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External intermittency compensation of dissipation scale distributions
in a turbulent boundary layer
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The influence of external intermittency on the scaling of the dissipation scale distribution
is examined in turbulent boundary layer flow at Reτ ≈ 1000. Probability density functions
(PDFs) of the dissipative scales are compared with, and without, accounting for the external
intermittency using an intermittency detection function. Results showed that accounting
for the external intermittency produces better consistency in the shapes of the PDFs at
the same wall-normal location at different instances in time. In addition, properly scaling
the dissipation scale distribution collapses the probability density functions calculated at
different wall-normal locations. This improvement in the scaling of the dissipation scale
distribution supports prior observations of universality of the small-scale description of the
turbulence for wall-bounded flow.

DOI: 10.1103/PhysRevFluids.3.074601

I. INTRODUCTION

According to Kolmogorov’s second hypothesis, an inertial subrange will form when the magnitude
of the spatial separation vector |r| is much smaller than the scale L at which kinetic energy is
produced and much larger than the scale at which it is dissipated, described by the Kolmogorov
scale ηK . Typically, L is described using the longitudinal integral length scale which, for isotropic
turbulence, can be found at a particular time, t , using the autocovariance

Rij (r,x,t) = 〈ui(x,t)uj (r + x,t)〉, (1)

where x = xi êi describes spatial location, with êi the Cartesian basis vector in the i direction,
and r = ri êi a spatial displacement. The fluctuating velocity vector u = ui êi is found from the
instantaneous velocity vector U through u(x,t) = U(x,t) − 〈U(x,t)〉, where 〈 〉denotes an ensemble-
averaged quantity. Finally, the longitudinal integral length scale at a particular location and time
L(x,t) is found from

L(x,t) = 1

〈u1(x,t)2〉
∫ ∞

0
R11(r1,x,t)dr1, (2)

where, in isotropic turbulence, the x1 coordinate direction is arbitrary.
Within the inertial subrange the longitudinal structure function of order n,

Sn = 〈(δru)n〉, (3)

where

δru = (u1(x + r1) − u1(x)), (4)
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depends only on the mean rate of dissipation of turbulent kinetic energy, 〈ε〉. Within the inertial
subrange the longitudinal structure function follows power law scaling such that

Sn = An

( |r|
L

)ζn

, (5)

where An are universal constants. Kolmogorov’s theory predicted that ζn = n/3. However, experi-
mental investigations (e.g., Anselmet et al. [1]) have shown that the set of ζn differs from this linear
scaling and has nonlinear dependence on n. This deviation from the expected behavior has been
attributed to spatial intermittency in the fine structure of the turbulent flow (for example, see Frisch
[2]). In other words, the dissipation does not occur homogeneously in space but is instead occurring in
compact regions in space, separated by regions of little to no dissipation. This intermittency persists
throughout the universal equilibrium range and, as a result, the use of a singular mean dissipation
length scale to describe the turbulent dynamics does not appear to be sufficient [3].

In this context, an alternative description of the dissipation scale that incorporates the existence
of an entire continuum of local dissipation scales becomes attractive. Previous researchers [4–6]
have introduced the concept of a random field of dissipative scales, η. Effectively this scale can be
found from instances |r| = η where the local Reynolds number Reη = |δru|r1/ν ∼ 1. As such, the
probability density function (PDF) of η becomes an important defining characteristic. Yakhot [7]
presented an analytical description of this PDF, which compared favorably to PDFs extracted direct
numerical simulation (DNS) data of homogeneous isotropic turbulence [8] and at the centerline
and outer region of pipe flow [9]. A closer look at the wall dependence of the PDFs conducted by
Hamlington et al. [10] using DNS of channel flow indicated that, far away from the wall, the PDFs
scaled with η0 = LRe−0.73

L and were in agreement with those observed by Schumacher [8] and Bailey
et al. [9] where ReL = δLL/ν with δL defined by Eq. (4) when r1 = L. However, the PDFs near the
wall no longer scaled by η0. These results were also observed in an experimental investigation of
channel flow by Bailey and Witte [11], who found that scaling of the PDFs could also be recovered
near the wall by introducing the normalizing parameter, η∗, which depends on the wall distance and
its corresponding Reynolds number.

