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Energy spectrum in the dissipation range
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We study the dissipation range of the turbulent energy spectrum in homogeneous
and isotropic turbulence via highly resolved direct numerical simulations for microscale
Reynolds numbers Rλ between 1 and 100. The simulations resolve scales as small as
a tenth of the Kolmogorov scale. We find that the spectrum in this range is essentially
exponential for Rλ up to about 20, but assumes a more complex form for higher Rλ.
This shape can be regarded roughly as a superposition of two exponentials where the
second exponential, which becomes stronger with increasing Rλ, appears to be the result
of intermittent interactions with the lower wave-number part of the spectrum; it disappears
when these interactive parts are filtered out before computing the spectrum, essentially
recovering the initial exponential shape. The multifractal theory accounts for better collapse
in a limited range of wave numbers up to Reynolds numbers of 1000 observed with additional
simulations at lower resolutions.
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Kolmogorov’s seminal work (K41) [1] assumed that the energy spectrum of turbulent fluctuations
at dissipative scales (around and beyond the so-called Kolmogorov scale η ≡ ν3/〈ε〉1/4) is determined
solely by the mean energy dissipation rate (〈ε〉) and the kinematic viscosity (ν). This insight gave
rise to a flurry of models by Obukhov, Heisenberg, von Kármán, Kovasznay, and others. These early
models (see Sec. 17 of Monin and Yaglom [2]) were essentially dimensional arguments containing
additional hypothesis and were “more or less speculative and lacking sound physical bases” (see
Ref. [2], p. 212). A different line of theoretical attempts was initiated by Kraichnan [3] via his direct
interaction approximation, which argued that the spectrum must be an exponential. The result in a
somewhat more general form is given by

E(kη) ∼ (kη)αe−β(kη)γ (1)

for wave numbers k in the range kη > 1. Other authors [4–8] have arrived at similar forms by
different and independent reasoning. In the form (1), the equation has been tested by a number of
authors using direct numerical simulations (DNS) [9–13]. Measurements have rarely resolved past
the Kolmogorov scale.

Optimal fitting of Eq. (1) to the DNS data is not straightforward because three free parameters are
involved in a strongly nonlinear form. A major assumption in most studies is to put γ = 1, leaving
only two coefficients to be determined. Under this assumption, Chen et al. [10] found α ∼ 3.3 and
β ∼ 7.1 for Rλ ∼ 15 within the range 5 < kη < 10. Martinez et al. [11] improved on this work by
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TABLE I. Summary of DNS runs. N is the number of grid points in each direction. �TE is the number of
eddy turnover times in the stationary state. The upper limit on the far-dissipation range is determined by the
smaller number between kmaxη and kη near the round-off limit.

Rλ N kmaxη �TE NDR FDR

1 128 53.7 9.06 2.5–6 6–14
3 128 30.5 13.6 2–6 6–12.5
7 128 17.8 15.9 2–6 6–11
9 256 28.1 11.8 1.5–4.5 8–11.5
10 512 55.6 10.2 2–4 8–11.5
14 256 20.7 7.38 2–4 8–12
19 512 34.7 9.93 2–4 8–11
25 256 12.3 19.6 2–4 8–11.1
47 1024 24.8 19.2 2–4 8–12.5
55 1024 19.9 18.4 1.5–3 8–11.7
68 1024 14.9 19.3 1.5–3 8–12.9
89 2048 21.2 24.2 1.5–3 8–13.7

studying a range of Rλ. They locally fitted the log-derivative of Eq. (1), φ(kη), which has the form

φ(kη) ≡ d ln[E(kη)]

d ln(kη)
= α − β γ (kη)γ . (2)

Their highest resolved simulation suggested two scaling ranges below and above kη ∼ 4 and indicated
that a simple exponential may not be appropriate. Ishihara et al. [12] fit the near-dissipation region
for Eq. (1), but for Rλ higher than those of Ref. [11]. Both papers show a Rλ dependence for α and β.
Schumacher et al. [13] performed an analysis similar to Ref. [11] using higher-resolution data and
reported that no unique set of parameters exists, though they also noted a saturation in the values of
these parameters around Rλ ∼ 100.

