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Steady unidirectional gravity-driven flow of a uniform thin rivulet (i.e., a rivulet with
small transverse aspect ratio) of a generalized Newtonian fluid down a vertical planar
substrate is considered. The parametric solution for any generalized Newtonian fluid whose
viscosity can be expressed as a function of the shear rate and the explicit solution for any
generalized Newtonian fluid whose viscosity can be expressed as a function of the extra
stress are obtained. These general solutions are used to describe rivulet flow of Carreau
and Ellis fluids, highlighting the similarities and differences between the behavior of these
two fluids. In addition, the general behavior of rivulets of nearly Newtonian fluids and of
rivulets with small or large prescribed flux as well as the behavior of rivulets of strongly
shear-thinning Carreau and Ellis fluids are also described. It is found that whereas the
monotonic dependence of the viscosity of a Carreau fluid on its three nondimensional
parameters and of an Ellis fluid on two of its three nondimensional parameters leads to
the expected dependence of the behavior of the rivulet on these parameters (namely, that
increasing the viscosity of the fluid leads to a larger rivulet), the nonmonotonic dependence
of the viscosity of an Ellis fluid on the nondimensional parameter that measures the degree of
shear thinning leads to a more complicated dependence of the behavior of the rivulet on this
parameter. In particular, it is also found that when the maximum extra stress in the rivulet is
sufficiently large a rivulet of an Ellis fluid in the strongly shear-thinning limit in which this
parameter becomes large comprises two regions with different viscosities. In the general
case of nonzero viscosity in the limit of large extra stress the two regions have different
constant viscosities, whereas in the special case of zero viscosity in the limit of large extra
stress one region has constant viscosity and the other has a nonconstant power-law viscosity,
leading to a pluglike velocity profile with large magnitude in the narrow central region of
the rivulet.

DOI: 10.1103/PhysRevFluids.3.083302

I. INTRODUCTION

Rivulets of fluid arise in a wide range of practical situations including heat exchangers, industrial
coating, and microfluidics, as well as biological situations, and hence have been the subject of
considerable theoretical and experimental research. In the absence of a recent comprehensive review
article, Refs. [1–37] provide a representative selection of these studies. Despite the fact that in
practice many of the fluids involved demonstrate significant non-Newtonian behavior, most of the
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previous work has focused on the simplest case of rivulet flow of a Newtonian fluid. Notable among
the limited number of previous studies of non-Newtonian rivulet flow are those by Rosenblat [3],
who extended the pioneering work of Towell and Rothfeld [1] to study uniform rivulet flow of a
viscoelastic fluid, Wilson et al. [13], who extended the pioneering work of Smith [2] and Duffy
and Moffatt [9] to study nonuniform rivulet flow of a power-law fluid, Balmforth et al. [12] and
Wilson et al. [14], who studied rivulet flow of a viscoplastic material, Yatim et al. [25], who studied
unsteady nonuniform rivulet flow of a power-law fluid, and Al Mukahal et al. [33,34], who studied
locally uniform rivulet flow of a power-law fluid. However, despite a growing body of work on free
surface flow of fluids with various non-Newtonian rheologies (see, for example, the recent work by
Jossic et al. [38] on thin-film flow of an Ellis fluid, Tshehla [39] on thin-film flow of a Carreau fluid,
Kheyfets and Kieweg [40] on thin-film flow of an Ellis fluid, Pritchard et al. [41] on thin-film flow of
a generalized Newtonian fluid, Fomin et al. [42] on non-Newtonian rimming flow, and Peralta et al.
[43] on thin-film flow of a Carreau–Yasuda fluid) there is very little work on rivulet flow of fluids
with other than the theoretically convenient but highly idealised power-law rheology. Hence, in an
attempt to begin to redress this imbalance, in the present work we consider rivulet flow of fluids with
more realistic non-Newtonian rheologies, specifically generalized Newtonian fluids. In contrast to
most of the previous works mentioned above, which typically focus on a specific non-Newtonian
fluid from the outset, in the present work we obtain solutions for the rivulet flow of any generalized
Newtonian fluid whose viscosity can be expressed as a function of either the shear rate or the extra
stress and then use these general solutions to describe rivulet flow of two popular and widely used
generalized Newtonian fluids, namely Carreau and Ellis fluids.

II. A GENERALIZED NEWTONIAN FLUID

The flow of an incompressible fluid of constant density ρ is governed by the mass-conservation
and momentum-balance equations

∇ · u = 0, ρ
Du
Dt

= −∇p + ρg + ∇ · σ , (1)

where u, p, and σ denote the velocity, pressure, and extra-stress tensor of the fluid, respectively, g
denotes gravitational acceleration, and t denotes time. A generalized Newtonian fluid is one whose
constitutive equation takes the form σ = 2μe, where e denotes the rate-of-strain tensor, given by
e = (∇u + (∇u)T)/2, and μ is the viscosity function of the specific fluid under consideration; the
latter may be prescribed either as a function μ = μ(q) of the shear rate q given by

q = [2 tr(e2)]1/2, (2)

or as a function μ = μ(τ ) of the measure of extra stress τ given by

τ = [
1
2 tr(σ 2)

]1/2
. (3)

Since μ, q, and τ are related by

τ = μq, (4)

any viscosity μ may, in principle, be expressed either as a function of the shear rate q or as a function
of the extra stress τ . However, in practice, one or the other of these forms may be considerably more
convenient to use than the other (for example, when one of them is prescribed explicitly whereas the
other is known only implicitly).

In the present work we shall be concerned primarily with the most commonly occurring kind of
generalized Newtonian behavior, shear-thinning fluids (for which μ is a decreasing function of q),
although many of the results obtained are also valid for shear-thickening fluids (for which μ is an
increasing function of q).
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An example of a generalized Newtonian fluid whose viscosity is usually expressed in the form
μ = μ(q) is a Carreau fluid (see, for example, Refs. [44–46]), given by

μ = μ∞ + μ0 − μ∞
(1 + λ2q2)(1−N)/2

, (5)

where λ is a (finite) relaxation time, μ0 and μ∞ (�μ0) are the viscosities at zero shear rate and in
the limit of large shear rate, respectively, and N (�1) is a measure of the shear-thinning behavior
(specifically, the smaller the value of N , the greater the maximum rate of shear thinning).

An example of a generalized Newtonian fluid whose viscosity is usually expressed in the form
μ = μ(τ ) is an Ellis fluid, sometimes also known as a Meter fluid (see, for example, Refs. [44–47]),
given by

μ = μ∞ + μ0 − μ∞

1 +
(

τ

τav

)α−1 , (6)

where τav is the (nonzero) value of the extra stress τ when μ takes the average value μ = μav =
(μ0 + μ∞)/2, μ0 and μ∞ (�μ0) are the viscosities at zero extra stress and in the limit of large extra
stress, respectively, and α (�1) is a measure of the shear-thinning behavior (specifically, the larger
the value of α, the greater the maximum rate of shear thinning).

