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Particle-to-fluid heat transfer in particle-laden turbulence
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Preferential concentration of inertial particles by turbulence is a well-recognized
phenomenon. This study investigates how this phenomenon impacts the mean heat transfer
between the fluid phase and the particle phase. Using direct numerical simulations of
homogeneous and isotropic turbulent flows coupled with Lagrangian point particle tracking,
we explore this phenomenon over a wide range of input parameters. Among the nine
independent dimensionless numbers defining this problem, we show that the particle Stokes
number, defined based on a large-eddy time, and an identified number called the heat-mixing
parameter have the most significant effect on particle-to-gas heat transfer, while variation in
other nondimensional numbers can be ignored. An investigation of regimes with significant
particle mass loading suggests that the mean heat transfer from particles to gas is hardly
affected by momentum two-way coupling. Using our numerical results, we propose an
algebraic reduced-order model for heat transfer in particle-laden turbulence.
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I. INTRODUCTION

A broad range of natural and industrial processes involve interaction of particles and background
turbulent flows, e.g., formation of clouds [1,2], dispersion of pollutant in urban areas [3], planetary
accretion [4], spray combustion [5], and particle-based solar receivers [6]. Particle-turbulence
interaction results in a range of well-studied phenomena. A particle immersed in turbulent flow
experiences a centrifugal force from high-vorticity regions toward high-strain regions. This results
in an inhomogeneous distribution of particles, known as preferential concentration [7,8]. Where
gravity is present particles exhibit preferential sweeping [9]. In wall-bounded particle-laden flows,
turbophoresis, which refers to the tendency of particles to concentrate close to the wall, is
expected [10].

In many of the particle-laden flow scenarios, a primary interest is in understanding thermal
exchanges between the two phases. For example, in particle-based solar receivers, particles are
the primary absorbers of external radiation, which then conductively transfer their absorbed heat
to the carrier fluid. The heated particles absorb a fraction of the received flux and transfer the rest
to the surrounding fluid. In this case radiation is not primarily absorbed by the gas phase since most
gases are transparent to light.

In the case of heated particle-laden flows, additional phenomena are observed [11] which showed
that under sufficiently large thermal flux, hot particles can modify turbulence spectra through pressure
dilatation. When gravity is present, heated particles give rise to nonuniform buoyant forcing of the
flow, resulting in a sustained turbulence [12,13]. Reference [14] showed that when particles are
heated the preferential sweeping can be suppressed or even reversed.

In a previous study [6] we investigated a specific regime of particle-laden flows and showed
that preferential concentration of particles by turbulence can adversely impact the heat-transfer
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efficiency. To obtain a fundamental understanding of the impact of particle clustering on heat transfer,
in the present study we consider a canonical setting involving heat transfer from inertial particles
to statistically stationary homogeneous isotropic turbulent flows. By considering a combination of
direct numerical simulation (DNS) data and a simple phenomenological model, we develop and
verify an algebraic model for heat transfer in particle-laden turbulent flows. Turbulence in this study
is maintained by a forcing mechanism [15]. We show that momentum two-way coupling between
particles and the fluid does not affect the mean heat transfer between two phases.

II. MODEL PROBLEM

A. Assumptions

We consider direct numerical simulations of homogenous isotropic turbulence (HIT) laden with
heated point particles in a triply periodic box with length L. The simulation code [16] is fourth order
in time and second order in space using a uniform staggered grid. A linear forcing scheme [15,17]
is used to maintain a statistically stationary turbulence with zero-mean velocity.

Each simulation starts with two transition stages. Collection of heat-transfer statistics is performed
after these transitions when the thermal exchange process reaches a statistically stationary condition.
At the first transition stage the cold mixture (with temperature T0) is simulated for a sufficiently large
time with no external heating to obtain a fully developed particle-laden turbulence. By monitoring
the fluid kinetic energy and particle segregation (see, for example, [18]) versus time, we verify that
a healthy particle-laden turbulence is achieved. This is achieved after 50 large-eddy turnover times
defined below. The first stage is followed by the second transition stage, where particle heating is
activated with constant receiving heat flux for each particle and the heated mixture is allowed to
develop. The statistically stationary heated state is verified by monitoring the mean particle-to-fluid
heat flux versus time. All statistics are collected after these two transition stages over a period
of order 100 large-eddy turnover times. Note that when a statistically stationary state is achieved,
the ensemble-average particle and fluid temperatures grow linearly with time, while the ensemble-
average temperature difference and particle-to-fluid heat transfer are constant.