Recently, Alhamdi and Bailey [12] examined the scaling of the PDFs in turbulent boundary
layer flows with and without free-stream turbulence. They verified the suitability of using η∗ to
scale the PDFs near the wall, and found that an alternative scaling parameter could be formed
from ηL = LRe−0.73

L , where L = K3/2/〈ε〉 is a surrogate large scale which can be defined through
dimensional analysis. Here, K is the turbulent kinetic energy and 〈ε〉 the mean dissipation rate. It is
usually assumed that L ∝ L. However, as observed by Nedić et al. [13], there is both wall-distance
and Reynolds-number dependence in the ratio of the two scales within turbulent boundary layers.
Although requiring a priori knowledge of 〈ε〉, the advantage of the ηL was that this scaling handled the
transition between near-wall and far-wall regions much better than η∗. However, unlike in the internal
wall-bounded pipe and channel flows, when a laminar free stream was present, Alhamdi and Bailey
[12] reported a significant deviation in the scaling PDFs in the outer region of the turbulent boundary
layer. They hypothesized that this deviation was due to statical biasing of the calculation of η by the
unsteady turbulent-nonturbulent interface between the boundary layer turbulence and laminar free
stream (i.e., external intermittency) in the outer region. If not accounted for, the presence of periods
of laminar flow will produce increased frequency of low measured values of δru for large values of
r1, which will in turn increase the frequency of calculated instances where Reη ∼ 1 at large η, while
not actually representing an instance of dissipation at that scale. This would bias the calculated PDFs
of the estimated dissipation scales towards larger values, with increasing bias towards the upper edge
of the turbulent boundary layer. To support this attribution, they found a significant improvement in
the scaling of the probability density functions when the free-stream conditions were turbulent. Thus,
it is expected that accounting for the presence of external intermittency will improve the scaling of
the PDFs, particularly when a laminar free stream is present.
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It is not yet clear whether accounting for the presence of external intermittency will recover the
wall-independent scaling of the PDFs observed in internal wall-bounded flows. However, if such is
the case, this result could potentially be extended to other flows subject to external intermittency,
such as jets and free shear layers. Thus, the objective of the present study was to revisit the data
initially presented by Alhamdi and Bailey [12] using a more rigorous calculation of η which would
mitigate the influence of external intermittency.

II. EXPERIMENT DESCRIPTION

As noted, the present study is a reexamination of data initially presented by Alhamdi and Bailey
[12], specifically those for the case of a laminar free stream. Hence, only a brief description of the
experiment is provided here. For a full description of this experiment and overview of the wall-normal
turbulence statistics measured, the reader can refer to the earlier work.

This experiment was performed to measure the properties of a two-dimensional boundary layer
developing along the flat plate when mounted in the wind tunnel and was conducted in a wind tunnel
flow facility located in the Experimental Fluid Dynamics Laboratory at the University of Kentucky.
This facility has a test section with a 0.61 m×0.61 m cross-section area, and a length of 1.2 m. To
generate a turbulent boundary layer, a smooth flat plate with dimensions of 886 mm×608 mm was
placed in the test section. To trip the boundary layer forming on the plate, it was equipped at the
leading edge by 50.8 mm of a 60 grit sandpaper trip. The coordinate system origin is located at the
leading edge of the plate with x1 in the streamwise direction, and x2 in the wall-normal direction,
with y also used to indicate distance from the wall, as per standard nomenclature, and x3 aligned in
the spanwise direction.

Measurements of the streamwise velocity profile, U1, were conducted over a range of wall-normal
distances, using a hot-wire probe traversed normal to the plate’s surface at x1 = 0.76 m. The hot-wire
probe was sampled at 100 kHz and calibrated in the free-stream directly prior to, and following, each
measurement run using a Pitot-static tube located in the free stream at the measurement location.
The pre- and postmeasurement calibrations were used to verify that there was no voltage drift during
a profile measurement.

To ensure that the smallest scales of turbulence were able to be resolved by the hot-wire probe
used, the free-stream velocity was limited to U∞ ≈ 4 m/s. The resulting turbulent boundary layer
at the measurement location had Reynolds number Reτ = δuτ /ν ≈ 1000. Here, δ is the boundary
layer thickness calculated at the streamwise mean velocity, 〈U1〉 = 0.99U∞, found to be 82 mm. The
friction velocity, uτ , was calculated by finding the value of uτ that best scaled the measured velocity
profiles in the near-wall region to the DNS data of Schlatter and Örlü [14] and was determined to be
0.19 m/s. The viscous length scale, ν/uτ , is 79 μm and the hot-wire probe sensor length of 0.5 mm
was smaller than 3ηK for the entire boundary layer thickness. Note that the flow is assumed to be
stationary and ergodic, such that for the remainder of the paper 〈 〉 is used to indicate time averaging.