An example of a generalized Newtonian fluid whose viscosity may be expressed equally
conveniently in either of the forms μ = μ(q) or μ = μ(τ ) is a biviscosity fluid (see, for example,
Refs. [48,49]), given by

μ =
⎧⎨
⎩

μ0 if q � qc,

μ∞ + (μ0 − μ∞)
qc

q
if q > qc,

or, equivalently, μ =

⎧⎪⎪⎨
⎪⎪⎩

μ0 if τ � τc,
μ∞

1 −
(

μ0 − μ∞
μ0

)
τc

τ

if τ > τc,

(7)

whereqc and τc denote a critical shear rate and a critical extra stress, respectively, related by τc = μ0qc.
For a biviscosity fluid there will, in general, be a transition from a constant viscosity to a nonconstant
viscosity across any surface within the fluid on which q = qc or, equivalently, τ = τc. A Bingham
fluid may be obtained from a biviscosity fluid (7) in the distinguished limit μ0 → ∞ and qc → 0
with τc held fixed. Locally uniform rivulet flow of a biviscosity fluid and of a Bingham fluid down
an inclined substrate was investigated in detail by Wilson et al. [14] and so will not be considered in
the present work.

Note that each of the limits λ → 0, N → 1 and μ∞ → μ0 for a Carreau fluid and τav → ∞ and
μ∞ → μ0 for an Ellis fluid corresponds to a Newtonian fluid with viscosity μ = μ0, and that both of
the limits λ → ∞ for a Carreau fluid and τav → 0 for an Ellis fluid correspond to a Newtonian fluid
with viscosity μ = μ∞. Furthermore, the limit α → 1 for an Ellis fluid corresponds to a Newtonian
fluid with viscosity μ = μav.

III. RIVULET FLOW OF A GENERALIZED NEWTONIAN FLUID

A. General formulation

We consider steady unidirectional gravity-driven flow of a uniform thin rivulet (i.e., a rivulet
with small transverse aspect ratio) of a generalized Newtonian fluid with constant semiwidth a,
contact angle β, and volume flux Q down a vertical planar substrate, as shown in Fig. 1. We adopt
the Cartesian coordinates Oxyz shown in Fig. 1, with the z axis normal to the substrate z = 0 and
the y axis horizontal. The (longitudinal) velocity within the rivulet is of the form u = u(y,z)i, and
hence the shear rate q is given by q = (u2

y + u2
z)1/2 (�0), and the (transverse) free surface profile

of the rivulet is denoted by z = h(y). We nondimensionalize and scale the variables and parameters
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FIG. 1. Steady unidirectional gravity-driven flow of a uniform thin rivulet of a generalized Newtonian fluid
with constant semiwidth a, contact angle β, and volume flux Q down a vertical planar substrate.

according to

x = Lx∗, y = Ly∗, a = La∗, z = εLz∗, h = εLh∗, β = εβ∗, u = Uu∗,
(8)

p = pa + εγ

L
p∗, Q = εL2UQ∗, μ = μ0μ

∗, μ∞ = μ0μ
∗
∞, q = U

εL
q∗, τ = μ0U

εL
τ ∗,

where L is an appropriate transverse length scale, ε (�1) is the transverse aspect ratio of the rivulet,
U = ε2ρgL2/μ0 is an appropriate longitudinal velocity scale, pa denotes the constant atmospheric
pressure, and γ is the constant coefficient of surface tension of the fluid. There are several equally
sensible definitions of L and ε, including L = a and ε = β (corresponding to taking a∗ = 1 and
β∗ = 1), L = (μ0Q/ρgβ3)1/4 and ε = β (corresponding to taking Q∗ = 1 and β∗ = 1), L = a and
ε = (μ0Q/ρga4)1/3 (corresponding to taking a∗ = 1 and Q∗ = 1), and L = 	 and ε = β, where
	 = (γ /ρg)1/2 denotes the capillary length. However, in what follows we leave L and ε unspecified
in order to keep the subsequent presentation as general as possible. For the specific cases of a Carreau
and an Ellis fluid the model-specific parameters λ and τav are scaled according to

λ = εL

U
λ∗, τav = μ0U

εL
τ ∗

av, (9)

respectively. For simplicity we immediately drop the superscript stars, and henceforth all quantities
are nondimensional.

In the general case of a nonthin rivulet, Eq. (1) leads, without approximation, to

0 = − 1

B
px + 1 + ε2[μ(q)uy]y + [μ(q)uz]z, 0 = −py, 0 = −pz, (10)

where the shear rate is given by q = (ε2u2
y + u2

z)1/2 (�0), and B = μ0U/ε3γ is an appropriate
Bond number. Equation (10) is to be integrated subject to the no-slip condition on the substrate and
stress-balance conditions on the free surface, which take the forms

u = 0 on z = 0, uz = ε2h′uy and p = −κ on z = h, (11)
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respectively, where κ = h′′/(1 + ε2h′2)3/2 is the mean curvature of the free surface and a prime
denotes differentiation with respect to argument. Integration of (10)3 subject to (11)3 gives p = −κ

throughout the fluid, and then (10)2 gives κ ′ = 0, showing that the curvature κ is constant, and hence
that the free surface is an arc of a circle. In addition, the pressure p = −κ is therefore also constant,
so that px = 0, and thus (10)1 simplifies to

ε2[μ(q)uy]y + [μ(q)uz]z = −1. (12)

Equations (10)–(12) are for the general case of a nonthin rivulet. In the special case of a thin rivulet,
at leading order in the limit of small transverse aspect ratio, ε → 0, we have q = uz (�0), and (12)
gives

[μ(q)uz]z = −1, (13)

to be integrated subject to

u = 0 on z = 0, uz = 0 on z = h. (14)

Also, since κ is constant, we have simply h′′′ = 0, which, when integrated subject to the contact-line
conditions

h = 0 and h′ = ∓β at y = ±a, (15)

leads to the simple solution

h = hm

(
1 − y2

a2

)
, hm = βa

2
, p = β

a
, (16)

where hm = h(0) denotes the maximum thickness of the rivulet.
From (13) and (14) the extra stress τ (=μuz) and the shear rate q (=uz) are given by

τ = μq = h − z, (17)

representing a balance between gravity and viscous effects. In principle, the algebraic equation (17)
may be solved for q in terms of h − z, which may then be integrated with respect to z subject to (14)
to obtain u as a function of y and z. The volume flux of fluid down the rivulet Q is then given by

Q =
∫ +a

−a

∫ h

0
u dz dy = 2

∫ a

0
ū dy, (18)

where, for later convenience, we have introduced the depth-integrated velocity ū given by

ū =
∫ h

0
u dz. (19)

In general, there is freedom to prescribe two of the quantities a, β, and Q, with the third determined
by the algebraic equation (18), and with hm related to a and β by (16).

In the case of a Newtonian fluid with viscosity μ = 1 the solutions for τ , q, u, and Q are simply
(see, for example, Ref. [31])

τ = q = h − z, u = h2 − (h − z)2

2
, Q = 4β3a4

105
. (20)

Thus if the values of the contact angle β = β̄ and flux Q = Q̄ are prescribed then the semiwidth
a and maximum thickness hm are given by a = (105Q̄/4β̄3)1/4 and hm = (105β̄Q̄/64)1/4, whereas
if the values of the semiwidth a = ā and flux Q = Q̄ are prescribed, then the contact angle β and
maximum thickness hm are given by β = (105Q̄/4ā4)1/3 and hm = (105Q̄/32ā)1/3; in both cases
the solution with h and p given by (16) and u given by (20) is then completely determined.
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In Sec. III B we obtain the parametric solution for u of (17) subject to (14) for any generalized
Newtonian fluid with viscosity function of the form μ = μ(q), and in Sec. III C we obtain the explicit
solution for u for any generalized Newtonian fluid with viscosity function of the form μ = μ(τ ).