Most previous studies did not include large ranges of Rλ, or concerned themselves with low values
of Rλ, or have resolved scales not too far into the dissipation range. To some degree, this accounts
for the variety of conclusions. It seemed desirable to extend both the Reynolds number range and
the resolution of the simulations and obtain more conclusive results on the spectral shape in the
dissipative region. This is the goal of the present study. We perform DNS with very fine resolution,
as detailed in Table I, for Rλ ranging from 1 to about 100. The code is pseudospectral and uses
a Runge-Kutta scheme (RK2) for time integration. The time step is 3–80 times smaller than the
Kolmogorov timescale in the stationary state Courant-Friedrichs-Lewy (CFL) range: [0.1–0.7]. The
flow is forced in Fourier space with integrated Ornstein-Uhlenbeck processes [14] with a finite-time
correlation at the largest scales within the sphere k < 2.01. The Reynolds number is changed by
changing the viscosity. In all cases, the highest resolvable wave number kmax = √

2N/3 (N being the
number of grid points in each direction) is at least an order of magnitude larger than the Kolmogorov
scale. The stationary state averaging is started at least six eddy turnover times from the initial
conditions. We have tested for potential numerical artifacts caused by finite-arithmetic precision or
truncation, aliasing errors, and numerical differentiation schemes, and have shown that these effects
do not influence the results (see the Appendix).

In Fig. 1(a) we collect spectra for a range of Reynolds numbers. From a quick look, the data
show an approximate collapse at all Reynolds numbers, as expected from classical phenomenology;
interestingly, this rough collapse seems to cover even very low Reynolds numbers of ∼O(1). A more
careful inspection of the spectra, however, reveals two important departures from the self-similarity
implied in K41. First, spectral collapse is not strictly achieved at the low end of the dissipation
range, say, kη ∼ 0.1–1, as seen better on the linear scale of the inset [Fig. 1(a)]. As pointed out
in Ref. [15], there is a clear systematic decrease of this so-called bottleneck effect (the spectral
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FIG. 1. (a) Energy spectrum for all Rλ in the database. Inset: Detail of (kη)5/3E(kη) for Rλ � 50. Data for
Rλ > 89 are taken from Ref. [15]. (b) The log-derivative φ(kη) for very well-resolved simulations shows two
ranges. Selected Rλ are shown to reduce clutter and illustrate the trend.

bump that precedes the dissipative region at kη = 0.13) with the Reynolds number; this can also be
observed in the data of Ref. [16]. Second, and this is the focus of the present Rapid Communication,
one can also see persistent systematic trends with the Reynolds number even at higher wave numbers;
see Fig. 1(b). Several previous simulations did not observe or emphasize this aspect. The observed
behavior cannot be fitted by an exponential over the entire range and, indeed, the shape of the data
precludes the applicability of spectral formulas such as Eq. (1).

Nevertheless, it appears useful to consider the spectral shape to consist of two exponentials with an
extended crossover, the near-dissipation range (NDR), kη � 3, and the far-dissipation range (FDR),
kη � 6, for each of which one may be able to fit Eq. (1), but with a different set of constants. This
approach is in contrast to virtually all theoretical models which predict, for kη � 1, the general
form Eq. (1), sometimes with a sum of more than one power law in the prefactor [3,9]. Although
no rigorous argument has been put forth for multiple exponentials, there have been some efforts
to use Eq. (1) with different coefficients in different ranges—for example, Ref. [11], though their
simulations did not resolve far enough into the FDR to reliably obtain the coefficients and their fits
used γ = 1, which does not apply. There has also been some recent theoretical work on chaotic
systems which may justify the appearance of multiple exponentials [17].

To compute the coefficients we first plot the log-derivative of the normalized energy spectrum,
compensated with γ (kη)γ , such that Eq. (2) yields

φ(kη)

γ (kη)γ
= α

γ (kη)γ
− β. (3)

If α = 0, for instance, even for a limited range of kη, a constant β would result and γ can be
determined by searching for the value that results in the widest plateau of the left-hand side of
Eq. (3).

For Rλ up to about 10 (perhaps even 20), Fig. 1(b) shows that γ = 1 approximates the data well
which in this figure would be seen as a straight line; we then obtain β = 6.7, similar to Refs. [10,11]. A
few remarks are in order for determining the constants for larger Rλ. First, past efforts have generally
used a fixed value of γ and used a finite nonzero value of α. But fixing γ at a predetermined value can
only lead to incorrect values for the coefficients, as seen clearly in Fig. 1(b). Second, the optimization
procedure that can be used to find the best fit coefficients by minimizing the error between DNS and
Eq. (1) leads to a number of challenges for finding the global minimum in the error, because of the
strongly nonlinear nature of the procedure. Standard techniques typically find local minima strongly
dependent on the initial seeds. In any case, such efforts in NDR and FDR generally give values of α

that are relatively small, fluctuating inconsistently around zero, from which one can justify setting
α ≈ 0 without any loss of accuracy of fits. This conclusion is reinforced from typical compensated
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FIG. 2. The compensated log-derivative for (a) NDR and (b) FDR of the energy spectrum.

log-derivatives shown separately in Fig. 2 for NDR and FDR, whose extent (by visual inspection) is
summarized in Table I: One can see clear plateaus in Fig. 2, rather than an asymptotic approach to
plateaus at high kη as would be the case if α/[γ (kη)γ ] is not negligible. This plateau effect can be
due either because α ≈ 0 or because kη is high enough to make that term negligible. In both cases,
the conclusion is that the value of α is largely inconsequential in both the NDR and FDR (see also
the Appendix). This is consistent with the extreme sensitivity in determining α from fits including
only kη � O(1) using standard minimization tools.