III. ANALYSIS OF THE EXTERNAL INTERMITTENCY

To account for the external intermittency in the calculation of the distribution of η requires that
we first identify instances where the transition from one state to another occurs. In other words, a
turbulence detection function must be employed.

The existence of the leading and trailing edges of the turbulent bulges in the outer region of
the turbulent boundary layer was first identified and studied by Corrsin and Kistler [15] using
hot-wire signals. They observed that sharp changes occur during the transition from turbulent to
nonturbulent motion “backs,” while their counterpart “fronts” separate nonturbulent fluids from
contiguous-turbulent fluids.

Detection of intermittency from a velocity time series as done by Corrsin and Kistler [15] requires
application of a kinematic criterion. To identify periods of interfaces in a velocity signal, the time
derivative of the velocity component [16], the derivative of the instantaneous shear stress, and the
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FIG. 1. (a) Portion of instantaneous streamwise velocity measured at y/δ = 0.66 by the hot-wire probe,
with the dashed line indicating the free-stream velocity. (b) Corresponding detector function D(t) with the
dashed line indicating the threshold used to identify turbulent-nonturbulent zones. (c) Corresponding binary
intermittency signal with I (t) = 1 indicating the presence of turbulence and I (t) = 0 indicating a nonturbulent
state. (d) Profile of average intermittency function, γ . Solid line indicates Eq. (7) and dashed line indicates the
wall-normal location where γ = 0.5, which occurs at y/δ ≈ 2/3.

magnitude of the velocity have all been previously utilized to construct different detection functions
(see Hedley and Keffer [17] for a list of different turbulence detector functions utilized for hot-wire
signals). Here, we have used a kinetic energy criterion suggested by Chauhan et al. [18] to detect
turbulent-nonturbulent interfaces.

The approach is illustrated in Fig. 1. An example of the instantaneous streamwise velocity signal
U1(t) is shown in Fig. 1(a), which is turbulent for some time interval and nonturbulent for the rest
of the intervals. In the outer region of the turbulent boundary layer, the convection velocity of the
nonturbulent flow, as it comes from the free stream, is approximately U∞ (i.e., [15,18–21]), which
is denoted by the dashed line in Fig. 1(a). The detector function assumes that over the nonturbulent
intervals of the signal the fluctuations U1 − U∞ are of the order of the free-stream intensity or less.
Thus, Chauhan et al. [18] proposed a criterion to identify these turbulent-nonturbulent interfaces
by applying a threshold value on a detector function D(t) = 100 × [1 − U1(t)/U∞]2. When D(t) is
less than a threshold value it is assumed to be a nonturbulent part, while it is higher than, or equals,
this threshold value in the turbulent part, as shown in Fig. 1(b). In the present case, to isolate the
turbulent bulges the velocity time series was low pass filtered at 25 Hz using an eighth order digital
Butterworth filter (applied both forward and backward time, to eliminate any phase lag introduced
into the filtered signal) before calculating D(t). In addition, a threshold value of Dt = 0.05 was used
[indicated by the dashed line in Fig. 1(b)], which corresponds to the 95% confidence level of a 1%
standard deviation in the free-stream velocity.
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Using this threshold value, the binary indicator I (t) is determined where I (t) = 0 when
D(t) < D(t)t and the flow is considered to be nonturbulent, and I (t) = 1 when D(t) > Dt (t) and the
flow is considered to be turbulent. The values of I (t) for the example time series shown in Fig. 1(a)
are presented in Fig. 1(c).

This calculation was conducted for all wall-normal locations to identify turbulent and nonturbulent
regions at all wall-normal locations in the boundary layer. We denote the length of the turbulent
intervals as 	t and nonturbulent as 	nt , respectively, as illustrated in Fig. 1(c), where 	t and 	nt are
found from the duration in time of each segment multiplied by the average velocity within it.