B. Viscosity function of the form μ = μ(q)

If the viscosity function is of the form μ = μ(q), then, rather than solving (17) and integrating
uz = q to obtain u as a function of y and z, we can make more progress analytically by eliminating
z in favor of q via (17), so that dz = −{d[μ(q)q]/dq} dq, to obtain u in terms of q [50]:

u =
∫ qs

q

q̃
d[μ(q̃)q̃]

dq̃
dq̃, (21)

where qs = qs(y) = q|z=0 is the shear rate at the substrate z = 0, to be determined from

τs = μ(qs)qs = h, (22)

in which τs = τs(y) = τ |z=0 is the extra stress at the substrate z = 0. With an integration by parts,
Eq. (21) may be written in the slightly more convenient form

u = μ(qs)q
2
s − μ(q)q2 −

∫ qs

q

μ(q̃)q̃ dq̃. (23)

Thus (17) and (23) provide a parametric solution for u as a function of y and z, with the parameter q

satisfying 0 � q � qs. Although (23) involves only quadrature, the qs that appears must be obtained
as a solution of (22) for each value of y.

The depth-integrated velocity ū given by (19) may be written

ū = [(z − h)u]h0 −
∫ h

0
(z − h)uz dz =

∫ h

0
(h − z)q dz, (24)

which with z again eliminated via (17) leads to

ū =
∫ qs

0
μ(q)q2 d[μ(q)q]

dq
dq. (25)

Therefore from (18)

Q = 2
∫ a

0

∫ qs

0
μ(q)q2 d[μ(q)q]

dq
dq dy, (26)

and reversing the order of integration and integrating with respect to y we obtain

Q = 2a

∫ qm

0

[
1 − μ(q)q

μ(qm)qm

]1/2

μ(q)q2 d[μ(q)q]

dq
dq, (27)

where qm = qs(0) is the maximum shear rate in the rivulet, occurring at y = 0, z = 0 and satisfying

τm = μ(qm)qm = hm, (28)

in which τm = τs(0) is the maximum extra stress in the rivulet, occurring at y = 0, z = 0.
In summary, when μ = μ(q) is prescribed, h and p are given by (16), u is given parametrically

(with parameter q) by (17) and (23), and Q is given by (27). In Sec. IV A we use this general solution
to describe rivulet flow of a Carreau fluid.
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C. Viscosity function of the form μ = μ(τ )

If the viscosity function is of the form μ = μ(τ ) then the solution analogous to (23) and (27)
takes the explicit form

u =
∫ h

h−z

τ

μ(τ )
dτ (29)

and

Q = 2a

∫ τm

0

(
1 − τ

τm

)1/2
τ 2

μ(τ )
dτ, (30)

where h and p are again given by (16). In Sec. IV B we use this general solution to describe rivulet
flow of an Ellis fluid, highlighting the similarities and differences between the behavior of Carreau
and Ellis fluids.

IV. RIVULET FLOW OF CARREAU AND ELLIS FLUIDS

A. A Carreau fluid

The viscosity μ of a Carreau fluid given by (5) scaled according to (8) and (9) is a monotonically
decreasing function of q satisfying μ = 1 with zero gradient at q = 0, and μ → μ+

∞ in the limit
q → ∞, and for any given value of q the viscosity μ decreases with λ but increases with μ∞ and N .

For a Carreau fluid the general solution (17) and (23) gives u parametrically as

h − z =
[
μ∞ + 1 − μ∞

(1 + λ2q2)(1−N)/2

]
q,

u = μ∞
2

(
q2

s − q2
) + 1 − μ∞

(1 + N )λ2

[
1 − Nλ2q2

(1 + λ2q2)(1−N)/2
− 1 − Nλ2q2

s(
1 + λ2q2

s

)(1−N)/2

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (31)

However, the integral for Q in Eq. (27) cannot, in general, be evaluated in closed form, and so Q

must, in general, be evaluated numerically. In the limit λ → ∞, corresponding to a Newtonian fluid
with viscosity μ = μ∞, we obtain

u = h2 − (h − z)2

2μ∞
, Q = 4β3a4

105μ∞
. (32)

The velocity profiles u(y,z) for a Carreau fluid given by (31) are qualitatively similar to those for
a Newtonian fluid with viscosity μ = 1 given by (20), i.e., they are monotonically increasing in z

and symmetric in y about the centerline of the rivulet y = 0 and so are not plotted here for brevity.
Decreasing λ or increasing μ∞ or N increases the viscosity of the fluid and hence decreases the
velocity within the rivulet.

In practice, the free surface profile (unlike, for example, the velocity profile) of the rivulet is
readily observable in physical experiments, and so Fig. 2 shows plots of the semiwidth a as a
function of the flux Q with β = 1 for different values of λ, μ∞, and N , illustrating that, as might
have been expected, increasing Q always increases a. (In Fig. 2, and in several subsequent figures, an
arrow across a family of curves denotes the direction of increasing values of the relevant parameter.)
Figure 2 also illustrates that for any prescribed flux Q = Q̄, decreasing λ or increasing μ∞ or N

always increases a because (since, as we have already seen, the velocity within the rivulet decreases)
a larger rivulet is required to achieve the same value of the flux. For the same reason, varying the
parameters λ, μ∞, and N has the same qualitative effect on β for any prescribed semiwidth a = ā

as it does on a for any prescribed contact angle β = β̄, and so the corresponding plots of β as a
function of Q are omitted for brevity.

The corresponding trends are evident in Figs. 3–5, which show plots of Q as a function of λ for
different values of μ∞ and N , a function of μ∞ for different values of λ and N , and a function of N

for different values of λ and μ∞, respectively, with a = 1 and β = 1. In particular, Figs. 3–5 illustrate
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FIG. 2. Plots of the semiwidth a as a function of the flux Q for a Carreau fluid with β = 1 when
(a) μ∞ = 1/10 and N = 1/2 for λ = 0, 1, . . . , 5, 10, 20, . . . , 100, (b) N = 1/2 and λ = 1 for μ∞ = 0,
1/4, . . . , 1, and (c) μ∞ = 1/10 and λ = 1 for N = 0, 1/4, . . . , 1. In (a) the dashed curve shows the leading-order
asymptotic solution in the limit λ → ∞ given by (32), namely a = (105μ∞Q̄/4β3)1/4 = (21Q̄/8)1/4.

that Q is a monotonically increasing function of λ and a monotonically decreasing function of μ∞ and
N . Furthermore, Q takes the value for a Newtonian fluid with μ = 1, Q = 4β3a4/105, when λ = 0,
μ∞ = 1 or N = 1, and takes the value for a Newtonian fluid with μ = μ∞, Q = 4β3a4/105μ∞, in
the limit λ → ∞.

B. An Ellis fluid

The viscosity μ of an Ellis fluid given by (6) scaled according to (8) and (9) is a monotonically
decreasing function of the shear rate q = τ/μ satisfying μ = 1 with gradient that is infinite when

(a) 25 50 75 100

0.1

0.2

Q

λ

μ∞ = 1

μ∞ = 0

(b) 25 50 75 100

0.1

0.2

0.3

0.4
Q

λ

N = 1

N = 0

FIG. 3. Plots of the flux Q as a function of λ for a Carreau fluid with a = 1 and β = 1 when (a) N = 1/2 for
μ∞ = 0, 1/4, . . . , 1 and (b) μ∞ = 1/10 for N = 0, 1/4, . . . , 1. The dashed lines show the asymptotic values
in the limit λ → ∞ given by (32), namely Q = 4β3a4/105μ∞.
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Q
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N = 0
(1, 4/105)

FIG. 4. Plots of the flux Q as a function of μ∞ for a Carreau fluid with a = 1 and β = 1 when (a) N = 1/2
for λ = 0, 1, . . . , 5, 10, 20, . . . , 100 and (b) λ = 2 for N = 0, 1/4, . . . , 1. In (a) the dashed curve shows the
leading-order asymptotic solution in the limit λ → ∞ given by (32), namely Q = 4β3a4/105μ∞ = 4/105μ∞.