The fluid phase is assumed to be a variable density gas governed by the ideal gas equation of
state P = ρRTg , subject to a low-Mach flow. Therefore, the thermodynamic pressure is considered
to be constant in space but can change in time. The dynamic viscosity μ, constant-volume and
constant-pressure specific-heat coefficients Cv and Cp, and heat conductivity coefficient k of the
gas are assumed to be constant and independent of the temperature. Conservation of mass implies
constant average gas density ρ0.

Monodispersed spherical particles with density ρp � ρ0 and a constant diameter dp much smaller
than the Kolmogorov microscale are suspended in the fluid. The particle specific heat coefficient Cvp

is constant and independent of the temperature. We assume the particle temperature Tp to be a lumped
quantity (constant along one particle) justified by a large particle Biot number. The slip velocity
between the particle and the surrounding gas is assumed to be a finite small value. Thus, we assume
that the particle momentum and heat exchange with the fluid can be expressed, respectively, in terms
of drag and heat exchange laws derived in the low-Reynolds-number and low-Péclet-number limits.
We ignore the convective effects at the scale of particles justified by low thermal Péclet number based
on slip velocity and particle diameter.

The particle-fluid mixture is assumed to be very dilute (volume fraction ∼10−5). We use a
simplified version of the Maxey-Riley [19] equations describing the dynamics of an immersed
particle and model particle motion through the Lagrangian point particle framework. In the regimes
considered in our study, Stokes drag is the only significant force experienced by particles. We
ignore momentum two-way coupling (i.e., particles do not modify the fluid through the momentum
equation). In Sec. III E we will revisit the impact of momentum two-way coupling on the mean heat
transfer.
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B. Nondimensional equations

Based on the aforementioned assumptions, we introduce a set of dimensionless equations
describing heated particle-laden flows. We use the flow integral length scale l = u3

rms/ε as the
reference length scale, where urms is the root mean square of the single-component velocity
fluctuations and ε is the averaged dissipation rate. The large-eddy turnover time τl = l/urms is used
as the reference timescale. In addition, urms, ρ0, and T0 are used to nondimensionalize velocities, gas
density, and temperatures, respectively.

The conservation of mass, momentum, and energy for the gas is represented, respectively, by the
set of nondimensional equations
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∂xj
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where ρ, u, p, and Tg denote density, velocity, hydrodynamic pressure, and temperature of the gas
phase, respectively. The last term in Eq. (2) is the nondimensionalized linear forcing term [15] to
maintain turbulence (with dimensionless dissipation rate 1). The last term in Eq. (3) is the heat transfer
from particles to the gas. In addition, Tpi

and xpi
, respectively, represent temperature and position

of a particle with index 1 � i � Np, where Np is the total number of Lagrangian particles. Further,
δ is the dimensionless three-dimensional Dirac delta function, which is numerically approximated
using trilinear interpolation and projection.

The nondimensionalized equation of state for ideal gas is P = ρTg . The thermodynamic pressure
is nondimensionalized with ρ0RT0, where R is the gas constant. Note that, given the low-Mach-
number assumption, the thermodynamic pressure is assumed to be constant in space.

Equations (4) and (5) are a set of nondimensional equations representing the kinematics, dynamics,
and energy conservation for a particle pi , respectively,

d

dt
xpi

= vpi
,

d

dt
vpi

= −vpi
− u(xpi

)

Stl
, (4)

χ
d

dt
Tpi

= S − Tpi
− Tg(xpi

)

σl

, (5)

where vpi
denotes the velocity of a particle with index i. The first and second terms on the right-hand

side of Eq. (5) are the constant heat flux absorbed by a particle and the heat transfer from the particle
to the gas, respectively.