At a specific wall-normal location where the streamwise velocity is measured, the average
intermittency function γ is calculated from

γ = 1

Ts

∫ Ts

0
I (t)dt, (6)

in which Ts is the sampling time.
In a turbulent boundary layer, the profile of γ (y) has been found to be independent of Reynolds

number [19] and can be represented with considerable accuracy by the error function as follows
(see, for example, [15,17,19,22]):

γ (y) = 1

σ
√

2π

∫ ∞

y

exp

[
− (y − Y )2

2σ 2

]
dy. (7)

Here Y is the mean interface position, which is the wall-normal location where γ = 0.5, and σ

is the standard deviation of the instantaneous interface position, y, relative to the mean location
Y . Previous studies have found that Y ≈ 2/3δ and σ ≈ δ/9 for the turbulent boundary layer [18].
Figure 1(d) shows the γ profile measured for the turbulent boundary layer in the present study and
Y/δ = 0.66 was found to correspond to γ = 0.52. For comparison, the profile of γ produced by
Eq. (7) is also shown using Y = 2/3δ and σ = δ/9. A good agreement between these two profiles
of γ was found, supporting the implementation of the D criterion and the selected threshold value,
to identify turbulent and laminar regions within this flow.

IV. THE EXTERNAL INTERMITTENCY EFFECT ON THE SCALING
OF THE LOCAL-DISSIPATIVE SCALES

Experimental determination of η and its PDF from hot-wire data has been previously conducted
in turbulent pipe [9], channel [11], and boundary layer [12] flows. The present study essentially
follows the same procedure, but had to be modified to account for the external intermittency.

Using the indicator function I (t), the time series was segmented into discrete intervals, and
intervals where I (t) = 0 were discarded. To ensure that the length of time available was suitable
for determining converged PDFs, intervals where 	t < 2.5δ were also discarded. These remaining
intervals were then analyzed as independent time series. Where intermittency was not detected, the
calculation proceeded as described by Alhamdi and Bailey [12]. The calculation of the distribution of
η requires identification of instances where Reη = |δru|r1/ν ∼ 1. To do this, |δru| at each time t was
estimated by assuming r1 ≈ 〈U1〉�t , where 〈U1〉 was the average velocity within the segment of time
series being analyzed, and δru ≈ [u1(t + 〈U1〉�t) − u1(t)]. For a particular discrete measurement
time, t , Reη was calculated over the range of �t values up to the length of the time series. Each
instance where Reη was between 0.5 and 2 was counted as a single occurrence of dissipation at a
scale η = r1. This process was performed for all t to generate Q(η), the count of occurrences when
0.5 < Reη < 2 for each value of η.

A PDF of η could then be found by normalizing such that
∫

Q(η)dη = 1 over the range 0 to
100ηL where ηL = LRe∗−0.73

L is also used to scale the PDFs. Note, however, that the choice in scaling
parameter is not expected to impact the efficacy of the intermittency compensation, as its influence is
confined to the outer layer. Scaling by ηL was conducted for simplicity, as it was found to be minimally
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FIG. 2. Comparison between the measured PDFs of local dissipation scales when (a) treating the entire time
series as turbulent and (b) accounting for the external intermittency. For cases where γ < 1 (i.e., y/δ > 0.19),
each wall-normal position has been shifted up by a decade for clarity.

impacted by the wall-normal location and is not bounded by ranges of validity, unlike η0 and η∗,
and thus simplifies comparison across the boundary layer [12]. To calculate L = K3/2/〈ε〉, K was
necessarily approximated using an isotropic assumption as 1.5〈u2

1〉 and 〈ε〉 similarly approximated
as 15ν〈U1〉−2〈(∂u1/∂t)2〉. For simplicity, these quantities were calculated from the full time series,
as preliminary analysis indicated that the scaling remained unchanged when ηL was calculated from
only the turbulent portion of the intermittent signal.

The use of these isotropic assumptions to calculate dissipation rate was necessitated by the one-
dimensional nature of the hot-wire data. However, in [11] and [12] the approach described above was
compared to other methods for finding the dissipation rate from hot-wire data and the results were
found to be in agreement for y+ > 30, with Kolmogorov scaling of the also one-dimensional spectra
supported for this range. A greater bias is likely to be introduced by the K = 1.5〈u2

1〉 approximation,
which will bias L high due to anisotropy at the large scales. However, we have found the value of
LRe−0.73

L to change only gradually with L and therefore we do not expect a significant deviation
in the scaling behavior to occur if mean dissipation rate and turbulent kinetic energy are calculated
from the full three-component velocity vector and velocity gradient tensor.