A phenomenological argument for including the power-law term with nonzero α is essentially that
the exponential roll-off in the dissipation range must transition smoothly to a power law in the inertial
range with an exponent of −5/3 [1]. However, it is now well established that the dissipation and
inertial ranges are separated by a spectral bump due to the bottleneck effect [15,19]. This realization
has led to the use of varying power laws as prefactors [9,20]. However, as argued above, a simple
sensitivity analysis of the fitting parameters reveals that changes in α do not significantly affect β.
We thus put α = 0 in NDR and FDR but accept two different γ values in each of the regions.

Still, if one insists on using a finite, nonzero α, the present data indicate that the effect is relatively
small because of the clear plateau observed in the compensated log-derivative seen in Fig. 2, which
implies that the first term in Eq. (3) is indeed small. The observed plateaus can be used to estimate
bounds on α. Requiring that the second term be much larger (needed for a plateau), say, an order
of magnitude larger than the first, requires (using the fact that βγ ≈ 6.4—see below) that α 	
0.1βγ (kη)γ ≈ 0.64 in the NDR and α 	 2.4 in the FDR; the observed plateaus actually suggest
that α is much smaller.

Once γ is known, it is straightforward to determine α and β (or only β) using standard
minimization tools. The values of γ found using the compensation method detailed above which led
to the plateaus observed in Fig. 2 are collected in Fig. 3(a). At low Rλ, γ is slightly smaller than 1
for both NDR and FDR, but it is hard to assign any deep significance to the observed difference from
unity. At higher Reynolds numbers, however, we see the emergence of the two ranges. In the NDR, γ
decreases with increasing Rλ and remains below 1. With these values of γ we performed least-squares
fits to determine β. The results are shown in Fig. 3(b). Here, too, we observe different behaviors for
the two ranges of the spectrum when Rλ � 10. The parameter β increases with increasing Rλ for the
NDR but decreases for FDR. An interesting result in the NDR is that βγ is fairly constant around
6.4 for all Rλ studied here.

In contrast to K41, multiple dissipation ranges are predicted by the multifractal formalism [18],
which assumes a local scale invariance rather than the global scale invariance of K41. This manifests
as a scaling of velocity increments with a Hölder exponent h within an interval (hmin, hmax); for
each h, a fractal set with dimension D(h) can be determined [18]. Scaling exponents are turned off
successively as viscosity becomes increasingly important at higher k. In doing so, a new similarity
parameter θ = ln(kη)/ ln(Rλ) is derived such that ln[E(kη)]/ ln(Rλ) ≡ f (θ ). In Fig. 4, we show
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FIG. 3. (a) Values of γ as a function of Rλ found from the compensated log-derivative form as described in
the text. NDR values are represented by ◦ and FDR by ×. (b) The constant β after fitting Eq. (3) for appropriate
γ as a function of Rλ. Symbols ◦ and × are from NDR and FDR fits, respectively. Black symbols correspond to
fits with α = 0 and green for fits with α as a fit parameter. The 2-norm of relative error between DNS data and
the fit (not shown) is less than 4% and decreases with increasing Rλ. No significant improvements in relative
error are observed with the inclusion of α in the fit.

the log-derivative of the energy spectrum in the new variables which has a more compelling case of
collapse than K41. The collapse of the spectrum is robust for the data presented here (Rλ > 50) in
the range 0 < ln(kη)/ ln(Rλ) < 0.4 (loosely covering NDR), but it is also clear that the multifractal
description has limited success in the FDR, broadly speaking.

In an attempt to physically understand how the pure exponential of low Rλ assumes a
multiexponential form at higher Rλ, we note that the pure exponential simply represents the case when
the energy dissipation is proportional to the energy at each of the wave numbers. As the Reynolds
number increases, however, there is an intermittent transfer of energy to small scales, potentially from
larger scales. This effect becomes increasingly important at increasing wave numbers (though at some
truly large wave number, the effects will presumably vanish). This is seen in Fig. 5(a), which shows a
time series of the energy spectrum E(kη, t ), normalized by the median value of the time series ˜E(kη).