α < 2, takes the finite value −(1 − μ∞)/τav when α = 2, and is zero when α > 2 at q = 0, and
μ → μ+

∞ in the limit q → ∞. However, whereas for a Carreau fluid for any given value of q the
viscosity μ has a monotonic dependence on all three of its parameters, for an Ellis fluid it increases
monotonically with τav and μ∞ but has a nonmonotonic dependence on α; specifically, μ increases
with α when q < qav = τav/μav, takes the value μav for all α when q = qav, and decreases with α

when q > qav. This behavior is illustrated in Fig. 6, which shows plots of the viscosity μ as a function
of q for different values of τav, μ∞, and α.

For an Ellis fluid the general solution (29) gives u explicitly as

u = h2 − (h − z)2

2μ∞
− 1 − μ∞

2μ∞
[φ(h) − φ(h − z)], (33)

where the function φ = φ(τ ) is defined by

φ(τ ) = 2
∫ τ

0

τ̃ dτ̃

1 + μ∞(τ̃ /τav)α−1
, (34)

which can be expressed in terms of the hypergeometric function 2F1 as

φ(τ ) = τ 2
2F1

(
1,

2

α − 1
;
α + 1

α − 1
; −μ∞

[
τ

τav

]α−1
)

. (35)
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FIG. 5. Plots of the flux Q as a function of N for a Carreau fluid with a = 1 and β = 1 when (a) μ∞ = 1/10
for λ = 0, 1, . . . , 5, 10, 20, . . . , 100, 200, . . ., 1000 and (b) λ = 2 for μ∞ = 0, 1/4, . . . , 1. In (a) the dashed line
shows the asymptotic value in the limit λ → ∞ given by (32), namely Q = 4β3a4/105μ∞ = 8/21 � 0.3810.
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(a) 5 10 15

0.5

1

μ

q

τav = 50

τav = 1/10
(b) 5 10 15

0.5

1

μ

q

μ∞ = 1

μ∞ = 0

(c) 5 10 15

0.5

1

μ

q

α = 1

α = 10

(qav, μav) = (20/11, 11/20)

qav = τav/μav = 20/11

FIG. 6. Plots of the viscosity μ of an Ellis fluid given by (6) scaled according to (8) and (9) as a function of
the shear rate q when (a) μ∞ = 1/10 and α = 3 for τav = 1/10, 1/5, . . . , 9/10, 1, 2, . . . , 10, 15, 20, . . . , 50,
(b) α = 3 and τav = 1 for μ∞ = 0, 1/10, . . . , 1, and (c) μ∞ = 1/10 and τav = 1 for α = 1, 2, . . . , 10. In (a)
the dotted and dashed lines show the asymptotic values in the limits τav → 0 and τav → ∞, μ = μ∞ = 1/10
and μ = 1, respectively.

However, as for a Carreau fluid, the integral for Q in Eq. (30) cannot, in general, be evaluated in
closed form, and so Q must, in general, be evaluated numerically. In the limit τav → 0, corresponding
to a Newtonian fluid with viscosity μ = μ∞, we obtain (32), while in the limit α → 1, corresponding
to a Newtonian fluid with viscosity μ = μav, we obtain

u = h2 − (h − z)2

2μav
, Q = 4β3a4

105μav
. (36)

In the special case μ∞ = 0 we obtain

u = h2 − (h − z)2

2
+ hα+1 − (h − z)α+1

(α + 1)τα−1
av

, Q = β3a4

[
4

105
+ C0

8

(
τm

τav

)α−1
]
, (37)

083302-10



RIVULET FLOW OF GENERALIZED NEWTONIAN FLUIDS
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5

a

Q
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τav = 1/5
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5

a

Q

μ∞ = 1

μ∞ = 0

(c)
30 60 90 120

2.5

5
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2.2

2.6

3a

Q

α = 1 α = 5

α = 1

α = 5

FIG. 7. Plots of the semiwidth a as a function of the flux Q for an Ellis fluid with β = 1 when (a) μ∞ =
1/10 and α = 2 for τav = 1/5, 2/5, 3/5, 4/5, 1, 2, 3, 4, 5, 10, 15, 20, (b) α = 2 and τav = 1 for μ∞ = 0,
1/4, . . . , 1, and (c) μ∞ = 1/10 and τav = 1 for α = 1, 2, . . . , 5. In (a) the dotted and dashed curves show the
leading-order asymptotic solutions in the limits τav → 0 and τav → ∞ given by (32) and (20), respectively,
namely a = (105μ∞Q̄/4β3)1/4 = (21Q̄/8)1/4 and a = (105Q̄/4β3)1/4 = (105Q̄/4)1/4.

where we have defined the coefficient C0 by

C0 =
√

π 
(α + 2)



(
α + 7

2

) = B
(
α + 3, 1

2

)
α + 2

, (38)

in which 
 and B denote the usual gamma and beta functions. The coefficient C0 takes the value
C0 = 32/105 when α = 1, decreases monotonically with α, and satisfies C0 ∼ √

π/α3/2 → 0+ in
the limit α → ∞.

The velocity profiles u(y,z) for an Ellis fluid given by (33), like those for a Carreau fluid discussed
in Sec. IV A, are qualitatively similar to those for a Newtonian fluid with viscosity μ = 1 given by
(20), and so are again not plotted here for brevity. Increasing τav or μ∞ increases the viscosity of the
fluid and hence decreases the velocity within the rivulet. However, as might have been anticipated
from the nonmonotonic dependence of μ on α shown in Fig. 6, increasing α leads to a nonmonotonic
variation of the velocity. This qualitatively different behavior of an Ellis fluid compared with that of
a Carreau fluid leads to qualitatively different behavior of a rivulet of an Ellis fluid as the parameter
α is varied compared with that of a rivulet of a Carreau fluid as the analogous parameter N is varied.

Figure 7 shows plots of the semiwidth a as a function of the flux Q with β = 1 for different values
of τav, μ∞, and α, illustrating that increasing Q again always increases a. Figure 7 also illustrates that
for any prescribed flux Q = Q̄, whereas increasing τav or μ∞ again always increases a, increasing α

increases a for small Q but decreases a for large Q. Like for a Carreau fluid, varying the parameters
τav, μ∞, and α again has the same qualitative effect on β for any prescribed semiwidth a = ā as it
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(a) 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4
Q

τav

μ∞ = 1

μ∞ = 0

(b) 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

Q

τav

α = 1

α = 5

FIG. 8. Plots of the flux Q as a function of τav for an Ellis fluid with a = 1 and β = 1 when (a) α = 2 for
μ∞ = 0, 1/4, . . . , 1 and (b) μ∞ = 1/10 for α = 1, . . . , 5. In (b) the dashed line shows the asymptotic value in
the limit τav → ∞ given by (20), namely Q = 4β3a4/105 = 4/105 � 0.0381.

does on a for any prescribed contact angle β = β̄, and so the corresponding plots of β as a function
of Q are again omitted for brevity.

