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Reynolds-averaged Navier-Stokes (RANS) equations are widely used in engineering
turbulent flow simulations. However, RANS predictions may have large discrepancies due
to the uncertainties in modeled Reynolds stresses. Recently, Wang et al. demonstrated
that machine learning can be used to improve the RANS modeled Reynolds stresses by
leveraging data from high-fidelity simulations [J.-X. Wang et al., Phys. Rev. Fluids 2,
034603 (2017)]. However, solving for mean flows from the improved Reynolds stresses
still poses significant challenges due to potential ill-conditioning of RANS equations with
Reynolds stress closures. Enabling improved predictions of mean velocities is of profound
practical importance, because often the velocity and its derived quantities (quantities of
interest, e.g., drag, lift, and surface friction), and not the Reynolds stress itself, are of
ultimate interest in RANS simulations. To this end, we present a comprehensive framework
for augmenting turbulence models with physics-informed machine learning, illustrating a
complete workflow from identification of input features to final prediction of mean veloci-
ties. This work has two innovations. First, we demonstrate a systematic procedure to generate
mean flow features based on the integrity basis for mean flow tensors. Second, we propose
using machine learning to predict linear and nonlinear parts of the Reynolds stress tensor
separately. Inspired by the finite polynomial representation of tensors in classical turbulence
modeling, such a decomposition is instrumental in overcoming the ill-conditioning of RANS
equations. Numerical tests demonstrate the merits of the proposed framework.
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I. INTRODUCTION

Numerical simulations based on Reynolds-averaged Navier-Stokes (RANS) models are still the
workhorse tool in engineering design involving turbulent flows. However, predictions from RANS
simulations are known to have large discrepancies in many flows of engineering relevance, including
those with swirl, pressure gradients, or mean streamline curvature [1]. It is a consensus that the
dominant cause for such discrepancies is the RANS-modeled Reynolds stresses [2]. In light of the
long stagnation in traditional turbulence modeling, researchers [3–7] explored machine learning as
an alternative to improve RANS modeling by leveraging data from high-fidelity simulations.

A. Data-driven methods for reducing model discrepancies in RANS simulations

Data-driven methods have been devised to calibrate the model form uncertainties in RANS
simulations based on optimization [8] and Bayesian inference approaches [8–12]. However, these
data-driven calibration approaches inferred the model discrepancies of a given flow and thus lack the
generalization capabilities for predicting flows with vastly different geometries from the calibration
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flow. Therefore, follow-on works of these researchers build data-driven turbulence models in the
mean flow feature space (as opposed to physical space). Such an approach enables prediction
for flows in different geometries yet with similar physics (e.g., curved pipes and wing-body
juncture, both featuring secondary flows driven by Reynolds stress anisotropies). Duraisamy and
co-workers [3,13,14] used nondimensional flow variables as the input features and a multiplicative
correction term in the Spalart-Allmaras model as the machine learning output. Their machine-
learning-augmented model demonstrated good generalization capabilities within a class of flows
around airfoils [14]. Ling et al. [5] pointed out the importance of embedding the tensorial invariance
properties in the machine learning process and used this approach to predict the Reynolds stress with
a deep neural network [6]. Wang et al. [7] built a machine learning model to predict the discrepancies
in the RANS modeled Reynolds stresses. Encouraging results have been demonstrated in prediction
of Reynolds stresses in two sets of canonical flows (separated flows over periodic hills and secondary
flows in a square duct). However, the machine-learning-predicted Reynolds stress leads to large error
of solved mean velocities when substituted into the RANS equations. Such an ill-conditioning issue
is a common challenge for data-driven Reynolds stress models that must be addressed to unleash the
power of such models.

A distinctly different approach of data-driven modeling was pursued by Weatheritt and Sandberg
[15,16], who used symbolic regression and gene expression programming to develop algebraic
Reynolds stress models. To some extent, their approach is a combination of traditional modeling and
data-driven modeling methods reviewed above. Specifically, while data-driven methods are used to
obtain their model, the end product is an algebraic Reynolds model in the traditional sense. As such,
the ill-conditioning issue for their model would be similar to the traditional models with explicit
analytical forms and not the data-driven models.

B. Conditioning of data-driven Reynolds stress models

In this work we refer to solving the RANS equations for mean velocities with a given Reynold
stress field as propagation, which is a critical component in data-driven turbulence modeling. Poroseva
et al. [17] referred to such simulation as RANS-DNS simulations. Admittedly, both terms could cause
potential confusion and thus warrant the explicit clarification here.

Recently, several researchers have observed that small errors in the Reynolds stresses can be
amplified to large errors in the mean velocities when solving the RANS equations with specified
Reynolds stresses. Thompson et al. [18] propagated Reynolds stresses in channel flows at a wide
range of frictional Reynolds numbers (Reτ = 180–5200) to mean velocities by using several reputed
direct numerical simulation (DNS) databases. They reported that the propagated mean velocities can
deviate significantly from the mean velocities from the DNS, especially for flows at high Reynolds
numbers (notably Reτ = 5200). Poroseva et al. [17] also made similar observations and Poroseva
[19] further pointed out that the discrepancies between the propagated velocities and DNS velocities
were observed for flows at Reynolds numbers as low as Reτ = 395, depending on the data set used.
Considering that errors in DNS Reynolds stress are typically less than 0.5% [20,21], these exercises of
propagating DNS Reynolds stresses to mean velocities thus represent an ideal scenario for data-driven
turbulence models with negligible modeling errors. Wu et al. [21] explained such observations by
pointing out that RANS equations with Reynolds stress closure models can be ill-conditioned. They
further proposed a condition number function defined based on the local velocities to quantify the
ill-conditioning. For plane channel flows, the local condition number does increase with Reynolds
number, which thus explained the increased ill-conditioning with increasing Reynolds number. In
contrast, the traditional, matrix-based conditional number was not able to explain such observations.
A physical explanation is that viscous stresses are negligible at high Reynolds numbers and the
mean velocity is determined by the dependence of the Reynolds stresses on the mean velocity
gradients. Therefore, obtaining the mean velocity would fail from an a priori specification of the
Reynolds stresses. A unique issue associated with data-driven modeling is that it can be difficult or
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even impossible to treat the Reynolds stress implicitly as in traditional models, and in such cases
segregated solvers are the only option. A more detailed discussion can be found in [21].

A similar ill-conditioning issue also exists in traditional Reynolds stress models (RSMs), where
Reynolds stresses are obtained by solving transport equations. To enhance the stabilities, Jarklic
and co-workers [22,23] blended τRSM obtained from solving the Reynolds stress transport equation
with that given by a linear eddy viscosity model, i.e., τ = ατRSM + (1 − α)τLEM. However, the
specification of a blending factor α is largely ad hoc and lacks physical basis. In this work we aim at
introducing a more rigorous physics-based implicit treatment in the context of data-driven Reynolds
stress models.

C. Data-driven closure modeling beyond RANS simulations

In addition to RANS modeling as reviewed above, data and machine learning have been used
to provide closures for (i) the subgrid-scale (SGS) fluxes in large-eddy simulations (LESs), (ii)
the interphase momentum fluxes in multiphase flow simulations [24,25], and (iii) the unresolved
boundary layer physics in potential flow simulations [26]. Among these, researchers reported ill-
conditioning issues in data-driven SGS models in LESs that are similar to the ill-conditioning issue
in the context of RANS modeling discussed above. For example, Gamahara and Hattori [27] used
a neural network to model the subgrid-scale stress in a turbulent channel flow. Compared to the
predictions of Smagorinsky models, the machine learning model predicted better SGS stresses but
the less satisfactory mean velocities. This observation clearly highlights the gap between a priori and a
posterior performances in assessment of turbulence models, particularly in the context of data-driven
turbulence modeling. Furthermore, Durieux [28] reported that the LESs with neural network predicted
SGS models become unstable if velocity-derived variables are chosen as neural network inputs,
suggesting possible error amplification in the propagation of SGS stresses to mean velocities.

Note that the ill-conditioning issue only emerges if the data-driven SGS model is explicitly
substituted into filtered transport equations to solve for velocities or other quantities of interest.
Many other works that focus on the data-driven prediction of SGS terms (i.e., a priori tests) did not
encounter this problem. For example, Vollant et al. [29,30] modeled SGS scalar flux by using neural
networks based on optimal estimation. King et al. [31] proposed a fully adaptive self-optimizing
SGS closure and demonstrated superior a priori performance than traditional dynamic SGS models.
Maulik and San [32] trained a neural network to represent the deconvolution of flow quantities
from filtered flow field. They also demonstrated excellent a priori performance in several canonical
boundary-free flows. All these promising works have the potential of becoming data-driven SGS
closures for stresses or scalar fluxes in LESs. However, a similar ill-conditioning issue in the context
of RANS modeling as outlined in Sec. I B still needs to be addressed if the successes in these a priori
tests are to be translated into a posteriori tests.