FIG. 4. Log-derivative of the energy spectrum according to the (a) multifractal formalism (see Ref. [18]) and
(b) K41 scaling. The range 0 < ln(kη)/ ln(Rλ) < 0.4 corresponds to the so-called intermediate dissipative range
[18]. Data for Rλ > 89 (dashed lines), taken from Ref. [15], correspond to simulations with limited resolution
to assess FDR scaling as well-known aliasing errors (seen as a strong uptick in the present normalization) are
apparent in the figure.
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FIG. 5. (a) Time series of energy spectrum E(kη, t ) normalized by the median value of the time series
˜E(kη) for a subset of wave numbers at Rλ ≈ 90. The inset shows the same data on an expanded scale.
(b) Log-derivative of the filtered time average for the energy spectrum, φf (kη) for different values of the
threshold cutoff w. Data with w = 7 were found to correspond to the unfiltered time series.

Large bursts in energy are observed intermittently for high wave numbers. It is thus natural to assess
the effect of these intermittent events on the time-averaged energy spectrum. To do so, we remove
large bursts by filtering out spectra at time instants where E(k, t ) exceeds a chosen threshold; that
is, we retain 10−w < E(k, t )/˜E(k) < 10w in the average for some chosen threshold w. With this
so obtained filtered time-averaged spectrum [Ef (kη)] one can compute the filtered log-derivative
φf (kη), shown in Fig. 5(b) for different values of w. The data show that as we remove more of the
intermittent events, we essentially recover the low-Rλ exponential, and the difference between NDR
and FDR vanishes. This is a clear demonstration that the deviation from the exponential form occurs
essentially from bursts of energy transfer. Based on the elementary argument given by Kraichnan [21],
it can be argued that extreme fluctuations at high wave numbers are due to large-scale activity.
Regardless of their specific origin (a topic by itself warranting further research), extreme energy
fluctuations at high wave numbers and high Rλ appear to alter the single exponential representation
in the entire dissipative range kη � 1.

In summary, we have used highly resolved DNS data of isotropic turbulence to investigate the
dissipative wave-number part of the energy spectrum for a range of Rλ. We have shown that the
collapse of the Kolmogorov-scaled spectrum reported in the literature (between 0.13 � kη � 1) is
an artifact of limited resolution and Reynolds number range. The results presented here (see also
Refs. [12,15,22]) demonstrate a systematic Rλ dependence (up to Rλ ∼ 2300 from Ref. [22]) of
all resolved scales in the energy spectrum. While we have observed an exponential roll-off for
the spectrum of the form Eq. (1) at low Rλ, a systematic analysis of the coefficients involved
shows two distinct scaling ranges. A general expression that captures these two regimes can be
written as E(kη) ∼ eβ1(kη)γ1 + Aeβ2(kη)γ2 , where γ2 ∼ 1, A 	 1. This form is not found in traditional
formalisms. The second exponential (γ2 ∼ 1) has been predicted using different approaches but, as we
have shown, it is realized at much higher wave numbers than previously considered. The multifractal
scaling seems to provide a better representation in the intermediate dissipation range (around NDR),
but not at very high wave numbers in the FDR. We have made a connection between the second
exponential and intermittent energy transfer. By removing these intense fluctuations (argued to be due
to activity in the larger scales by Kraichnan), the spectrum reverts to the single low-Rλ exponential. It
is also interesting to note that the two-exponential behavior is observed for Rλ � 20. This Reynolds
number is not far from the critical value recently put forth by Yakhot and Donzis [23,24] beyond
which moments of velocity gradients and dissipation transition from the Gaussian state to a fully
anomalous state characterized by intermittency. A more thorough analysis of this connection is a
part of ongoing research.
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FIG. 6. (a) Energy spectrum and (b) its log-derivative for Rλ ∼ 50.

Finally, this work suggests two more conclusions. First, fitting a single exponential to high-Rλ

data may lead to conflicting results as the numerical values of the parameters depend strongly on
the range over which the fit is performed as it may cover NDR, FDR, or both. Second, the very
large bursts of energy that are observed in FDR present difficulties in time averaging as strong and
localized events can be missed or skew the mean. Thus, very long records with a very high time
resolution (both perhaps beyond current practices) are needed for converged averages, especially in
the FDR.
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APPENDIX

1. Numerical resolution

In order to verify that small scales are not contaminated by numerical artifacts, we have tested for
three main sources of errors: small-scale and time resolution, and finite arithmetic precision.