The corresponding trends are evident in Figs. 8–10, which show plots of Q as a function of
τav for different values of μ∞ and α, a function of μ∞ for different values of τav and α, and a
function of α for different values of τav and μ∞, respectively, with a = 1 and β = 1. In particular,
Figs. 8–10 illustrate that Q is a monotonically decreasing function of τav and μ∞ but may be either
a monotonically increasing or a monotonically decreasing function of α. Furthermore, Q takes the
value for a Newtonian fluid with μ = 1, Q = 4β3a4/105, when μ∞ = 1 and in the limit τav → ∞,

(a) 0.25 0.5 0.75 1

0.05

0.1

0.15

0.2
Q

μ∞

τav = 1/20

τav = 5

(1, 4/105)

(b) 0.25 0.5 0.75 1

0.05

0.1

0.15

0.2

Q

μ

α = 1

α = 5

(1, 4/105)

(c) 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

Q

μ

α = 5

α = 1

(1, 4/105)

FIG. 9. Plots of the flux Q as a function of μ∞ for an Ellis fluid with a = 1 and β = 1 when (a) α = 2 for
τav = 1/20, 1/10, . . . , 1/4, 1/2, 1, and 5, (b) τav = 1 > τm = 1/2 for α = 1, . . . , 5, and (c) τav = 1/10 < τm =
1/2 for α = 1, . . . , 5. In (a) the dotted and dashed curves show the leading-order asymptotic solution in the
limit τav → 0 given by (32), namely Q = 4β3a4/105μ∞ = 4/105μ∞, and the leading-order asymptotic value
in the limit τav → ∞ given by (20), namely Q = 4β3a4/105 = 4/105 � 0.0381, respectively.
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τav = 1/20
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(b) 2 4 6 8
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Q
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(c) 2 4 6 8

0.05

0.1

0.15

0.2
Q

α

μ∞ = 1
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FIG. 10. Plots of the flux Q as a function of α (�1) for an Ellis fluid with a = 1 and β = 1 when
(a) μ∞ = 1/10 for τav = 1/20, 1/10, . . . , 1/4, 1, and 5, (b) τav = 1 > τm = 1/2 for μ∞ = 0, 1/4, . . . , 1,
and (c) τav = 1/10 < τm = 1/2 for μ∞ = 0, 1/4, . . . , 1. In (a) and (c) the dashed lines show the asymptotic
values in the limit α → ∞ given by (20) and (32), respectively, namely Q = 4β3a4/105 = 4/105 � 0.0381
and Q = 4β3a4/105μ∞ = 4/105μ∞.

takes the value for a Newtonian fluid with μ = μ∞, Q = 4β3a4/105μ∞, in the limit τav → 0, and
takes the value for a Newtonian fluid with μ = μav, Q = 4β3a4/105μav, when α = 1. However, as
Figs. 8–10 show, the dependence of Q on α, and, in particular, the behavior of Q in the limit α → ∞,
is more complicated than the corresponding dependence of Q on N for a Carreau fluid described
in Sec. IV A. Specifically, Fig. 10(a) shows that Q increases from Q = 4β3a4/105μav at α = 1
and approaches the value Q = 4β3a4/105μ∞ in the limit α → ∞ when τav < τm, but decreases and
approaches the valueQ = 4β3a4/105 in the limitα → ∞when τav > τm. Similarly, Fig. 10(b) shows
that Q decreases from Q = 4β3a4/105μav at α = 1 and approaches the value Q = 4β3a4/105 in the
limit α → ∞ when τav > τm, whereas Fig. 10(c) shows that Q increases from Q = 4β3a4/105μav

at α = 1 and approaches the value Q = 4β3a4/105μ∞ in the limit α → ∞ when τav < τm. The
analysis of the behavior of an Ellis fluid in the limit α → ∞, and, in particular, the determination of
the critical value of τav, which turns out to be equal to τm, is not straightforward and so is considered
in detail in Sec. VII.

V. RIVULETS OF NEARLY NEWTONIAN FLUIDS

A. General results

The viscosity of a nearly Newtonian fluid differs only slightly from a constant Newtonian value,
and so for a fluid that is nearly Newtonian with viscosity μ = 1 we may write it as μ = 1 + μ1δ +
O(δ2) for some μ1 = μ1(q) or μ1 = μ1(τ ), where δ � 1 is a measure of the small departure from
the Newtonian value. In general, this means that the solution for rivulet flow of a nearly Newtonian
fluid will differ from that for a Newtonian fluid by an O(δ) amount, and therefore we expand a

as a = a0 + a1δ + O(δ2), with corresponding expansions for all of the other dependent variables,
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where the leading-order terms (that is, those with suffix 0) correspond to the Newtonian solution
(20). Thus (16) gives

h0 = hm0

(
1 − y2

a2
0

)
, hm0 = β0a0

2
, h1 = β0a1

(
a2

0 + y2
) + β1a0

(
a2

0 − y2
)

2a2
0

, (39)

either (23) or (29) gives

u0 = h2
0 − (h0 − z)2

2
, u1 = h1z −

∫ h0

h0−z

ξμ1(ξ ) dξ, (40)

and either (27) or (30) gives

Q0 = 4β3
0a4

0

105
, Q1 = 4β2

0a3
0

105
(4β0a1 + 3β1a0) − 2a0J1, (41)

where we have defined J1 by

J1 =
∫ hm0

0

(
1 − ξ

hm0

)1/2

ξ 2μ1(ξ ) dξ, (42)

with the dummy variable ξ in the integrals in Eqs. (40) and (42) corresponding to q in Eqs. (23) and
(27) and to τ in Eq. (30). If the contact angle β = β̄ and flux Q = Q̄ are prescribed then β0 = β̄,
Q0 = Q̄, β1 = 0 and Q1 = 0, and consequently

a0 =
(

105Q̄

4β̄3

)1/4

, a1 = J1

4

(
105

β̄3Q̄

)1/2

, h1 = hm1

(
1 + y2

a2
0

)
, hm1 = J1

8

(
105

β̄Q̄

)1/2

, (43)

whereas if the semiwidth a = ā and flux Q = Q̄ are prescribed then a0 = ā, Q0 = Q̄, a1 = 0 and
Q1 = 0, and consequently

β0 =
(

105Q̄

4ā4

)1/3

, β1 = J1

(
70

9āQ̄2

)1/3

, h1 = hm1

(
1 − y2

ā2

)
, hm1 = J1

(
35ā2

36Q̄2

)1/3

. (44)

Since, for a shear-thinning fluid, μ1 < 0 and hence J1 < 0, the general results (43) and (44) show that,
in agreement with the results for Carreau and Ellis fluids described in Sec. IV, the effect of weakly
non-Newtonian behavior is always to make the rivulet smaller; in Eq. (43) it becomes narrower
(a1 < 0), whereas in Eq. (44) its contact angle is reduced (β1 < 0), and in both it becomes thinner
(hm1 < 0).

We now illustrate the above general results with two examples, specifically a Carreau fluid with
a small relaxation time λ and an Ellis fluid with a large extra stress τav. The corresponding results
for the other limits in which a Carreau fluid and an Ellis fluid are nearly Newtonian with viscosity
μ = 1, μ = μ∞ or μ = μav may be obtained in a similar way, but are omitted for brevity.