Next we introduce the dimensionless factors defined in Eqs. (1)–(5): Re = ρ0urmsl/μ is the
Reynolds number, γ = Cp/Cv is the ratio of gas heat capacities, Pr = Cpμ/k is the Prandtl number,
and Stl = τp/τl is the particle Stokes number, which is the ratio of the particle momentum relaxation
time τp = ρpd2

p/18μ to the gas large-eddy turnover time.
Here σl = τth/τl is the heat-mixing parameter defined as the ratio of the gas thermal relaxation time

τth = ρ0Cv/(Nuπdpkn0) to the large-eddy turnover time, where n0 = Np/L3 is the mean particle
concentration and Nu is the Nusselt number for a particle-to-gas heat transfer. Note that we selected
the fluid thermal relaxation time, as opposed to the commonly used particle thermal relaxation time
to form the dimensionless heat-mixing parameter. For reasons that are discussed in Sec. III F, we
will see that the former choice results in a minimal number of significant dimensionless parameters,
while the latter choice does not.

The term χ = n0Cvpρpπd3
p/(6ρ0Cv) is the ratio of the dispersed phase total heat capacity to the

gas phase total heat capacity. In addition, S = Hn0τl/(T0ρ0Cv) is the nondimensional heat source,
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where H is the external heat flux received by each particle; S can be interpreted as the ratio of the
large-eddy turnover time to the gas warmup time τh = T0ρ0Cv/(Hn0).

III. HEAT-TRANSFER MODEL

A. Reduced-order equations

In this section, we develop a reduced-order model to describe the evolution of the averaged particle
and gas temperature. We start with the definition of the averaging operator.

For a given scalar field ψ and a weight function w in domain �, the weighted average of ψ is
defined as

〈ψ〉w = 〈wψ〉
〈w〉 where 〈ψ〉 = 1

Vol(�)

∫∫∫
�

ψ(x)dx. (6)

If we use the gas density ρ as the weight, 〈ψ〉ρ is the Favre average [20]. We define the

dimensionless particle local concentration as n(x) = 1/Np

∑Np

i=1 δ(x − xpi
). Therefore, 〈ψ〉n =

1/Np

∑Np

i=1 ψ(xpi
) and in the case of particle temperature 〈Tp〉n = 1/Np

∑Np

i=1 Tpi
.

To obtain reduced-order heat-transfer equations for the gas and particles, we take the average of
Eqs. (3) and (5). Noting that 〈ρ〉 = 〈n〉 = 1 in the nondimensional form we get

d

dt
〈Tg〉ρ = 〈Tp〉n − 〈Tg〉n

σl

,

χ
d

dt
〈Tp〉n = S − 〈Tp〉n − 〈Tg〉n

σl

.

(7)

B. Correction factor

Equations (7) are exact but not closed due to the appearance of 〈Tg〉n on the right-hand sides.
Similar to [6], we define a correction factor for the heat-transfer term as follows to close the equations:

ϕ = 〈Tp〉n − 〈Tg〉n
〈Tp〉n − 〈Tg〉ρ . (8)

Therefore, Eqs. (7) transform to the equations

d

dt
〈Tg〉ρ = ϕ

〈Tp〉n − 〈Tg〉ρ
σl

,

χ
d

dt
〈Tp〉n = S − ϕ

〈Tp〉n − 〈Tg〉ρ
σl

,

(9)

where 〈Tg〉n is the average gas temperature experienced by particles, similar to the concept of average
gas velocity experienced by particles when the drift velocity is concerned [21]. Since particles are
directly heated, it is expected that the average temperature of the gas at the location of particles is
greater than the volume-average temperature of the gas 〈Tg〉n � 〈Tg〉ρ . Hence, we expect 0 � ϕ � 1.
The closure question is then to determine ϕ in terms of known input parameters. This is similar to
the work by Sumbekova et al. [22], in which they investigated the parameter space of unheated
particle-laden turbulence experimentally to explore the effect of each parameter on preferential
clustering.