D. Summary

In the present work we demonstrate a systematic approach in choosing the input feature variables
for machine learning in the context of turbulence modeling. Specifically, we first identify a set
of vectorial or tensorial mean flow variables, e.g., strain-rate tensor, rotation-rate tensor, pressure
gradient, and turbulence kinetic energy gradient. Choosing these quantities as inputs for machine
learning has clear physical justifications and are supported by the practice in traditional turbulence
modeling. Subsequently, we construct an invariant basis set from these variables based on the tensor
representation theorem. While this approach was proposed by Ling et al. [5] and is not new in
the present work, the application in turbulence modeling is challenging and could serve as a good
illustration for researchers in many other fields where the physical quantities are described by a large
number of vectors and tensors. This procedure is a clear improvement compared to earlier works
with an ad hoc choice of many scalar variables [7,33].

Moreover, we propose a data-driven, machine-learning-based turbulence modeling framework
where the Reynolds stresses are decomposed into linear and nonlinear parts and then learned
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separately from DNS data. This decomposition allows implicit treatment of the linear term of the
Reynolds stress, which enhances the model conditioning in solving the RANS equations for a mean
velocity field without ad hoc blending as used in traditional turbulence modeling [22,23]. More
importantly, such a decomposition clearly reflects the respective roles of linear and nonlinear terms
in turbulent models. Specifically, the linear term is by far the dominant term in almost all turbulent
flows in engineering practice, which partly explains the widespread use of linear eddy viscosity
models in engineering computational fluid dynamics (CFD). On the other hand, the nonlinear terms
can emerge as important factors in specific flows (e.g., swirling, jet impingement, and juncture flows
[1,34]). Hence, treating them separately helps the machine learning algorithms distinguish these two
terms. With numerical examples, we show that such a treatment enables accurate prediction of mean
velocities with a data-driven Reynolds stress model.

The rest of this paper is organized as follows. Section II summarizes the machine-learning-assisted
turbulence modeling framework of Wang et al. [7] and presents the proposed approach. Section III first
highlights the ill-conditioning issues of data-driven Reynolds stress models and further demonstrates
the merits of the proposed machine learning framework in a posteriori tests of different kinds of flows.
Section IV discusses the potentials and limitations of the data-driven turbulence models. Section V
summarizes the paper.

II. METHODOLOGY

Taking incompressible turbulent flows as an example, the RANS momentum equations are

∂U
∂t

+ U · ∇U + ∇p − ν∇2U = ∇ · τ , (1)

where U, p, and ν are the mean velocity, mean pressure (normalized by density), and viscosity,
respectively. The Reynolds stress τ accounts for the momentum flux due to unresolved turbulence
and needs closure modeling. A turbulence model aims to close the RANS equations by constructing
a mapping from the mean velocity field U to the Reynolds stress field τ .

In view of the inaccuracy in RANS modeled Reynolds stresses as a critical bottleneck in the
prediction accuracy of CFD simulations, Wang et al. [7] proposed a machine learning model for
predicting Reynolds stress discrepancies by training on DNS data from similar flows. Specifically,
a functional mapping q �→ �τ from mean flow features q (obtained from RANS simulations) to
Reynolds stress discrepancies �τ is built by using machine learning, with the discrepancy defined
as the difference between RANS predicted and DNS Reynolds stresses, i.e., �τ ≡ τDNS − τRANS.
Although an improved prediction of Reynolds stresses was achieved, they reported that the mean flow
velocity is sensitive to the errors in Reynolds stress prediction. Since it is usually the mean velocity
field and the derived quantities of interest (e.g., drag and lift) required in engineering applications,
it is important to understand the error amplification in solving for the mean velocity field. The main
reason is that substituting the modeled Reynolds stress explicitly into RANS equations may lead to
ill-conditioned RANS equations, especially in high-Reynolds-number flows [18,21]. Moreover, the
choice of mean flow features lacks a systematic procedure, which raises questions on the completeness
and redundancy of the set of flow features included in the machine learning. The present work aims
to address these challenges.

A. Overview of the machine learning scheme

It has been recognized that all algebraic Reynolds stress and eddy viscosity models can be written
in the general form [35]

b(S,�) =
10∑

n=1

G(n)T (n)

= G(1)S + G(2)(S� − �S) + G(3)(S2 − 1
3 tr(S2)I

) + G(4)(�2 − 1
3 tr(�2)I

) + · · · , (2)
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where tr(·) denotes the trace, I denotes the identity matrix, b is the deviatoric part of Reynolds
stress tensor, {T (n)}10

n=1 is the tensorial basis formed from strain-rate tensor S = 1
2 [∇U + (∇U)T ]

and rotation tensor � = 1
2 [∇U − (∇U)T ], and the ellipsis denotes higher-order terms. In particular,

T (1) = S and thus G(1)T (1) represents the linear part (with respect to S) of the anisotropy tensor b.
Inspired by this general form of algebraic Reynolds stress model, we separate the anisotropy stress

tensor b into linear and nonlinear parts

b = νL
t S + b⊥, (3)

where the linear part νL
t S [coaxial with S corresponds to the term G(1)S in Eq. (2)] and b⊥ represent

the sum of the nonlinear terms. It is similar to the tensorial expansion of the anisotropy stress tensor b
in Eq. (2), while all the nonlinear terms are lumped into b⊥. The linear term can be treated implicitly to
enhance the conditioning when solving the RANS equations. More details of the numerical procedure
for solving the RANS equations are detailed in Appendix A. As discussed above in Sec. I D, this
decomposition is more than just a numerical implicit treatment but has clear physical justifications.

In order to compute the two terms in Eq. (3) from a given Reynolds stress and strain tensor, we
introduce an optimal eddy viscosity that minimizes the discrepancy between the anisotropy Reynolds
stress tensor and its linear part, i.e.,

νL
t = arg min

νt

‖b − νtS‖, (4)

where ‖ · ‖ denotes the Frobenius norm of a matrix, e.g., ‖S‖ = √
SijSij . Based on this definition,

the optimal eddy viscosity νL
t can be computed by projecting the anisotropy stress tensor on the

strain rate tensor

νL
t = 2

b : S
‖S‖‖S‖ , (5)

where b : S = bijSij denotes a tensor double dot product.
The nonlinear term b⊥ in Eq. (3) could be important even for simple shear flows in the near-wall

region, since the linear term incorrectly predicts isotropic normal stresses. For more complex flows,
e.g., swirling and impinging, neglecting this nonlinear term can cause the model to miss important
flow physics completely. In this work we use machine learning techniques and an existing DNS
database to build regression functions that predict the optimal eddy viscosity νL

t and the nonlinear
part b⊥ of the anisotropy Reynolds stress tensor. In machine learning terminology, the flows used to
build regression functions are referred to as the training flows and the flow to be predicted is referred
to as the test flow. The detailed workflow of building these regression functions via machine learning
is presented in Appendix A.

B. Construction of mean flow features as inputs of machine learning

The construction of input features is among the most critical considerations when using machine
learning for physical problems. First, the choice of input and output variables must be physically
motivated and justified to ensure that the function learned from the data has physical meaning.
Second, the variables must be normalized properly to ensure extrapolative capabilities of the learned
function. Finally, the learned function should ideally be objective with function form invariances
under transformations of the coordinate system and the reference frame. Our perspective is that
almost all principles that are observed in traditional turbulence modeling (see, e.g., [36]) should
be equally respected in data-driven turbulence modeling. These three considerations in the present
framework are presented below.

1. Physical consideration in the choice of mean flow feature variables

The general form of the nonlinear turbulent-viscosity model in Eq. (2) assumes a universal
functional mapping from the strain-rate tensor S and the rotation-rate tensor � to the Reynolds
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TABLE I. Nondimensional raw mean flow variables used to construct the invariant basis. The normalized
feature α̂ is obtained by normalizing the corresponding raw input α with normalization factor β according to
α̂ = α/(|α| + |β|). The notation is as follows: U is the mean velocity vector, k is the turbulence kinetic energy,
ρ is the fluid density, ε is the turbulence dissipation rate, S is the strain-rate tensor, � is the rotation-rate tensor,
| · | the denotes vector norm, and ‖ · ‖ indicates the matrix norm.

Normalized raw input α̂ Description Raw input α Normalization factor β

Ŝ strain-rate tensor S
ε

k
�̂ rotation-rate tensor � ‖�‖
∇̂p pressure gradient ∇p ρ|DU/Dt |
∇̂k TKE gradient ∇k

ε√
k

stress τ :

τ = τ (S,�). (6)

We note that there are at least two aspects of missing physics in this assumption. First, the turbulence
is also influenced by the pressure gradient. For example, turbulence would be suppressed under a
strong favorable pressure gradient [36]. Second, the general form in Eq. (6) assumes equilibrium
turbulence, i.e., the turbulence production balances dissipation everywhere in the field. With such an
assumption, the Reynolds stress at location x only depends on the local mean velocity U(x), or more
precisely its gradient ∇U(x). However, the convection and diffusion of turbulence exist in many real
applications, indicating strong nonequilibrium effects and making this single-point-based turbulent
constitutive law invalid [37]. To account for the missing physics outlined above, we also include the
pressure gradient ∇p and the turbulence kinetic energy (TKE) gradient ∇k in the input, leading to
a more general functional mapping from mean flow quantities to the Reynolds stress

τ = g(S,�,∇p,∇k), (7)

where the variables of the setQ = {S,�,∇p,∇k} are chosen as input features, which are summarized
in Table I.