We run a series of simulations at the same conditions but with different resolutions and precision.
A typical result is shown in Fig. 6 for which we show both the compensated spectrum and the
log-derivative as in Fig. 1. In Fig. 6(a), we see that the three cases overlap with each other up
to kη ≈ 6 where the single-precision data (4-byte real) depart with contamination from round-off
errors. We have verified this departure to be insensitive to an increase in resolution, as expected if
the source is rounded off. The 5123 case with double precision (8-byte real) extends further without
being affected by round-off errors. When the resolution is increased to 10243, the spectral content
decreases to levels where round-off errors are apparent for this precision at kη ≈ 14. We have also
tested time resolution effects. A typical result is shown in the figure as well. We see that reducing
the time step for this resolution by a factor of 4 results in no observable changes in the spectrum.
Similar conclusions are arrived at from the even more detailed view of these effects in Fig. 6(b).

Thus, we find that doubling the resolution only weakly affects the high-wave-number part of the
spectrum, with most of the effects confined around k ∼ O(kmax), as seen in Fig. 6. This is consistent
with the conclusions of Ref. [25], though the authors worked with resolutions kmaxη � 3.8. In order
to observe a FDR, however, one obviously needs a much higher resolution. As an aside, we note
that the spectra from Ref. [25] also seem to exhibit a systematic Reynolds number trend for (even
marginally) resolved wave numbers in the NDR, consistent with the results presented here. In fact, a
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FIG. 7. Compensated curves with over- and underpredicted values for γ . Blue lines are for a pure exponential
and the red line is for an exponential prefixed with a power law (α0 = −5/3). Both have β = 4 (dashed black
line) and γ0 = 0.85.

careful observation of the spectrum in Refs. [15,16] also shows a slight Reynolds number trend even
for kη < 1. The Reynolds number trend for the FDR reported here can also be seen in Ref. [13].

2. Determination of fitting parameters

Here, we show further tests for the compensation method used to determine the coefficients.
As explained in the text, the method is based on obtaining γ as the value that results in the
widest plateau for φ(x)/(γ xγ ). To test the accuracy of the method, we use a known function
(kη)α0 exp[β0(kη)γ0 ] with given α0, β0, and γ0 and use our technique based on Eq. (3) to compare the
obtained coefficients. In Fig. 7 we show typical results for (α0, β0, γ0) = (0, 4, 0.85) (blue lines) and
(α0, β0, γ0) = (−5/3, 4, 0.85) (red line). It is clear from Eq. (3) that a wide plateau, with the correct
β is, in theory, only observed for the case with no power law (α0 = 0). We look at that case first. In
the figure we plot results for γ which is deliberately selected to be 3% below and above the exact
value (γ0). In both cases no plateau is observed and no β could thus be identified. This example shows

FIG. 8. (a) Value of β when fit locally for Rλ ∼ 90. (b) Relative error between DNS data and Eq. (1) using
parameters obtained with the present method (red) and that of Ref. [11] (blue).
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how the compensation method is found to be able to visually account for a few percentage points
errors in the determination of γ . For the case with a power law (α0 �= 0), the approach to the right
value of β is seen to occur only asymptotically at very large kη when the correct γ is used (red line):
No plateau is observed in this case. Thus, the plateau observed in DNS data (Fig. 2) is indicative of
both an appropriate value of γ and a negligible α, as argued in the text.

We also compare our local fitting procedure with that of Refs. [11,26]. Both studies assumed
γ = 1 and fit locally both α and β. Schumacher et al. [26] concluded that no visible asymptotic
behavior was observed for his data and that α appears to change sign. Martinez et al. [11] used their
highest resolved simulation to show that β approaches a constant. However, they could only resolve
up to kη ≈ 11. In Fig. 8(a) (blue line) we show a case in our DNS database using their method. What
we observe is that β does not approach a constant but instead a local maximum around kη ≈ 10,
which may be mistakenly taken as an asymptote if no data at higher wave numbers are available. If
instead we use the present method on the same data, we find clear asymptotic behavior in both NDR
and FDR (red line). A constant value of β is now observed as the proper value of γ is used and α is
not a fitting parameter. We also see that our method results in smoother curves, especially at high kη.
The relative error between DNS and Eq. (1) with parameters obtained by these two methods is shown
in Fig. 8(b). An important observation in the figure is that the procedure in Ref. [11] leads to errors
with a nonrandom structure: negative error at low and high k and positive error at intermediate k.
This is indicative of an inappropriate fitting function, or, in this case, γ values. The method proposed
here, instead, leads to a randomly distributed error and with an overall smaller error.
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