B. A Carreau fluid with a small relaxation time λ

As an example of the general results described in Sec. V A we consider a nearly Newtonian
Carreau fluid with a small relaxation time λ [51]. Setting δ = λ2 � 1 in Eq. (5) we obtain

μ1 = −kq2, where k = 1
2 (1 − N )(1 − μ∞) > 0. (45)

Then from (40) and (42) we have

u1 = h1z + k

4

[
h4

0 − (h0 − z)4
]
, J1 = − 8k

3465
β5

0a5
0, (46)

and so (41) gives

Q1 = 4β2
0a3

0

3465

[
33(4β0a1 + 3β1a0) + 4kβ3

0a3
0

]
. (47)
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If, for example, β0 = β̄, Q0 = Q̄, β1 = 0 and Q1 = 0, then

a1 = − k

22

[
(35Q̄)3

12β̄

]1/4

< 0, h1 = hm1

(
1 + y2

a2
0

)
, hm1 = − k

66

(
105β̄Q̄

4

)3/4

< 0, (48)

whereas if a0 = ā, Q0 = Q̄, a1 = 0 and Q1 = 0, then

β1 = −35kQ̄

33ā2
< 0, h1 = hm1

(
1 − y2

ā2

)
, hm1 = −35kQ̄

66ā
< 0. (49)

In particular, Eqs. (48) and (49) show that in this case the effect of weakly non-Newtonian behavior
is always to decrease a and hm by amounts proportional to (Q̄3/β̄)1/4 and (β̄Q̄)3/4, respectively,
in Eq. (48), and to decrease β and hm by amounts proportional to Q̄/ā2 and Q̄/ā, respectively, in
Eq. (49).

C. An Ellis fluid with a large extra stress τav

As another example of the general results described in Sec. V A we consider a nearly Newtonian
Ellis fluid with a large extra stress τav. Setting δ = τ 1−α

av � 1 in Eq. (6) we obtain

μ1 = −(1 − μ∞)τα−1. (50)

Then from (40) and (42) we have

u1 = h1z + (1 − μ∞)
[
hα+1

0 − (h0 − z)α+1
]

α + 1
, J1 = −Chα+2

m0

2
, (51)

where the coefficient C is defined by

C =
√

π (1 − μ∞)
(α + 2)



(
α + 7

2

) = (1 − μ∞)B
(
α + 3, 1

2

)
α + 2

, (52)

and so (41) gives

Q1 = a0h
2
m0

[
16
105 (4β0a1 + 3β1a0) + Chα

m0

]
. (53)

If, for example, β0 = β̄, Q0 = Q̄, β1 = 0, and Q1 = 0, then

a1 = −105C

64β̄

(
105β̄Q̄

64

)α/4

< 0, h1 = hm1

(
1 + y2

a2
0

)
, hm1 = −105C

128

(
105β̄Q̄

64

)α/4

< 0,

(54)

whereas if a0 = ā, Q0 = Q̄, a1 = 0, and Q1 = 0, then

β1 = −35C

16ā

(
105Q̄

32ā

)α/3

< 0, h1 = hm1

(
1 − y2

ā2

)
, hm1 = −35C

32

(
105Q̄

32ā

)α/3

< 0. (55)

In particular, Eqs. (54) and (55) show that in this case the effect of weakly non-Newtonian behavior
is always to decrease a and hm by amounts proportional to (β̄Q̄)α/4/β̄ and (β̄Q̄)α/4, respectively, in
Eq. (54), and to decrease β and hm by amounts proportional to (Q̄/ā)α/3 and ā(Q̄/ā)α/3, respectively,
in Eq. (55).

VI. RIVULETS WITH SMALL OR LARGE PRESCRIBED FLUX

In this section we describe the general behavior of rivulets with small or large prescribed flux
Q = Q̄. For brevity, details are given only for the case of a viscosity function of the form μ = μ(τ ),
but the final results are also valid for the case of a viscosity function of the form μ = μ(q).
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It is convenient first to note that the substitution τ = hmt (0 � t � 1) together with the relation
hm = βa/2 allows the flux Q in Eq. (30) to be expressed (without approximation) in the equivalent
forms

Q = 2ah3
mI = 4h4

m

β
I = β3a4

4
I, (56)

where we have defined the integral I by

I =
∫ 1

0

(1 − t)1/2t2

μ(hmt)
dt. (57)

Since μ satisfies 0 � μ∞ < μ(hmt) � 1, it is clear that I is finite and nonzero.
In the limit of small prescribed flux, Q̄ → 0, the rivulet thins (hm → 0), and hence μ(hmt) →

1 throughout the rivulet, leading to I → 16/105. Thus if β = β̄ is prescribed then hm ∼
(105β̄Q̄/64)1/4 → 0 and a ∼ (105Q̄/4β̄3)1/4 → 0, whereas if a = ā is prescribed then hm ∼
(105Q̄/32ā)1/3 → 0 and β ∼ (105Q̄/4ā4)1/3 → 0. In both cases the extra stress τ and shear rate
q (both of which are zero on the free surface) are small everywhere, and the fluid behaves like a
Newtonian fluid with μ = 1.

In the limit of large prescribed flux, Q̄ → ∞, the rivulet thickens (hm → ∞), and hence
μ(hmt) → μ∞ except in a thin boundary layer near the free surface at which τ = 0; the dominant con-
tribution to I given by (57) is from outside the boundary layer, leading to I → 16/105μ∞ in the limit
hm → ∞ (provided that μ∞ �= 0). Thus if β = β̄ is prescribed then hm ∼ (105μ∞β̄Q̄/64)1/4 → ∞
and a ∼ (105μ∞Q̄/4β̄3)1/4 → ∞, whereas if a = ā is prescribed, then hm ∼ (105μ∞Q̄/32ā)1/3 →
∞ and β ∼ (105μ∞Q̄/4ā4)1/3 → ∞. In both cases the extra stress τ and shear rate q are large
everywhere except in the boundary layer, and the fluid behaves like a Newtonian fluid with μ = μ∞.

In the case of a viscosity function of the form μ = μ(q), the relation τ = μq implies that τ ∼ q

in the limit q → 0, and that τ ∼ μ∞q in the limit q → ∞, and so the above results concerning hm,
a and β again hold in the limits Q̄ → 0 and Q̄ → ∞, respectively.

The results described above are for the general case μ∞ �= 0. In the special case μ∞ = 0 the
behavior of a rivulet when Q̄ is small is as described above, but the behavior when Q̄ is large will
depend on the asymptotic behavior of μ for large q or τ , and so it is impossible to give useful general
results. For example, for a rivulet of an Ellis fluid with μ∞ = 0 in the limit Q̄ → ∞, Eq. (37) gives

a ∼
[

8Q̄

C0β̄3

(
2τav

β̄

)α−1
]1/(α+3)

→ ∞, hm = β̄a

2
→ ∞, u ∼ hα+1 − (h − z)α+1

(α + 1)τα−1
av

(58)

if β = β̄ is prescribed and

β ∼
[

8Q̄

C0ā4

(
2τav

ā

)α−1
]1/(α+2)

→ ∞, hm = βā

2
→ ∞, u ∼ hα+1 − (h − z)α+1

(α + 1)τα−1
av

(59)

if a = ā is prescribed. In both (58) and (59) the large flux is achieved by a combination of the rivulet
becoming thick (hm → ∞) and the velocity becoming large (u → ∞ except in a thin boundary layer
near the substrate).

VII. RIVULETS OF STRONGLY SHEAR-THINNING CARREAU AND ELLIS FLUIDS

A Carreau fluid is strongly shear thinning in the limits λ → ∞ and N → −∞; at leading order
in both limits it behaves like a Newtonian fluid with μ = μ∞ except where q is small. Thus a rivulet
of such a fluid behaves like a rivulet of a Newtonian fluid with μ = μ∞ except in a thin boundary
layer near the free surface, and so at leading order the solutions for u and Q are given simply
by (32).
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FIG. 11. Plots of the viscosity μ of an Ellis fluid given by (6) scaled according to (8) and (9) with τav = 1
and μ∞ = 1/4: (a) as a function of τ and (b) as a function of q, for α = 10, 20, and 30. In (a) and (b) the dashed
curves show the leading-order asymptotic expressions in the limit α → ∞ given by (60) and (61), respectively.