C. Parameter study

We investigate the dependence of the parameter ϕ in Eq. (9) on the dimensionless numbers
governing the problem as introduced in Sec. II B. Considering common gas-solid mixtures, we
assume γ = 1.4, Pr = 0.7, and Nu = 2. We sweep the parameter space by changing the remaining
dimensionless number(s) of interest at a moment, while all other dimensionless numbers are kept
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TABLE I. Nominal value of dimensionless numbers.

Parameter Nominal value Range

Np 105 105 to 107

S 2 1 to 10
χ 1.0 10−2 to 102

Stl 0.15 10−2 to 1
σl 0.5 10−2 to 102

Re 47 10 to 103

constant. In Table I we list the nominal value and sweeping range of each dimensionless number.
For each dimensionless number, we run a simulation of the full three-dimensional equations for
a sufficiently long time and average the value of ϕ when the heated HIT is developed in time by
postprocessing the data to compute terms on the right-hand side of Eq. (8).

Note that we run very long simulations as a mathematical trick to compute converged statistics
more easily instead of computing many simulations over a short time and then taking their average.
For this we consider constant material properties. However, our data are intended to represent the
much shorter evolution of ensemble-average statistics in an experiment.

The heat-transfer equations are linearly dependent on S and thus one expects the correction factor
ϕ to be independent of this parameter. This expectation is justifiable as long as the thermal flux is
not too strong to modify the turbulence itself [11]. Figure 1(a) depicts ϕ as a function of S , while
other dimensionless numbers are kept at their nominal values, verifying that ϕ is independent of
S . In addition, in the limit of sufficiently large Np and negligible particle-particle collisions, it is
expected that ϕ is independent of Np. Figure 1(b) shows ϕ versus Np confirming its independence
on Np. Increasing Np and/or S gives rise to higher total heat transfer from the particles to the gas,
yet the correction factor is constant.

In Fig. 1(c) we plot ϕ as a function of the particle-to-gas total heat capacity χ . This figure suggests
a weak dependence of ϕ on χ , particularly in the limit of large or small χ . In Sec. III F we provide a
phenomenological model justifying this observation. Therefore, only three remaining dimensionless
numbers Re, Stl , and σl may significantly affect the correction coefficient ϕ.

Figure 1(d) illustrates the variation of ϕ as a function of Reynolds number. The bottom x axis
shows Re and the top x axis shows Reλ = ρ0urmsλ/μ, the Reynolds number based on the Taylor

(a) (b)

(c) (d)

FIG. 1. Correction factor ϕ as a function of (a) total number of particles Np , (b) nondimensional heat flux
S , (c) particle-to-gas heat capacity ratio χ , and (d) Reynolds number Re and Reλ.
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(a) (b)

FIG. 2. Correction factor ϕ as a function of (a) Stokes number Stl and Stη and (b) heat-mixing parameter σl .

microscale. For HIT we have Re = Re2
λ/15. The values of other dimensionless numbers are the same

as in Table I, except for the particle Stokes number, which is kept at Stl = 0.06. Our results suggest
that when the Stokes number and heat-mixing parameter are defined based on the large-eddy turnover
time, ϕ is a weak function of the Reynolds number. We further discuss implications of alternative
choices of reference timescale in the definition of Stokes number and heat-mixing parameter in
Sec. III D.

Note that we found the correction factor ϕ to be independent of Np, S , and χ assuming no
turbulence modification by the particles. In general, particles can modify the background turbulence
either through the momentum exchange or through local expansion resulting from heat transfer. The
former is significant when the particle mass loading ratio is high [23–25] and the latter is significant
in the case of high heating that results in high dilatational modes quantified by |τl∇ · u| [11]. This
is the case in most turbulent combustion applications, for example. All of the investigated cases are
indeed in the regime where the dilatation due to heating is small compared to the large-eddy turnover
time. However, the mass loading ratio is significant in some cases. We show in Sec. III E that although
turbulence modulation by particles can be considerable in these cases, the impact on the mean heat
transfer is negligible.