In addition to the tensor setQ, three other features as presented in Table II are chosen from Ref. [7]
to further supplement the mean flow features, all of which have clear physical interpretations. First,
at the near-wall region the viscous effect becomes more important and the local Reynolds number
reduces to O(1). Therefore, a low-Reynolds-number turbulence model is needed for the viscous
sublayer in the traditional turbulence modeling. In this work q1 is an important indicator to inform
the wall distance to the machine-learning-assisted turbulence models, leading to a data-driven low-Re

TABLE II. Supplementary mean flow features used as inputs in the regression. The normalized feature qβ

is obtained by normalizing the corresponding raw feature value q̂β with normalization factor q∗
β according to

qβ = q̂β/(|̂qβ | + |q∗
β |) except for β = 1. The notation is as follows: Ui is the mean velocity, k is the TKE, ε is

the turbulence dissipation rate, S is the strain rate tensor, d is the distance to the wall, and ‖ · ‖ indicates matrix
norms. The blank entry in column 4 indicates that normalization is not necessary as the Reynolds number is
nondimensional.

Feature qβ Description Raw feature q̂β Normalization factor q∗
β

q1 wall-distance based Reynolds number min
(√

kd

50ν
,2

)
q2 turbulence intensity k ν‖S‖
q3 ratio of turbulent timescale to mean strain timescale

k

ε

1

‖S‖
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model as a counterpart of the traditional low-Re models. Second, features q2 and q3 carry information
on the length scale and timescale of the turbulence, serving as supplements of the mean flow tensors
in the set Q.

2. Normalization of input features

To ensure nondimensionality of the raw inputs, the normalization scheme proposed by Ling and
Templeton [33] is adopted. All raw features are normalized by local quantities, as is preferred in
the practice of traditional turbulence modeling [36]. In CFD simulations these would be quantities
based on the same grid point as the raw feature variables. The normalization factors for all the raw
input variables are listed in Table I. Specifically, each element α in the raw input set Q is normalized
by a corresponding normalization factor β based on the scheme

α̂ = α

|α| + |β| , (8)

which ensures that the normalized variable α̂ falls within the range [−1,1]. Note that such a
normalization scheme is slightly different from that frequently used in physics and engineering,
which would take the form of either α̂ = α/|α| or α̂ = α/|β| instead. The choice in Eq. (8) is
justified by the practice of machine learning where the inputs are usually normalized to the range
[−1,1] or [0,1]. This helps us avoid clustering of training data along certain directions within the
input feature space and improves the convergence rate in the training process.

3. Invariance considerations in the choice of input features

As summarized in Table I, the raw variables for the mean flow consist of a finite tensorial
set Q = {S,�,∇p,∇k} with four elements, where ∇p and ∇k are transformed to antisymmetric
tensors as detailed in Eq. (B1). As in traditional turbulence modeling, it is equally desirable in
data-driven turbulence modeling that the trained functional form g : (S,�,∇p,∇k) �→ τ should
be objective. That is, the function form of g should be invariant under rotational and reflectional
transformations of the coordinate system or Galilean transformation (i.e., translation by a constant
velocity) of the reference frame. The function form invariances associated with the rotation and
reflection of the coordinate system and the Galilean transformation of the reference frame are referred
to as coordinate rotational invariance, coordinate reflectional invariance, and Galilean invariance,
respectively. Our formulation has rotational invariance and Galilean invariance but not reflectional
invariance. However, the lack of reflectional invariance can be remedied by data augmentation, which
is a standard procedure for preprocessing training data in machine learning. The three invariance
properties of the present formulation and strategies to remedy the lack of reflectional invariance are
examined below.

Invariance properties. If the constructed function relation τ = g(S,�,∇p,∇k) is to be valid
under arbitrary rotations of the coordinate system, the relation

QτQT = g(QSQT ,Q�QT ,Q∇p,Q∇k) (9)

should be satisfied [38] for any rotation matrix Q, where Q is an orthogonal matrix (i.e., QT = Q−1)
with determinant equal to 1. The rotational invariance of the learned function g as stated in Eq. (9)
can be guaranteed by choosing invariant inputs and outputs in the learning process, specifically, by
choosing the minimal integrity bases for the set {S,�,∇p,∇k} and the invariants of τ as inputs and
outputs, respectively. A minimal integrity basis is the minimal set of invariants that can represent all
the polynomial invariants associated with a tensorial set under the designated transformation (rotation
here). The Hilbert basis theorem states that a minimal integrity basis for a finite tensorial set has a
finite number of invariants [39]. Specifically for the set Q = {S,�,∇p,∇k} of second-order tensors
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considered here,1 the minimal integrity basis consists of all the traces of the independent matrix
products that can be formed from the tensors according to the Cayley-Hamilton theorem [40], which
amount to 47 invariants (see Table IV for details). Note that choosing the invariant tensorial bases,
rather than the raw tensorial variables, as inputs and outputs of the machine learning only guarantees
the rotational invariance of the learned function. Galilean invariance needs to be independently
achieved by ensuring that each raw variable and its normalization factors are Galilean invariant,
which is discussed below.

Galilean invariance states that the laws of motion are the same in all frames with constant velocities,
which is an important prerequisite of any turbulence model [36] and should be equally satisfied by
traditional or data-driven models. Therefore, the velocity per se is usually not a valid term in a model
as mentioned in [36], because the velocity is not Galilean invariant. In contrast, the velocity gradient
∇U and thus its symmetric and antisymmetric parts (S and �, respectively) are all Galilean invariant
and thus are valid terms to be included in a turbulence model. Similarly, the gradient of pressure ∇p

and the gradient of kinetic energy ∇k are both Galilean invariant (and do not depend on the choice of
reference pressure). Finally, it is straightforward to show that a term involving only Galilean invariant
quantities is also Galilean invariant. Based on the general principles outlined above, the machine
learning inputs and outputs in the present formulation are all Galilean invariant. Specifically, the raw
inputs in Table I are all Galilean invariants since they only involve spatial gradients, e.g., S and �.
The raw inputs in Table II are all Galilean invariant since they only involve scalar quantities that
are Galilean invariant. The normalization factors in both tables are all Galilean invariant as well.
In particular, it can be shown that the normalization factor ρ|DU/Dt | is Galilean invariant and the
details are presented in Appendix C.

Finally, the invariants associated with the antisymmetric tensors are only rotational invariants
but not reflection invariants. The main motivation for using these antisymmetric tensors is that
the machine learning outputs include the quantification of three-dimensional (3D) rotation of
eigenvectors of stress tensors that do not have reflection invariance. The details are discussed in
the following.

(i) Motivation of the chosen outputs. Our framework aims to augment traditional turbulence
models, instead of completely replacing them, by using machine learning to predict the discrepancies
between RANS modeled and true Reynolds stresses. Such discrepancies are parametrized by the
scaling of the Reynolds stress tensor along its eigenvectors and the rotation of the eigenvectors.
Although the scaling factors are all scalars and invariants under coordinate system transformation,
the rotation of the eigenvectors does not have reflection invariance. For instance, the sign of the angle
between any two vectors depends on the defined direction of the rotation axis.

(ii) Reasons for including inputs without reflection invariance. If we only introduce machine
learning inputs with both rotational and reflection invariance, similar inputs would correspond to
totally different outputs of tensor rotations (potentially with flipped signs) in the training data set.
Therefore, the functional form F : q �→ �τ would be a noisy function with spikes due to the sign
flipping learned from the training data. Such a machine learning model would be nonphysical with
diminishing predictive capabilities.

(iii) Consistency between outputs and inputs. We adopted the invariants of pseudotensors
constructed from the TKE gradient and the pressure gradient as a part of machine learning inputs.
Similar to the invariants corresponding to a 3D rotation, the invariants of these pseudotensors are
also rotational invariants but not reflection invariants. Therefore, the sign flipping of the machine
learning outputs can be distinguished by different corresponding inputs and the unphysical noisy
behavior of the functional form F would not exist. The main purpose here is to ensure a consistent
framework to predict tensor rotations, which is critical in augmenting the traditional tensor models.

1Vectors such as ∇p and ∇k can be first transformed to the corresponding antisymmetric tensors based on
Eq. (B1) in Appendix B.
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Indeed, it would be more elegant to include only objective inputs and output in the machine
learning, as the coordinate transformation invariance is a basic requirement in turbulence modeling.
Further work is needed in identifying such formulations. It should be noted that the different
conventions of coordinate system handedness would lead to different machine learning inputs even
with identical training and test flows. An alternative albeit rather inefficient approach is to use training
flows under both right-handed and left-handed coordinates system to augment the training data, and
it has been demonstrated in [5] that the invariance can be learned by such data augmentation.