An Ellis fluid is strongly shear thinning in the limits τav → 0 and α → ∞; at leading order in
the former limit the behavior is the same as for a Carreau fluid described above, but, as the results
presented in Sec. IV B show, the behavior in the latter limit is more complicated and so is analyzed
in Secs. VII A and VII B below.

A. A strongly shear-thinning Ellis fluid with μ∞ �= 0

At leading order in the strongly shear-thinning limit α → ∞ the viscosity of an Ellis fluid with
μ∞ �= 0 takes the form

μ ∼

⎧⎪⎨
⎪⎩

1 if τ < τav,

μav if τ = τav,

μ∞ if τ > τav,

(60)

or, in terms of q,

μ ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if q < τav,
τav

q
if τav � q � τav

μ∞
μ∞ if q >

τav

μ∞

(61)

(which, in particular, satisfies μ = μav when q = qav = τav/μav). Thus for τ < τav the fluid behaves
like a Newtonian fluid with viscosity μ = 1, but, unlike a biviscosity fluid (7), for τ > τav it behaves
like a Newtonian fluid with viscosity μ = μ∞, there being a transition from one viscosity to the other
across any surface on which τ = τav. Note that μ is discontinuous at τ = τav in the limit α → ∞
when it is regarded as a function of τ , but is continuous when it is regarded as a function of q, the
change in μ of 1 − μ∞ in the latter case occurring over a change in q of τav(1 − μ∞)/μ∞. This
behavior is illustrated in Fig. 11, which shows plots of the viscosity μ of an Ellis fluid with μ∞ �= 0
as a function of τ and as a function of q for several large values of α, together with the leading-order
asymptotic expressions (60) and (61), shown with dashed curves.

If q and hence τ are sufficiently small everywhere, specifically if τ � τav, which requires that
τav � τm, where τm = hm, then the fluid behaves like a Newtonian fluid with μ = 1, and the solutions
for u and Q are given simply by (20).

083302-17



F. H. H. AL MUKAHAL, B. R. DUFFY, AND S. K. WILSON

O

y

z

aa bb

z = H(y)

Free surface
z = h(y)

μ = 1μ = 1

μ = 1

μ = μ∞

FIG. 12. Sketch of the cross section of a rivulet of a strongly shear-thinning Ellis fluid with μ∞ �= 0 in the
limit α → ∞ when τav < τm. The shaded region has viscosity μ = 1 and the unshaded region has viscosity
μ = μ∞; the two regions are separated from each other by the surface z = H (y) = h(y) − τav, shown with
a dashed line. The darker shading denotes the two subregions in which the velocity is given by (20), and the
lighter shading denotes the subregion in which the velocity is given by (64). The same sketch but with the label
μ = μ∞ replaced with μ = (τav/τ )α−1 also describes the special case μ∞ = 0.

On the other hand, if q and hence τ are larger, specifically if τ exceeds τav somewhere, which
requires that τav < τm, then, as the sketch of the cross section of a rivulet shown in Fig. 12 illustrates,
the rivulet comprises two regions, one (shown shaded) adjacent to the free surface with (larger)
viscosity μ = 1, and the other (shown unshaded) away from the free surface with (smaller) viscosity
μ = μ∞. The two regions are separated from each other by the surface on which τ = τav, that is,
the surface z = H (y), where

H = h − τav = hm

(
1 − y2

a2

)
− τav. (62)

This surface intersects the substrate z = 0 at y = ±b, where b (<a), given by

b = a

(
1 − τav

τm

)1/2

, (63)

denotes the semiwidth of the region with viscosity μ = μ∞; the maximum thickness of this region
is denoted by Hm = H (0) = hm − τav. As Fig. 12 also shows, the region with viscosity μ = 1
comprises three subregions, two of them (shown with darker shading) at the sides of the rivulet (i.e.,
in b < |y| < a), in which the velocity is given by (20), and a third one (shown with lighter shading)
in the middle of the rivulet (i.e., in H < z < h for |y| < b), in which the velocity is given by

u ∼ τ 2
av − (h − z)2

2
+ h2 − τ 2

av

2μ∞
, (64)

while in the region with viscosity μ = μ∞ (i.e., in 0 < z < H for |y| < b), the velocity is given in
Eq. (32). Note that u is continuous across the surface z = H , whereas q = uz changes discontinuously
across it because of the discontinuous change in viscosity there. The leading-order flux Q is given
by

Q ∼ 4β3a4

105
+ 2(1 − μ∞)

(
2β2a2 + 6βaτav + 15τ 2

av

)
βb3

105μ∞a
. (65)

Note that b, u, and hence Q are all O(1) in the limit α → ∞. The structure of the flow in this case
is somewhat similar to that of rivulet flow of a biviscosity fluid, as described by Wilson et al. [14].

Figure 13 shows contour plots of the velocity u for two values of τav, one greater than and the
other less than τm, showing the qualitative differences between the velocity profiles in these two
cases. Figure 13(a) shows the exact solution (33) for α = 50 and τav = 7/10 (<τm � 0.9717), with
a obtained from (30), and Fig. 13(b) shows the leading-order asymptotic solution given by (20),
(32), and (64) for τav = 7/10 (<τm � 0.9657), with a obtained from (65). Figure 13(b) also includes
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FIG. 13. Contour plots of the velocity u for an Ellis fluid with μ∞ = 1/3, β = 1 and Q = 1: (a) the
exact solution (33) for α = 50 and τav = 7/10 (<τm � 0.9717), for which a � 1.9433, (b) the leading-order
asymptotic solution in the limit α → ∞ given by (20), (32), and (64) for τav = 7/10 (<τm � 0.9657), for which
a � 1.9313, b � 1.0130, and Hm � 0.2657, (c) the exact solution (33) for α = 5 and τav = 2 (>τm � 1.1263),
for which a � 2.2525, and (d) the leading-order asymptotic solution in the limit α → ∞ given by (20) for
τav = 2 (>τm � 1.1318), for which a � 2.2635. In (b) the surfaces z = H and y = ±b are shown with dashed
lines. The contours are drawn at intervals of 1/10.

the surfaces z = H and y = ±b separating the subregions sketched in Fig. 12, shown with dashed
lines. Note that, as expected, the contours in Fig. 13(a) are smooth, whereas those in Fig. 13(b)
are continuous with discontinuities in slope across z = H and y = ±b. Figure 13(c) shows the
exact solution (33) for α = 5 and τav = 2 (>τm � 1.1263), and Fig. 13(d) shows the leading-order
asymptotic solution given by (20) for τav = 2 (>τm � 1.1318). Figure 13 also confirms the excellent
agreement between the exact and leading-order asymptotic solutions for the values of α shown.

B. A strongly shear-thinning Ellis fluid with μ∞ = 0

The behavior in the special case of an Ellis fluid with μ∞ = 0 is also of interest, and while some
features of the behavior are similar to those in the general case μ∞ �= 0 described in Sec. VII A,
there are also some notable differences.

