mean axial velocity 〈ux〉x,t

along y at z = 0 and along z at y = 0.5. Right: Reynolds stress component τ12. The domain size is 2π×2×2
and Nx = 512 for all these cases. Parameters are Rm = 0, Re = 14 500, and Ha = 43.5.

wall-bounded flows will require subgrid-scale models for the turbulent velocity field which are
combined with the fully resolved dynamics of the highly diffusive magnetic field. The development
of corresponding large eddy simulation models is currently under way and will be a part of our future
work. Another possibility is to use a coarser mesh only for the magnetic field evolution that opens the
possibility to simulate rotating (planetary) and nonrotating MHD flows in more realistic parameter
settings including spherical and cylindrical geometries.
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APPENDIX: GRID SENSITIVITY

For completeness, we list here results of grid sensitivity studies. In Fig. 19, the relaxation of the
skin friction coefficient with respect to time is shown for a number of quasistatic (Rm = 0) simulation
runs at different grid resolutions that are indicated in the legend. Figure 20 shows the sensitivity to
cross-stream grid resolution of the profiles of mean axial velocity and the Reynolds stress component
τ12. This was done with a duct length of 4π , for which Nx = 1024 was necessary for convergence.
All the simulations reported in this paper were done with a duct length of 2π , for which Nx = 512
was used.
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