Data augmentation for achieving invariance in machine learning. In machine learning the lack of
invariance property in the model to be learned from data can be remedied by data augmentation [5].
Specifically, the training data set is augmented by duplicating them in various transformed coordinate
systems before performing the training. That way, the training process would be able to see the same
data in almost all transformed coordinates. Consequently, only the functional forms that are valid (i.e.,
invariant) in all coordinate systems are learned, and any coordinate- or frame-dependent functional
forms would be rejected in the training. However, depending on the invariance to be achieved through
data augmentation (as detailed below), this procedure could significantly increase the amount of data
and the computational costs for the training and prediction.

(i) In order to achieve reflectional invariance through data augmentation, one only needs to
duplicate the data in the reflected coordinate system, which is a moderate twofold increase in the
amount of data.

(ii) On the other hand, achieving three-dimensional rotational invariance requires duplicating
the training data in 1000 coordinate systems, as shown by Ling et al. [5]. Therefore, using data
augmentation to learn rotational invariance would significantly increase the computational cost and
memory consumption, both of which are important considerations in machine learning.

(iii) Finally, it is not straightforward to remedy the lack of Galilean invariance with data
augmentation, since the translation velocity of the reference frame is unbounded (i.e., it can be
any value from −∞ to ∞).

In summary, a total of 50 normalized, invariant mean flow field variables (collectively denoted by
q) are constructed and used as input features for the machine learning. While such a high-dimensional
feature space may appear daunting even for the most experienced experts in turbulence modeling,
it is not particularly challenging in the context of modern data science, as many machine learning
techniques routinely handle feature spaces of thousands of dimensions or even higher [41].

C. Representation of Reynolds stress discrepancy as outputs of machine learning

Similar to choosing the inputs of machine learning, we represent the Reynolds stress discrepancies
with rotationally invariant variables as the outputs of the machine learning. Following [7,42],
we formulate the Reynolds stress discrepancies as six physically interpretable components (i.e.,
magnitude, shape, and orientation) based on the eigendecomposition of the anisotropic Reynolds
stress tensor

τ = 2k
(

1
3 I + b

) = 2k
(

1
3 I + V�VT

)
, (10)

where k is the turbulent kinetic energy, which indicates the magnitude of τ ; I is the second order
identity tensor; b is the deviatoric part of τ ; and V = [v1,v2,v3] and � = diag[λ1,λ2,λ3], with
λ1 + λ2 + λ3 = 0, are the orthonormal eigenvectors and eigenvalues of b, respectively, indicating
its shape and orientation. The eigenvalues λ1, λ2, and λ3 are transformed to barycentric coordinates
C1, C2, and C3 and then to Cartesian coordinates ξ and η as in Refs. [7,43].

To ensure that the predicted TKE is non-negative, Wang et al. [7] introduce the TKE discrepancy
� log k as the logarithm of the ratio of the target TKE (k∗) to the RANS-simulated TKE (kRANS),
i.e.,

� log k ≡ log
k∗

kRANS
. (11)
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This is what we adopted in the present work. Finally, the unit quaternions are used to represent the
transformation from the RANS eigenvectors VRANS to the target eigenvectors V∗ [44],

h =
[

cos
θ

2
,n1 sin

θ

2
,n2 sin

θ

2
,n3 sin

θ

2

]T

, (12)

where n ≡ [n1,n2,n3] defines a unique axis of unit vector and θ represents the rotation angle such
that V∗ can be obtained via rotating V by θ about the axis n. This unit quaternions representation is
rotational invariant and thus is preferred over the Euler angle representation used by Wang et al. [7].
Note that the current representation of the rotation of Reynolds stress eigenvectors is not reflectional
invariant, i.e., the magnitude of each component of the unit quaternion h remains the same under the
reflection of frame while the sign of each component is not. As mentioned in Sec. II B, the reflection
invariance of the trained machine learning model can be achieved by augmenting the training database
with a reflected coordinate system.

In summary, the discrepancies (� log k, �ξ , �η, h1, h2, and h3), collectively denoted by �τ ,
are used as the machine learning outputs to represent the discrepancies between the target Reynolds
stress and the RANS modeled Reynolds stress. Here h1, h2, and h3 denote the first three components
of the unit quaternion h. All six variables are invariant under rotations of the coordinate system.
In this work, random forest regression is adopted to represent the dependence of these Reynolds
stress discrepancies on a large number of scalar inputs as identified in Sec. II B. Therefore, the
mean velocity and other quantities (e.g., k and ε) from RANS simulations are used to calculate the
machine learning inputs, since it can be expected that the Reynolds stress discrepancies are related to
the specific choice of the RANS model. Because of the dependence of the trained machine learning
function on the RANS model, we recommend the usage of the same RANS model for both the
training flows and the flow to be predicted.

D. Choice of machine learning algorithm and parameters

In this work, random forest regression [45] as implemented in R [46] is used to build functional
mappings from the inputs (mean flow features q) to the responses as identified in Sec. II A. Random
forest regression is a tree-based ensemble learning method, i.e., the regression outputs are the mean
prediction of individual decision trees. In this work, the regression outputs are directly used as explicit
values and the detailed formulation of the random forest has no influence upon the convergence of
solving mean velocity via RANS equations. An advantage of the random forest regression is that it can
provide importance scores for inputs after training, which can be further used to assist the modelers
to improve the existing RANS models [7]. The random forest has robust performances with only
a small set of tuning parameters, which is in contrast to the commonly used neural networks [47].
The number of maximum features is set as 7, i.e., 1 + log2 n, where n = 50 is the number of input
features in this work, based on the recommendation in Ref. [45]. The number of trees is set as 300.
This number is chosen by observing the out-of-bag (OOB) error to avoid possible overfitting on the
training sets. We have observed the OOB error with different numbers of trees and this error is not
sensitive based on our current setting of the number of trees. An example of using random forest
regression to assist RANS modeling is publicly available in [48].

The computational costs of machine learning consist of the training cost and the prediction
cost. The training cost depends on the amount of the training data, and it should be noted that
the training procedure can be done off-line and the trained machine learning model can be applied
to the prediction of other flows as well. In this work, only one training flow is used at one time
and the computational cost of the training procedure is less than the corresponding standard RANS
simulation. The computational cost of the prediction procedure is usually negligible compared with
the cost of a typical RANS simulation. Therefore, with the trained machine-learning-assisted model,
the computational cost for the baseline RANS simulation in combination with the prediction of a
given flow is still much lower than LESs of the same flow.

074602-10



PHYSICS-INFORMED MACHINE LEARNING APPROACH …

In-plane 
secondary flow

Main 

flow

Axis of
symmetry

  : Lines along which secondary
flow velocities are shown later.

(a)

(c)

(b)

FIG. 1. (a) Computational domain for the flow in a square duct. The x coordinate represents the streamwise
direction. Secondary flows induced by Reynolds stress imbalance exist in the y-z plane. (b) The computational
domain covers a quarter of the cross section of the physical domain. This is due to the symmetry of the mean
flow in both the y and z directions as shown in (c).

III. NUMERICAL RESULTS

Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated
to evaluate the performance of the proposed method. The flow in a square duct is featured by stress-
induced secondary flow and the flow over periodic hills is featured by the massive separation. These
two features are challenging for traditional RANS modeling [49,50]. In this work we first perform a
propagation test by using DNS Reynolds stress. The purpose of the propagation of DNS Reynolds
stress to the mean velocity is to demonstrate the merit of physics-based implicit treatment. In the a
posteriori test, the Reynolds stress field is modeled by machine learning techniques and propagated
to mean velocities to evaluate the predicative capability of the proposed machine-learning-assisted
turbulence modeling framework with physics-based implicit treatment.

A. Case setup

A schematic of the flow in a square duct is presented in Fig. 1 to show the physical domain and the
computational domain. A two-dimensional simulation is performed, since the flow is fully developed
along the streamwise direction. In addition, the computational domain covers only a quarter of the
cross section, as shown in Fig. 1(b), due to the symmetry of the flow along the y and z directions.
All lengths are normalized by the height of the computational domain h = 0.5D, where D is the
height of the duct. The Reynolds number Re is based on the height of the computational domain
h and bulk velocity Ub. The Launder-Gibson Reynolds stress transport model [51] is used for the
RANS simulations of both the training flow and the test flow. Direct numerical simulation data at
Re = 2200 and 3500 are obtained from Pinelli et al. [52]. Experimental data at Re = 125 000 is
obtained from Gessner and Emery [53].

Another training-prediction case with the flows over periodic hills is shown in Fig. 2. The test
flow is the flow over periodic hills at Re = 5600 [50]. The geometry of the computational domain
of the test flow is shown in Fig. 2. The training flow has a steeper hill profile indicated by the dashed
line in Fig. 2. The Reynolds number Re is based on the crest height H and the bulk velocity Ub at the
crest. Periodic boundary conditions are applied in the streamwise (x) direction and nonslip boundary
conditions are applied at the walls. The baseline RANS simulations used the Launder-Sharma k-ε
model [54].
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general flow direction

recirculation zone

FIG. 2. Computational domain for the flow over periodic hills. The solid line indicates the configuration of
the test flow and the dashed line indicates the configuration of the training flow. The hill width of the training flow
is 0.8 of the hill width of the test flow. The x, y, and z coordinates are aligned in the streamwise, wall-normal,
and spanwise directions, respectively.