At leading order in the strongly shear-thinning limit α → ∞ the viscosity of an Ellis fluid with
μ∞ = 0 takes the form

μ ∼

⎧⎪⎪⎨
⎪⎪⎩

1 if τ < τav,
1
2 if τ = τav,(τav

τ

)α−1
→ 0 if τ > τav,

(66)
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FIG. 14. Plots of the viscosity μ of an Ellis fluid given by (6) scaled according to (8) and (9) with τav = 1
and μ∞ = 0: (a) as a function of τ , and (b) as a function of q, for α = 10, 20, and 30. In (a) and (b) the dashed
curves show the leading-order asymptotic expressions in the limit α → ∞ given by (66) with α = 30 and (67),
respectively.

or, in terms of q,

μ ∼
⎧⎨
⎩

1 if q < τav,
τav

q
if q � τav

(67)

(which, in particular, satisfies μ = μav = 1/2 when q = qav = τav/μav = 2τav). Thus for τ < τav the
fluid behaves like a Newtonian fluid with viscosityμ = 1, whereas, unlike in the general caseμ∞ �= 0,
for τ > τav it behaves like a power-law fluid with nonconstant viscosity τavq

−1 with consistency
parameter τav and power-law index zero, there again being a transition from one viscosity to the
other across any surface on which τ = τav. Note that (66), but not (67), depends on α. This behavior
is illustrated in Fig. 14, which shows plots of the viscosity μ of an Ellis fluid with μ∞ = 0 as a
function of τ and as a function of q for several large values of α, together with the leading-order
asymptotic expressions (66) with α = 30 and (67), shown with dashed curves.

If τav � τm, where again τm = hm, then the fluid behaves like a Newtonian fluid with μ = 1, and
the solutions for u and Q are again given simply by (20).

On the other hand, if τav < τm then the rivulet again comprises two regions with different
viscosities like those sketched in Fig. 12 but with the label μ = μ∞ replaced with μ = (τav/τ )α−1.
The two regions are again separated from each other by the surface z = H (y) given by (62). However,
whereas in the general case μ∞ �= 0 we found that b, u, and hence Q are all O(1) in the limit α → ∞,
in this case the central region becomes narrow (i.e., b � 1) and the velocity within the central region
becomes large in the limit α → ∞. Within most of the rivulet the velocity is given by (20), but in
the narrow central region |y| < b it is given to O(1) by

u ∼ h2 − (h − z)2

2
+ hα+1 − (h − z)α+1

ατα−1
av

. (68)

Note that Eq. (68) is uniformly valid across the entire central region, i.e., in both 0 < z < H and
H < z < h. The leading-order flux Q has two O(1) contributions, one from the O(1) velocity (20)
within most of the rivulet, and one from the large O(α1/2) � 1 velocity (68) in the narrow central
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region |y| < b of semiwidth O[(log α/α)1/2] � 1, and is therefore given by

Q ∼ β3a4

[
4

105
+

√
π

8α3/2

(
τm

τav

)α−1
]
, (69)

from which it may be shown that

hm ∼ τav

[
1 + log(kα3/2)

α

]
→ τ+

av, Hm ∼ τav
log(kα3/2)

α
→ 0+, b ∼ a

[
log(kα3/2)

α

]1/2

→ 0+,

(70)

where the coefficient k (>0) is found from (69) to be given by

k = 105Q̄ − 32τ 3
avā

105
√

πτ 3
avā

or k = 105β̄Q̄ − 64τ 4
av

210
√

πτ 4
av

(71)

when a = ā or β = β̄, respectively, is prescribed. In deriving (70) we have made use of the result
[1 + log(kα3/2)/α]α−1 ∼ kα3/2 in the limit α → ∞, so that hm in Eq. (70) satisfies (τm/τav)α−1 ∼
kα3/2. The velocity (68) has a “pluglike” profile with magnitude u ∼ kτ 2

avα
1/2 = O(α1/2) → ∞

except in a thin boundary layer of thickness O(α−1) near the substrate. The structure of the flow in
this case is somewhat similar to that of rivulet flow of a power-law fluid in the strongly shear-thinning
limit, as described by Al Mukahal et al. [33,34].

Figure 15 shows contour plots of the velocity u for two pairs of values of α and τav. Figure 15(a)
shows the exact solution (37) for α = 20 and τav = 7/10 (<τm � 0.8488), and Fig. 15(b) shows
the asymptotic solution given by (20), (68), and (69) for α = 20 and τav = 7/10 (<τm � 0.8574).
Figure 15(b) also includes the surfaces z = H and y = ±b separating the subregions described
above, shown with dashed lines. Figure 15(c) shows the exact solution (37) for α = 5 and τav = 2
(>τm � 1.1235), and Fig. 15(d) shows the leading-order asymptotic solution given by (20) for
τav = 2 (>τm � 1.1318). Like Fig. 13, Fig. 15 also confirms the excellent agreement between the
exact and leading-order asymptotic solutions for the values of α shown.

VIII. SUMMARY AND CONCLUSIONS

In the present work we considered steady unidirectional gravity-driven flow of a uniform thin
rivulet of a generalized Newtonian fluid down a vertical planar substrate. The parametric solution
for the velocity u and volume flux Q for any generalized Newtonian fluid whose viscosity can be
expressed in the form μ = μ(q) (Sec. III B), and the explicit solution for any generalized Newtonian
fluid whose viscosity can be expressed in the form μ = μ(τ ) (Sec. III C) were obtained. These general
solutions were used to describe rivulet flow of Carreau and Ellis fluids, highlighting the similarities
and differences between the behavior of these two fluids (Sec. IV). In addition, the general behavior
of rivulets of nearly Newtonian fluids (Sec. V) and of rivulets with small or large prescribed flux
(Sec. VI), as well as the behavior of rivulets of strongly shear-thinning Carreau and Ellis fluids
(Sec. VII), were also described. We found that whereas the monotonic dependence of the viscosity
of a Carreau fluid on the parameters λ, μ∞, and N and of an Ellis fluid on the parameters τav and
μ∞ leads to the expected dependence of the behavior of the rivulet on these parameters (namely, that
increasing the viscosity of the fluid leads to a larger rivulet), the nonmonotonic dependence of the
viscosity of an Ellis fluid on α shown in Fig. 6(c) leads to the more complicated dependence of the
behavior of the rivulet on α shown in Figs. 7–10. In particular, we also found that when τav < τm,
where τm = hm, a rivulet of an Ellis fluid in the strongly shear-thinning limit α → ∞ comprises two
regions with different viscosities, as sketched in Fig. 12. In the general case μ∞ �= 0 the two regions
have different constant viscosities μ = 1 and μ = μ∞, leading to the velocity contours shown in
Fig. 13, whereas in the special case μ∞ = 0 one region has constant viscosity μ = 1 and the other
has a nonconstant power-law viscosity μ = (τav/τ )α−1, leading to the velocity contours shown in
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FIG. 15. Contour plots of the velocity u for an Ellis fluid with μ∞ = 0, β = 1 and Q = 1: (a) the exact
solution (37) for α = 20 and τav = 7/10 (< τm � 0.8488), for which a � 1.6977, (b) the asymptotic solution in
the limit α → ∞ given by (20), (68), and (69) for α = 20 and τav = 7/10 (<τm � 0.8574), for which a � 1.7148
and b � 0.8131, (c) the exact solution (37) for α = 5 and τav = 2 (>τm � 1.1235), for which a � 2.2470, and
(d) the leading-order asymptotic solution in the limit α → ∞ given by (20) for τav = 2 (>τm � 1.1318), for
which a � 2.2635. In (b) the surfaces z = H and y = ±b are shown with dashed lines. The contours are drawn
at intervals of 1/10.

Fig. 15 with a pluglike velocity profile with large magnitude O(α1/2) � 1 in the narrow central
region of the rivulet of semiwidth O[(log α/α)1/2] � 1.
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