In Fig. 2(a) the heat-transfer correction factor is plotted as a function of particle Stokes number.
The bottom x axis is the Stokes number based on the large-eddy turnover time Stl and the top x

axis shows the Stokes number based on the Kolmogorov timescale Stη = τp/τη. For HIT we have
Stη = √

ReStl .
For very small and large Stokes numbers the particle distribution is close to homogeneous.

Therefore, the weights in Eq. (6) are almost uniform and ϕ is close to one. For moderate values
of Stokes number the highest level of preferential concentration is expected. In this case the
particle-to-gas heat transfer occurs at the location of particle clusters that inevitably introduce spatial
heterogeneity. Hence, when preferential concentration is high, the effective volume of cold gas
experienced by the particles is reduced, resulting in less heat transfer from the particles to the gas
(i.e., ϕ < 1).

Figure 2(b) shows ϕ as a function of the heat-mixing parameter σl . Here ϕ is a strictly increasing
function of σl such that as σl → ∞, ϕ → 1, and as σl → 0, ϕ → 0. The value of σl quantifies the
rate of heat mixing by turbulence in terms of the gas thermal relaxation timescale. Small values of
σl means that the heat mixing due to turbulence is weak, and large values of σl represent strong heat
mixing due to turbulence. We study the effects of simultaneous variations of Stl and σl in Sec. III F.

D. Choice of reference timescale

In this study we use the large-eddy turnover time as the flow reference timescale. Alternatively,
we could use the Kolmogorov timescale as the reference flow timescale. Using the Kolmogorov
timescale, in particular, is appealing in order to define the Stokes number as done in numerous
previous studies characterizing particle preferential concentration.

In Fig. 1(d) we showed that the correction factor ϕ has a small dependence on the Reynolds
number, whereas all other nondimensional numbers are kept constant. Note that as the Reynolds
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(a) (b)

FIG. 3. Variation of ϕ as a function of (a) Reynolds number when the Stokes number and heat-mixing
parameter are kept constant, where the subscripts η and l refer to normalizing by Kolmogorov and large-
eddy turnover times, respectively, Stl = τp/τl , Stη = τp/τη, σl = τth/τl , and ση = τth/τη, and (b) heat-mixing
parameter σl and Stokes number Stl .

number increases, the ratio between the large-eddy turnover time and the Kolmogorov time increases
as well. Therefore, the choice of reference timescale for the Stokes number and the heat-mixing
parameter, which are kept constant while the Reynolds number is varied, is important.

In Fig. 3(a) variation of ϕ with Reynolds number is shown when different flow timescales are used
for defining the Stokes number and/or heat-mixing parameter σ . The subscript l denotes normalizing
with the large-eddy turnover time and the subscript η denote normalizing with the Kolmogorov time.
Figure 3(a) demonstrates that our choice of large-eddy turnover time for both the Stokes number
and heat-mixing parameter results in the lowest dependence of ϕ on Reynolds. Further studies are
required to investigate variations of ϕ for much larger values of Reynolds number.

E. Effect of momentum two-way coupling

In all the cases considered above, momentum two-way coupling between the particles and gas
is ignored in the simulations to simplify the analysis of the system. However, for significant mass
loading ratios the momentum exchange between the two phases can modify the turbulence dynamic.

To verify the validity of the results presented here, we ran a simulation of the nominal case (see
Table I) with consideration of momentum two-way coupling between the particles and gas [24].
Similar to the heat exchange between two phases, we use a trilinear interpolation and projection
for numerical calculation of the momentum exchange. The correction factor ϕ for the nominal case
changes from 0.525 to 0.526 when momentum two-way coupling is considered. This shows that the
effect of momentum two-way coupling is negligible on the correction factor introduced here.

F. Closure model

We concluded that the Stokes number and heat-mixing parameter, defined based on τl , are the
most relevant dimensionless numbers determining ϕ. Therefore, we sweep the parameter space in
two dimensions (Stl and σl) to discover the full dependence of ϕ on the input parameters. In Fig. 3(b)
variation of ϕ as a function of Stokes number is plotted for different values of σl . Other dimensionless
numbers are kept at their nominal values as reported in Table I.