All the RANS simulations are performed in an open-source CFD platform OpenFOAM, using a
built-in steady-state incompressible flow solver simpleFoam [55], in which the SIMPLE algorithm
[56] is used. In the RANS simulations, the y+ of the first cell center is kept less than 1 and thus no
wall model is applied.

The training-prediction cases in the a posteriori test are summarized in Table III. Case 1 is
investigated to show the Reynolds-number extrapolation for which DNS data are available to examine
the prediction performance in detail. Case 2 is chosen to demonstrate the capability of the proposed
framework at higher Reynolds number where only experimental data are available. Case 3 is studied
to demonstrate the prediction performance for which the training flow and the test flow have different
geometrical configurations.

B. Propagation of DNS Reynolds stresses

In this test the DNS Reynolds stresses are used to illustrate the merit of physics-based implicit
treatment. Three types of turbulence models are compared: Reynolds stress models with explicit
treatment, linear eddy viscosity models, and RSMs with implicit treatment. The explicit treatment
means that the modeled Reynolds stress is directly substituted into the RANS equations to solve
for mean velocity as an explicit term. The dependence of Reynolds stress upon the strain rate can
still be taken into account by updating the modeling of Reynolds stress during the time stepping
(or iterations for steady problems). However, merely updating the Reynolds stress explicitly based
on the solved mean velocity would not improve the conditioning of the RANS equations, which is
further discussed in [21]. The implicit treatment means that the modeled Reynolds stress implicitly
depends on the strain rate through an optimized eddy viscosity. Such an implicit treatment would
improve the conditioning of RANS equations since the optimized eddy viscosity has impact upon
the coefficient matrix of the discretized RANS equations and thus influences the condition number.

In the test of Reynolds stress models, the unclosed term in the momentum equation is replaced
with the DNS Reynolds stress. In the test of linear eddy viscosity models, the eddy viscosity term is
replaced with the optimal eddy viscosity νL

t obtained from DNS data. Specifically, the optimal eddy
viscosity νL

t is computed by minimizing the discrepancy between the linear eddy viscosity model

TABLE III. Training-prediction scenarios in the a posteriori test.

Cases Training set Test set

1 flow in a square duct at Re = 2200 [52] flow in a square duct at Re = 3500 [52]
2 flow in a square duct at Re = 2200 [52] flow in a square duct at Re = 125 000 [53]
3 flow over periodic hills at Re = 5600 (steeper hill profile) flow over periodic hills at Re = 5600 [50]
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DNS Propagation

(a) (b)

FIG. 3. Comparison of secondary flow velocity Uz by using (a) the Reynolds stress model with explicit
treatment and (b) the Reynolds stress model with implicit treatment. The results obtained using the linear eddy
viscosity model capture no secondary flow and are thus omitted here.

and the DNS Reynolds stress data, i.e., νL
t = arg minνt

‖bDNS − νtSDNS‖. Compared with the eddy
viscosity models, the RSM with implicit treatment further takes into account the nonlinear part of
Reynolds stress, i.e., τ = νL

t S + (τDNS − νL
t SDNS). Two canonical flows, the flow in a square duct

and the flow over periodic hills, are studied to compare the performance of these three types of models.
This propagation test demonstrates that the linear eddy viscosity model is unreliable within the region
where the misalignment between the Reynolds stress tensor and strain-rate tensor is not negligible.
In the test with explicit treatment of Reynolds stress, the DNS data are employed to demonstrate the
problem of the machine learning modeling approach under an ideal scenario. Specifically, this ideal
scenario means that the initial mean velocity field is already the same as the DNS mean velocity and
the modeled Reynolds stress is also the same as the DNS Reynolds stress. Such an ideal scenario
represents an absolute performance ceiling of any machine-learning-assisted modeling approach with
the explicit treatment. Under this ideal scenario, we demonstrate that a small error in DNS Reynolds
stress (e.g., sampling error) can lead to a relatively large error in the solved mean velocity field. If the
modeling of Reynolds stress is further updated by evaluating the data-driven model with the solved
mean velocity, the errors in the modeled Reynolds stress and the solved mean velocity would be
further amplified as has been demonstrated for the plane channel flow in [21]. Therefore, an implicit
treatment is needed to improve the conditioning of the machine-learning-assisted RANS modeling.

1. Flow in a square duct

The secondary velocity Uz based on DNS Reynolds stress is shown in Fig. 3 by using Reynolds
stress models with explicit and implicit treatments. It can be seen in Fig. 3(a) that the solved secondary
velocity Uz agrees well with DNS data within most regions, except along the symmetry plane
y/h = 1. Such good agreement of solved secondary velocity indicates that the Reynolds stress
models lead to well-conditioned discretized momentum equations for the flow in a square duct.
Similar quality of secondary velocity can be obtained by using the RSM with implicit treatment. On
the other hand, the linear eddy viscosity models cannot predict the secondary flow due to the limitation
in representing the normal stress imbalance, the results of which are omitted here for simplicity.

2. Flow over periodic hills

Although the Reynolds stress models with explicit treatment perform well for the flow in a square
duct, they are potentially unreliable since it can lead to pronounced errors in mean velocity even for
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DNS Propagation

(a)

(b)

(c)

FIG. 4. Solved mean velocity field for the flow over periodic hills at Re = 5600 by using (a) the Reynolds
stress model with an explicit treatment, (b) the eddy viscosity model, and (c) the Reynolds stress model with
implicit treatment. The DNS data are utilized as the modeled term to represent the best possible performance
among the respective classes of models.

the turbulent channel flows [18,21]. In this work we demonstrate the issue of Reynolds stress models
with explicit treatment for the flow with massive separation. Figure 4(a) shows that the solved mean
velocity field does not agree with the DNS data by using the Reynolds stress model with explicit
treatment for the flow over periodic hills. It should be noted that the velocity shown in Fig. 4(a)
is obtained by using DNS Reynolds stress and not the modeled Reynolds stress. Therefore, the
unsatisfactory results in Fig. 4(a) indicate the best possible performance of machine-learning-assisted
turbulence modeling via directly substituting the modeled Reynolds stress into RANS equations.

Better results of mean velocity can be achieved, as shown in Fig. 4(b), by using linear eddy viscosity
models than Reynolds stress models with explicit treatment. However, noticeable differences can
still be observed between the solved mean velocity and the DNS data. The main reason is that the
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FIG. 5. Indicator of the deficiency of the linear eddy viscosity model due to the misalignment of eigenvectors
between the Reynolds stress tensor and strain rate tensor.

misalignment between the Reynolds stress tensor and the strain rate tensor is neglected by using
linear eddy viscosity models. Such misalignment can be quantified by the rotation matrix R from
the eigenvectors of the Reynolds stress tensor to the ones of the strain rate tensor. Figure 5 presents
an indicator of misalignment calculated based on the deviation of the rotation matrix R from the
identity matrix RI.

Unlike the eddy viscosity models, the RSMs with implicit treatment take into account the
difference between the linear part of Reynolds stress τL and the true Reynolds stress τ . The purpose
is to address the misalignment of eigenvectors between the Reynolds stress tensor and the strain rate
tensor. It can be seen in Fig. 4(c) that the solved mean velocity field has much better agreement with
DNS data than with the results obtained by using the Reynolds stress models with explicit treatment
in Fig. 4(a) and the eddy viscosity models in Fig. 4(b). By using DNS Reynolds stress data as the ideal
machine-learning-modeled stress, the propagation test results in Fig. 4 demonstrate the superiority
of RSMs with implicit treatment in achieving the predicative capability of the mean velocity field.

C. A posteriori test

1. Flow in a square duct

In the first case, the random forest is trained by using the flow in a square duct at Reynolds
number Re = 2200. The flow at Reynolds number Re = 3500 is used as the test flow. It should be
noted that the DNS data at Re = 3500 are only used to evaluate the machine learning prediction
and not for training the machine learning model. The baseline RANS result indicates the results
obtained from standard RANS simulations. The machine learning results are denoted by ML in the
legends of figures for simplicity. It can be seen in Fig. 6 that the baseline RANS simulated normal
components of Reynolds stress qualitatively capture the imbalance between τ yy and τ zz. However,
the simulated normal stress imbalance is noticeably greater than the DNS data, especially around the
near-wall region. Such greater normal stress imbalance between τ yy and τ zz explains the stronger
secondary flow of baseline RANS simulation. Compared with the baseline RANS simulated stress
components, the machine-learning-predicted normal stress components τ yy and τ zz demonstrate
much better agreement with the DNS data in Fig. 6.

The linear part of Reynolds stress τL is predicted and presented in Fig. 7. It can be seen that the
normal components τL

yy and τL
zz of the linear part of the Reynolds stress are similar to each other. The

main reason is that the linear part of the Reynolds stress is obtained by projecting the DNS Reynolds
stress onto the strain rate tensor and neglecting the nonlinear parts of the DNS Reynolds stress.
Therefore, the linear part of the Reynolds stress follows the eddy viscosity assumption and thus
would have no normal stress imbalance. It can be seen in Fig. 7 that the machine-learning-predicted
linear part of the Reynolds stress shows good agreement with the linear part of the Reynolds stress
obtained from DNS data.
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RANS DNS ML

(a) (b)

FIG. 6. Prediction of DNS Reynolds stress components of the flow in a square duct at Reynolds number
Re = 3500, including (a) τDNS

yy and (b) τDNS
zz at y/h = 0.25, 0.5, 0.75, and 1. The training flow is at Reynolds

number Re = 2200.