Figure 2(a) shows the distribution of the Q(η/ηL) at different values of y/δ without accounting for
the external intermittency, in other words, by assuming the entire time series is turbulent. For cases
where γ is close to unity, the PDFs of η collapse on one another and are consistent with previously
reported distributions determined experimentally and numerically in internal wall-bounded flows
[9–11], as well as other turbulent flows [8,23]. Specifically, these distributions are highly skewed
and characterized by a broad tail stretching into the large scales, a peak near η/ηL ≈ 2, and a much
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FIG. 3. PDFs of η for cases with γ < 1 when (a) treating the entire time series as turbulent and (b) accounting
for the external intermittency. For (b) the average values of the PDFs at a specific wall-normal position when
the flow is intermittent are presented. Corresponding isocontours of Q(η/ηL) as a function of η/ηL and y/δ are
shown (c) treating the entire time series as turbulent and (d) accounting for the external intermittency.

narrower tail at small scales. However, for the cases where γ < 0.9 the PDFs become dependent on
the wall-normal position, both broadening and having the maximum shift to higher values of η/ηL.

However, when only the instances where I (t) = 1 and 	t > 2.5δ are examined, as done in Fig. 2(b),
the PDFs for γ < 0.9 recover the shape of those where γ > 0.9. Note that the PDF for each segment
is shown. For wall-normal locations where γ is high, there are very few instances where the flow
was identified as being laminar, and there are fewer longer segments, which improves statistical
convergence of the PDFs. As γ decreases, there are an increasing number of shorter segments which
were analyzed, and there is greater scatter observed. At very low γ , the number of segments which
were longer than 2.5δ were fewer, limiting the number of PDFs which could be calculated at a
particular wall-normal location.

To provide a more rigorous comparison of the PDFs across the different wall-normal locations,
Figs. 3(a) and 3(b) show the PDF at each location in linear axes for the range of 0 to 10ηL. The case
where the entire time series is treated as turbulent is presented in Fig. 3(a), whereas the case where
only the turbulent segments of the time series are examined is presented in Fig. 3(b). For Fig. 3(b),
the PDFs of each segment at a particular wall-normal distance were averaged to produce 〈Q(η/ηL)〉.
Comparison between these figures demonstrates the improvement in scaling across the boundary
layer when only the turbulent portions of the time series are considered.

The corresponding wall-distance dependence of these PDFs is demonstrated in the isocontours
of Q(η/ηL) shown in Figs. 3(c) and 3(d) as functions of y/δ and η/ηL, again using linear scaling.
Figure 3(c) shows that the greatest deviations from universal scaling occur for y/δ > 0.35. In this
range, the PDFs vary nonmonotonically, with the highest probabilities shifting to larger values than

074601-7



SABAH F. H. ALHAMDI AND SEAN C. C. BAILEY

those observed near the wall as y increases, deviating the most at y/δ ≈ 0.6 and γ ≈ 0.5, before
shifting to smaller values near the edge of the boundary layer. Conversely, when only the turbulent
segments of the time series are considered, this wall dependence is effectively removed, as shown in
Fig. 3(b). Here the maximum stays constant at η/ηL ≈ 2.2 and only a slight broadening of the PDFs
is evident at larger η/ηL for intermediate wall distances.

These results confirm the hypothesis of Alhamdi and Bailey [12] that the wall-normal dependence
of the PDFs in the outer region can be attributed to bias introduced by the inclusion of periods of
laminar flow in the calculation of η. More importantly, the results suggest that the boundary layer
produces a universal distribution of the dissipative scales of turbulence, when turbulence is present.
Given the agreement of the PDF results with those of other flows, there is consistent support for
the existence of a universal distribution of these scales, one which can be determined from a single
scaling parameter.

V. CONCLUSIONS

The effects of the external intermittency on the scaling of the dissipation scale distribution were
investigated in turbulent boundary layer flow at Reτ ≈ 1000. The analysis employed a detection
function to identify the turbulent and nonturbulent regions in the outer layer where external
intermittency exists. When only the turbulent portions of the time series are considered, the probability
density functions of the dissipation scales from each portion of the time series collapse on each other
and result in a significant improvement in the scaling of the probability density functions across the
depth of the turbulent boundary layer when normalized by ηL.

Although this observation supports the universality of the small-scale description of the turbulence
for external wall-bounded flow, it should be noted that the alternative definition of the local large-scale
Reynolds number, ReL, presented here has only been examined in the turbulent boundary layer flow
at a low Reynolds number. It is not yet clear whether the scaling parameter, ηL, will hold for other
types of shear flows or at higher Reynolds numbers. It is also not clear whether accounting for the
external intermittency will generalize for other turbulent flows or at higher Reynolds numbers.
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