With both the satisfactory machine learning prediction of Reynolds stress in Fig. 6 and its linear
part in Fig. 7, it can be expected that the nonlinear term τ⊥ = τ − τL would have good agreement
with the nonlinear part of the DNS Reynolds stress. The comparison of the nonlinear Reynolds stress
term is presented in Fig. 8. It can be seen that the noticeable negative stress τ⊥

yy can be seen near
both the sidewall and the bottom wall of the duct based on the DNS data. However, the negative
nonlinear stress is overpredicted near the side wall and underpredicted near the bottom wall for
the RANS simulation. Compared with the RANS results, the machine learning prediction in Fig. 8
demonstrates much better agreement with the pattern of DNS data.

In addition to the nonlinear part of the Reynolds stress, the optimal eddy viscosity νL
t is also needed

in solving for the mean velocity. It can be seen in Fig. 9 that the eddy viscosity is close to zero in

RANS DNS ML

(a) (b)

FIG. 7. Prediction of the linear part of Reynolds stress components of the flow in a square duct at Reynolds
number Re = 3500, including (a) τL

yy and (b) τL
zz at y/h = 0.25, 0.5, 0.75, and 1. The training flow is at Reynolds

number Re = 2200.
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FIG. 8. Nonlinear part of the Reynolds stress τ⊥
yy in a square duct at Reynolds number Re = 3500, including

(a) RANS simulated results, (b) DNS data, and (c) prediction of RSMs with implicit treatment. The training
flow is at Reynolds number Re = 2200. The color of the contour denotes the value of the stress component; the
light color here indicates small magnitude.

the near-wall region and increases towards the diagonal of the duct. The machine-learning-predicted
eddy viscosity agrees well with the DNS eddy viscosity at most regions in Fig. 9. It should be noted
that a few noticeable differences can be observed between the machine-learning-predicted eddy
viscosity and the DNS data, e.g., along y/h = 0.75 and y/h = 1. However, the velocity gradient is
relatively small within these regions and thus such a difference has little influence in solving for the
mean velocity field as demonstrated in Fig. 11.

By substituting the machine-learning-predicted eddy viscosity and nonlinear part of the Reynolds
stress into RANS equations, the mean velocity field is solved and presented in Fig. 10. It can be seen in
Fig. 10(a) that the RANS simulated secondary flow penetrates too much toward the left bottom region
(corner region between the perpendicular walls). The machine-learning-predicted secondary flow in
Fig. 10(c) demonstrates better agreement with the DNS data in this corner region. In addition, the

DNS ML

FIG. 9. Optimal eddy viscosity νL
t of the flow in a square duct at Reynolds number Re = 3500 aty/h = 0.25,

0.5, 0.75, and 1. The training flow is at Reynolds number Re = 2200.
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(a) (b) (c)

FIG. 10. Secondary flow fields in a square duct at Reynolds number Re = 3500, including (a) RANS
simulated results, (b) DNS data, and (c) prediction of the RSM with implicit treatment. The training flow is at
Reynolds number Re = 2200. The color of the contour denotes the magnitude of the secondary flow. The light
color here indicates large magnitude.

shape and location of the secondary vortex are better predicted by our machine learning framework
as shown in Fig. 10(c).

Four profiles of secondary flow are presented in Fig. 11 for a more quantitative comparison of
the secondary flow prediction. It can be seen that the baseline RANS simulated mean velocity field
overestimates the magnitude of the secondary flow, especially around the corner region. On the other
hand, the mean velocity based on the RSM with implicit treatment shows much better agreement
with the DNS data. However, it should be noted that the test flow is at Reynolds number Re = 3500,
close to that of the training flow (Re = 2200). Therefore, the satisfactory predictive capability as
demonstrated in Fig. 11 does not necessarily guarantee a similar performance at a higher Reynolds
number.

To further demonstrate the general applicability of the proposed framework, we employ the same
training flow and investigate another test flow, i.e., the flow in a square duct at a much higher Reynolds
number Re = 1.25 × 105. We evaluate the prediction performance of the proposed framework by
using the experimental data of this test flow along the vertical axis of symmetry and along the diagonal
of the square duct [53]. The inverse flow near the bottom of the axis of symmetry is not captured

(a) (b)

FIG. 11. Secondary flow in a square duct at Reynolds number Re = 3500 predicted by the RSM with
implicit treatment at y/h = 0.25, 0.5, 0.75, and 1 including (a) Uy and (b) Uz. The training flow is at Reynolds
number Re = 2200.
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FIG. 12. Comparison of predicted secondary velocity Uz at Reynolds number Re = 1.25 × 105 with
experimental data [53] (denoted by �). Comparisons are shown along (a) the vertical axis of symmetry and (b)
the diagonal of the duct. The training flow is at Reynolds number Re = 2200.

by the baseline RANS simulation in Fig. 12(a). This inverse flow in experimental data indicates that
there is a small vortex with an opposite rotation direction around this region, in addition to the main
vortex of the secondary flow. The failure of predicting the inverse flow in Fig. 12(a) means that this
small vortex is completely missing in the baseline RANS simulation results. In contrast, this missing
flow characteristic is successfully captured by the machine learning prediction. It should be noted
that this flow characteristic is not observed in the training flow at a much lower Reynolds number
Re = 2200. One reason for the successful prediction of the small inverse flow is the formulation
of our data-driven augmentation framework, i.e., it is the Reynolds stress discrepancies but not
the whole Reynolds stress that is predicted by the machine learning framework. Specifically, Wu
et al. [12] calibrated the Reynolds stress discrepancies at a lower Reynold number Re ≈ 5000 and
applied the calibrated discrepancies to correct the RANS simulation at a higher Reynolds number
Re = 125 000. They reported that the trend of inverse flows could be reproduced even though the
Reynolds stress discrepancies are calibrated at a much lower Reynolds number. Therefore, the trend
of small inverse flows can be predicted even if the machine learning model is overfitted for the
training database at a lower Reynolds number. However, it should be noted that the inverse flow was
noticeably underestimated in the work by Wu et al. [12], and the machine learning prediction in this
work achieves better agreement with the experimental data. Therefore, the successful prediction of the
inverse flow in Fig. 12(a) is strong evidence that the machine-learning-assisted turbulence modeling
indeed has the potential of revealing the physics within the data, rather than simply interpolating
with the available data.

As shown in Fig. 12(b), the secondary flow Uz is overpredicted by baseline RANS simulation
along the diagonal of the duct. In contrast, the mean velocity Uz obtained by the proposed framework
underestimates the magnitude of the secondary flow in Fig. 12(b). Although there is no significant
improvement of results along the diagonal, it should be noted that the machine learning prediction
in Fig. 12(b) indeed corrects the baseline RANS simulated results towards the right direction.

2. Flow over periodic hills

In the cases investigated above, the training flow and the test flow share the same geometrical
configuration and only differ in Reynolds numbers. In order to demonstrate the capability of the
proposed framework for the flows with different geometries, we further study the flows over periodic
hills with a different shape of hill profiles. The training flow is the flow over periodic hill at Re = 5600
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RANS DNS ML

(a) (b)

FIG. 13. Prediction of (a) the shear stress component τ xy of the Reynolds stress tensor and (b) the TKE at
x/H = 1,2, . . . ,8. The test flow is the flow over a periodic hill at Re = 5600. The training flow is at the same
Reynolds number but has a steeper hill profile, as shown in Fig. 2.

[50] and the test flow is also at Re = 5600 but has a steeper hill profile as described in Sec. III A. It
can be seen in Fig. 13(a) that the RANS simulation underpredicts the shear stress τxy downstream of
the hill crest. Such underprediction of shear stress is mainly due to the underprediction of the TKE
of the RANS simulation as shown in Fig. 13(b). Compared with the results of RANS simulation,
the machine learning prediction shows better agreement with DNS data for both the shear stress and
the TKE. Although such improvement is limited at x/H = 1, it still better predicts the magnitude
of Reynolds stress than RANS simulation as shown in Fig. 13. The improvement of the machine
learning prediction further downstream becomes more prominent.

The linear part of the Reynolds stress τL is also predicted. It can be seen in Fig. 14 that the
linear part of the Reynolds stress is similar to the DNS Reynolds stress in Fig. 13 except for several
regions, e.g., the region around the bottom wall and the region within the upper channel around
y/H = 2.5. Therefore, the nonlinear part of the DNS Reynolds stress is expected to be less dominant
in most regions for the flow over periodic hills. The prediction of the proposed framework shows
good agreement with the linear part of the Reynolds stress obtained from DNS data. Similar to the
prediction of the Reynolds stress, the machine learning prediction of the linear part of the Reynolds
stress shows less noticeable improvement at x/H = 1.

RANS DNS ML

FIG. 14. Prediction of the shear stress component τ xy of the linear part of Reynolds stress at x/H =
1,2, . . . ,8. The test flow is the flow over a periodic hill at Re = 5600. The training flow is at the same Reynolds
number but has a steeper hill profile, as shown in Fig. 2.
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DNS ML

FIG. 15. Machine-learning-predicted optimal eddy viscosity at x/H = 1,2, . . . ,8. The test flow is the flow
over a periodic hill at Re = 5600. The training flow is at the same Reynolds number but has a steeper hill profile,
as shown in Fig. 2.

In addition to the improvement shown in the prediction of the DNS Reynolds stress and its linear
part, the prediction of the optimal eddy viscosity also demonstrates improvement as shown in Fig. 15.
It can be seen in Fig. 15 that the machine-learning-predicted eddy viscosity has good agreement with
the DNS eddy viscosity, except for a few regions where the DNS eddy viscosity changes rapidly. Such
deterioration in the performance of machine learning prediction is expected, since the functions with
such behavior pose more difficulties in machine learning. However, the peak value of eddy viscosity
at these regions is usually not important for solving for mean velocity. This is because the strain rate
tensor is close to zero in these regions, corresponding to the peak value of eddy viscosity.

The comparison of the mean velocity field in Fig. 16 shows that the mean velocity obtained
by the proposed framework has better agreement with the DNS data. Specifically, the reverse flow
extends to x/H = 4 in the DNS data, defining the size of the separation bubble downstream of the
hill crest. The RANS simulation results indicate that the reverse flow ends approximately around
x/H = 3, which significantly underestimates the size of the separation bubble. The magnitude of
the velocity at the upper channel region is also underpredicted by the RANS simulation results
from x/H = 1 to x/H = 5. Compared with the RANS simulation results, the machine learning
prediction provides more accurate reverse flow, especially from x/H = 1 to x/H = 3. Although
overprediction of reverse flow can be observed in the prediction of the proposed framework from
x/H = 3 to x/H = 4, the separation region is still better predicted than RANS simulation results.

RANS DNS ML
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FIG. 16. Streamwise velocity by the RSM with implicit treatment at x/H = 1,2, . . . ,8. The test flow is the
flow over a periodic hill at Re = 5600. The training flow is at the same Reynolds number but has a steeper hill
profile, as shown in Fig. 2.
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In addition, the proposed framework achieves a much better prediction of the mean velocity than the
RANS simulation results at the upper channel region.

IV. DISCUSSION: POTENTIALS AND LIMITATIONS OF DATA-DRIVEN
TURBULENCE MODELS

The present work addresses the ill-conditioning issue in a class of data-driven turbulence models
that aim to model the Reynolds stresses with machine learning. Therefore, it is helpful to provide
a broad yet brief view of data-driven turbulence modeling, which has emerged as a promising
yet controversial subject in the past few years. A more comprehensive state-of-the-art overview is
presented elsewhere [57]. Summarized briefly, three distinctly different approaches to data-driven
turbulence modeling have been pursued by different groups.

(i) Weatheritt and Sandberg [15,16] used gene expression programming to develop algebraic
Reynolds stress models based on symbolic regression.

(ii) Duraisamy and co-workers [14,58] used machine learning to predict discrepancies in the
source terms in the turbulence transport equations for existing models (e.g., the Spalart-Allmaras
model, the k-ω model, or Reynolds stress models).

(iii) Wang et al. [7] and Ling et al. [6] used machine learning to directly predict the Reynolds
stresses or their discrepancies compared to the truth.

A widely accepted yardstick used in the turbulence modeling community to assess turbulence
models is that an ideal model should demonstrate robust predictive capabilities in a wide range of
flows without flow-specific tuning and be interpretable, ideally in explicit analytical forms, which
are referred to as universality and interpretability requirements, respectively, hereafter. The three
approaches above are discussed in light of each of these requirements.

A. Universality of turbulence models

In terms of the universality requirement, the existing traditional turbulence models are still far
from satisfactory. Most existing data-driven turbulence models, including the one presented in our
work, are still in their infancy and have shown only limited predictive capabilities, typically in
flows that are close to the training flows. That is, the training and prediction flows belong to the
same class of flows (e.g., massively separated flows) but with variations of flow configurations
such as geometry or Reynolds number. However, their predictive capabilities may improve as more
experiences are accumulated and the methodologies are refined later on. The machine learning
inputs and outputs in this work are all rotational invariants and Galilean invariants. Therefore, the
trained model is objective under any rotation transformation and Galilean transformation. Although
several inputs and outputs are not reflection invariants, the associated extrapolation capability can be
achieved by reflecting the coordinates system to augment the training data. However, the extrapolation
capability still depends on the diversity of the training data. By using the training database of
flows with a specific characteristic, e.g., recirculation or stress-induced secondary flow, we have
demonstrated that an unknown flow with similar characteristics can be predicted. We envision that
the extrapolation capability can be extended to more complex flows with a more diversified and
systematically generated high-fidelity simulation database. In addition, the extrapolation capability
for more complex flows can also be achieved by automatically classifying the flow field into different
regions and making a prediction for each region accordingly. On the other hand, if we take a
less ambitious perspective and consider the data-driven models (particularly the second and third
approaches) as augmentation of traditional models through a data-driven, flow-specific correction,
then their universality become less critical. For example, in practical applications, a data-driven
model could turn itself off when the part of the flow is not present in the training data set and is too
“far” from the flows in the data. That is, the data-driven model can revert to the traditional baseline
turbulence model that is used. To this end, Wu et al. [59] demonstrated a fully automatic, statistically
rigorous way of measuring the “distance” between two flows (or any parts thereof) based on the mean
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flow fields obtained from RANS simulations. With such a distance metric, it is possible to ensure
that a machine-learning-augmented model is at least better than or the same as the corresponding
baseline model it utilizes.

B. Interpretability of turbulence models

Regarding the interpretability requirement, it may appear that the symbolic regression approach
specifically aims to find Reynolds stress models that are in analytical forms, while the second and
third approaches based on machine learning (neural networks and random forests) do not produce
models in analytical forms and are not amenable to interpretation. However, the delineation between
these approaches may not be as clear as it first appears. First, although the analytical Reynolds stress
model learned from one class of flows [15] may be rather simple and indeed has similar complexity to
existing advanced turbulence models, this may not necessarily be true for other flows. For example,
a model learned from a diverse data set from different flows may be an analytical expression with
the number of terms too large for human comprehension, which may still be difficult to interpret
despite its analytical nature. Second, if one is willing to compromise the predictive performance,
a neural network based model (used in the second and third approaches) may be regularized (e.g.,
by using Ridge and LASSO [60]) to yield simple architecture and thus becomes more interpretable.
Finally, both neural networks and the random forest can provide the importance of input mean flow
features (see, e.g., the discussion in [7]), which may help traditional model developers incorporate
additional variables into existing models [61]. Therefore, the fundamental differences among the three
approaches above lie in the classical trade-off between predicative capability and interpretability in
models [60] and not in the specific forms of the chosen model (e.g., symbolic regression vs neural
networks or random forests).

Ultimately, both universality and interpretability requirements are intimately related to the
fundamental question in turbulence modeling: Does there exist a universal turbulent constitutive
relation? Generations of researchers have labored for many decades on dozens of turbulence models,
yet none of them achieved predictive generality, which seems to indicate that the answer is “no.” If so,
then flow-specific tuning and fudge factors would be inevitable if good predictive performances are
desirable. The machine-learning-based turbulence models can be considered automatic, flow-specific
tuning schemes based on the flow regime to be predicted and the flow regimes that present in the
training database.

V. CONCLUSION

While earlier works demonstrated the capabilities of machine learning in predicting improved
Reynolds stresses, obtaining an improved mean velocity field remains a challenge of machine-
learning-assisted turbulence modeling. The main reason is the sensitivity of the mean velocity with
regard to the errors in the prediction of Reynolds stress. In this work we propose a physics-based
implicit treatment to model Reynolds stress by using machine learning techniques. Specifically,
the optimal eddy viscosity and the nonlinear part of the Reynolds stress are both predicted. In the
propagation test, the DNS Reynolds stress is used in solving for the mean velocity to illustrate the
ideal scenario of machine-learning-assisted turbulence modeling approaches. The propagation test
with DNS Reynolds stress shows that satisfactory mean velocity can be achieved by the Reynolds
stress models with implicit treatment. In the a posteriori test, three training-prediction cases are
investigated to demonstrate the predictive capability of the proposed framework. In the first and
second cases, a machine learning model is trained on the flow in a square duct at Reynolds number
Re = 2200 and the flows in a square duct at Reynolds numbers Re = 3500 and Re = 1.25 × 105

are predicted. In the third case, a machine learning model is trained on the flow over periodic
hills at Reynolds number Re = 5600 and the flow with a steeper hill profile is predicted. The
satisfactory prediction performance of the mean velocity field demonstrates the predictive capability
of the proposed machine-learning-assisted framework. Specifically, the machine-learning-trained
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model successfully predicts the mean flow pattern in the second case that is not even shown in the
training flow. It provides strong evidence that machine-learning-assisted turbulence modeling can
reveal flow physics from the existing data, instead of merely fitting on the existing data. With the
capability in predicting the mean velocity field, the proposed physics-based implicit treatment leads
to a practical machine-learning-assisted turbulence modeling framework in real applications where
the mean velocity field and other quantities of interests need to be predicted.
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APPENDIX A: DETAILED ALGORITHMS OF THE DATA-DRIVEN REYNOLDS STRESS MODEL

The detailed work flow of constructing a data-driven Reynolds stress model with implicit treatment
and use it for solving the RANS equations are presented as follows. First, we write Eq. (3) in terms
of the Reynolds stress tensor rather than the anisotropy tensor

b = νL
t S + (

b − νL
t S

) = νL
t S + {

τ − [
νL

t S + tr(τ )
]} = νL

t S + (τ − τL), (A1)

where tr(τ ) represents the trace of the Reynolds stress tensor and τL denotes the linear part of the
Reynolds stress tensor.

The procedure of the proposed framework is as follows.
(i) Perform baseline RANS simulations on both the training flows and the test flow to obtain mean

flow features q and the Reynolds stress tensor τRANS.
(ii) Train regression functions for Reynolds stress discrepancies �τ and �τL and use the trained

regression functions to predict the test flow.
(a) Compute the discrepancies fields �τ = τDNS − τRANS and �τL = τL − τRANS for the

training flows based on the DNS data and construct regression functions f1 : q �→ �τ and f2 : q �→
�τL by using the physics-informed machine learning framework [7].

(b) Use trained regression functions f1 and f2 to predict the discrepancies fields �τ and �τL

for the test flow and compute the corresponding Reynolds stress fields τ and τL by adding the
predicted discrepancies fields to the RANS simulated Reynolds stress τRANS.

(iii) Train regression functions for eddy viscosity νL
t and use the trained regression functions to

predict for the test flow.
(a) Compute the least-squares eddy viscosity νL

t for the training flows based on the DNS data
and construct regression function f3 : q �→ νL

t by using machine learning.
(b) Use trained regression functions f3 to predict the least-squares eddy viscosity νL

t for the
test flow.

(iv) Substitute the predicted νL
t , τ , and τL into RANS equations for the anisotropy stress tensor

as shown in Eq. (A1) and solve for the corresponding mean velocity field.
In this workflow, the linear part and nonlinear part of the Reynolds stress are predicted separately.

For the linear part, we only predict the optimal eddy viscosity νL
t and thus treat the linear part

implicitly. To obtain the nonlinear part, we predict both the Reynolds stress itself and the linear part
of Reynolds stress and we calculate the nonlinear part of the Reynolds stress by subtracting the linear
part of the Reynolds stress from the Reynolds stress itself.

Solving for the mean velocity is performed in a finite-volume CFD platform OpenFOAM, using
a modified flow solver that allows the implicit treatments of Reynolds stress predicted by the
machine learning model. Specifically, the modified flow solver is based on a built-in steady-state
incompressible flow solver simpleFoam [55], in which the SIMPLE algorithm [56] is used. Unlike
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TABLE IV. Minimal integrity basis for the symmetric tensor Ŝ and antisymmetric tensors �̂, Âp , and Âk .
In the implementation, Ŝ is the strain-rate tensor, �̂ is the rotation-rate tensor, Âp and Âk are the antisymmetric
tensors associated with pressure gradient ∇̂p and the gradient of turbulence kinetic energy ∇̂k, and nS and nA

denote the numbers of symmetric and antisymmetric raw tensors for the integrity basis. The invariant bases
listed in column 3 are the trace of each tensor listed. The asterisk on a term indicates that all terms formed
by cyclic permutation of antisymmetric tensor labels (e.g., �̂

2
ÂpŜ∗ is short for �̂

2
ÂpŜ and Â2

p�̂Ŝ) are also
included.

(nS,nA) Feature index Invariant bases

(1, 0) 1–2 Ŝ2, Ŝ3

(0, 1) 3–5 �̂
2
, Â2

p , Â2
k

(1, 1) 6–14 �̂
2
Ŝ, �̂

2
Ŝ2, �̂

2
Ŝ�̂Ŝ2,

Â2
pŜ, Â2

pŜ2, Â2
pŜÂpŜ2,

Â2
kŜ, Â2

kŜ2, Â2
kŜÂkŜ2

(0, 2) 15–17 �̂Âp , ÂpÂk , �̂Âk

(1, 2) 18–41 �̂ÂpŜ, �̂ÂpŜ2, �̂
2
ÂpŜ*, �̂

2
ÂpŜ2*, �̂

2
ŜÂpŜ2*,

�̂ÂkŜ, �̂ÂkŜ2, �̂
2
ÂkŜ*, �̂

2
ÂkŜ2*, �̂

2
ŜÂkŜ2*,

ÂpÂkŜ, ÂpÂkŜ2, Â2
pÂkŜ*, Â2

pÂkŜ2*, Â2
pŜÂkŜ2*

(0, 3) 42 �̂ÂpÂk

(1, 3) 43–47 �̂ÂpÂkŜ, �̂ÂkÂpŜ, �̂ÂpÂkŜ2, �̂ÂkÂpŜ2, �̂ÂpŜA3S2

the standard simpleFoam solver, the modified flow solver uses the machine-learning-predicted νL
t ,

τ , and τL to represent the modeled Reynolds stress τm, i.e., τm = νL
t S + (τ − τL) + tr(τ ). The

strain rate tensor S is treated implicitly in the modified flow solver. For numerical discretizations of
the RANS equations, the second-order central difference scheme is chosen for all terms except for
the convection term, which is discretized with a second-order upwind scheme.

For the boundary conditions of the machine-learning-predicted νL
t , τ , and τL in this work, the fixed

zero values are applied at the walls and periodic boundary conditions are applied in the streamwise
(x) direction. The boundary conditions of the mean velocity and the pressure are treated the same
as the standard RANS simulations, i.e., periodic boundary conditions are applied in the streamwise
(x) direction and nonslip boundary conditions are applied at the walls.

APPENDIX B: INTEGRITY BASIS OF MEAN FLOW FEATURES

The minimal integrity bases for rotational invariance with a given input set

Q̂ = {̂S,�̂,∇̂p,∇̂k}

of tensors are shown in Table IV. Spencer [39,40] provided a systematic procedure of generating
minimal invariant bases from a set of symmetric and antisymmetric tensors. In order to utilize this
procedure, we need to first transform the vectors ∇̂p and ∇̂k to the corresponding antisymmetric
tensors by using the mapping [40]

Âp = −I × ∇̂p, (B1a)

Âk = −I × ∇̂k, (B1b)

where I is the second-order identity tensor and the symbol × denotes tensor cross product.
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APPENDIX C: GALILEAN INVARIANCE

In Sec. II B 3, we stated that all the feature variables in Tables I and II and their corresponding
normalization factors are Galilean invariant. This is evident from the fact that most of the variables
and normalization factors contain only terms associated with the velocity gradient ∇U (e.g., S and �),
pressure gradient ∇p, and TKE gradient ∇k. However, the Galilean invariance of the normalization
factor ρ|Du/Dt | is not evident. In this appendix we show that the material derivative of velocity is
Galilean invariant.

The mean velocity at location x and time t observed in a stationary reference frame is denoted by
U(x,t). The mean velocity observed in a reference frame moving with constant velocity C can be
written as U∗(x∗,t) = U(x − Ct,t) + C, where x∗ = x − Ct represents the spatial location observed
in the moving reference frame. The material derivative of the velocity U ∗

j in the moving reference
frame is derived as follows:

∂U ∗
i

∂t
= ∂Ui

∂t
− Cj

∂U ∗
i

∂x∗
j

, U ∗
j

∂U ∗
i

∂x∗
j

= (Uj + Cj )
∂U ∗

i

∂x∗
j

. (C1)

Combining the two terms in Eq. (C1) and utilizing the fact that ∂U ∗
i /∂x∗

j = ∂Ui/∂xj (because the
reference frame velocity is constant) yields

∂U ∗
i

∂t
+ U ∗

j

∂U ∗
i

∂x∗
j

= ∂Ui

∂t
+ Uj

∂Ui

∂xj

, (C2)

that is,

DU ∗
i

Dt
= DUi

Dt
, (C3)

which demonstrates that the material derivative of velocity U is invariant under Galilean transfor-
mation. The merit of ensuring Galilean invariance is that the trained machine learning model g(U)
is valid in all inertial frames, i.e., g(U) = g(U + C), enhancing the generality of the trained model.

It is noted that several input features in the works of Wang et al. [7] and Ling and Templeton
[33] are not Galilean invariant. For example, the raw features of pressure gradient along streamline
Ui∂P/∂xi and the ratio of convection to production of turbulent kinetic energy Uidk/dxi , and the
normalization factor UiUi for turbulence intensity and the normalization factor ρ∂U 2

i /∂xi for the
ratio of pressure normal stresses to shear stresses. Therefore, the machine learning framework in this
work is expected to achieve better extrapolation capability with the Galilean invariance for all input
and output quantities.
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