The nonmonotonic dependence of ϕ as a function of Stl can be observed for all values of σl .
However, as σl → ∞ the dependence of ϕ on the particle Stokes number vanishes. For large values
of σl the heat mixing due to turbulence is strong; therefore, even for a high level of preferential
concentration the heat transferred from the particles to the gas is quickly mixed uniformly. This
fast mixing makes the gas temperature uniform despite the heterogeneity of the source and thus
brings 〈Tg〉n closer to 〈Tg〉ρ , leading to ϕ 	 1. This effect is visually evident in Fig. 4, where the
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FIG. 4. Particle distribution and normalized fluid temperature deviation Tg − 〈Tg〉ρ contours for different
combinations of Stη and σl in one slice of the domain.

particle distribution and normalized fluid temperature deviations Tg − 〈Tg〉ρ are illustrated for various
combinations of Stη and σl . Note that particles have a high level of preferential concentration when
Stη ∼ O(1) irrespective of the value of σl (the middle column in Fig. 4). However, only for small
values of σl the particle preferential concentration affects the particle-to-gas heat transfer.

Here we introduce a simple phenomenological heat-transfer model consistent with the observed
dependence of ϕ on the dimensionless parameters. We use the result of this approach to provide a
closed algebraic form for the correction coefficient ϕ.

Consider the cloud of gas in the vicinity of particles as shown in Fig. 5(a). Assume that this
cloud occupies the volume fraction f of the total gas. The coefficient 0 � f � 1 is only a function
of the particle spatial distribution and thus f = f (Stl). In this approach we consider one averaged
temperature for the cloud of gas near the particles (gas 1) and one for the rest of the gas (gas 2),
denoted by Tg1 and Tg2 , respectively. We assume that particles receive energy from an external heat
source and transfer energy conductively to the surrounding cloud of gas. This cloud then transfers
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(a) (b)

FIG. 5. (a) Particle-to-gas heat-transfer model schematics and (b) collapse of σl
p/ϕ − σl

p versus Stl for
different values of σl , with p = 0.95.

heat convectively to the rest of the gas. In the former, the heat transfer is dominated by the gas thermal
relaxation time τth augmented by a factor f to account for the smaller mass fraction. In the latter,
the large-eddy turnover time τl is the dominant timescale in the heat transfer as the mixing by large
eddies is the main heat-transfer mechanism (see [26–28]). Using the same nondimensionalization as
in Sec. II B, the governing equations are

χ
d

dt
〈Tp〉n = − 1

σl

(〈Tp〉n − Tg1 ) + S,

f
d

dt
Tg1 = 1

σl

(〈Tp〉n − Tg1 ) − (Tg1 − Tg2 ),

(1 − f )
d

dt
Tg2 = (Tg1 − Tg2 ).

(10)

Neglecting spatial variation of the gas density, we can write

〈Tg〉ρ = f Tg1 + (1 − f )Tg2 . (11)

Combining Eqs. (10) and (11) and noting that under the fully developed conditions all temperatures
increase linearly with time with the same slope [=S/(χ + 1), to satisfy conservation of energy for
the full system], we can derive the following equation:

χ
d

dt
〈Tp〉n = S − σl

σl + (1 − f )2

〈Tp〉n − 〈Tg〉ρ
σl

. (12)

A comparison against Eq. (9) suggests that the correction factor ϕ introduced in Eq. (8) is ϕ =
σl/[σl + (1 − f )2]. This analysis also provides insight into the observed weak dependence of ϕ on
χ , as the derived expression does not involve the parameter χ in this simplified limit.

Next, assuming that f is only a function of Stl , we consider a generalized form for ϕ = σl
p/[σl

p +
g(Stl)]. Based on our phenomenological model, we expect a value of p close to 1. Reverse engineering
of this expression indicates that σl

p/ϕ − σl
p versus Stl must result in plots independent of σl . As

shown in Fig. 5(b), p = 0.95 results in collapse of curves corresponding to different values of σl ,
confirming the usefulness of our phenomenological model.

We consider g(Stl) = αStη1
l /(Stη2

l + β) as a generalization of the expression suggested by
Esmaily-Moghadam and Mani [29] to quantify the level of particle preferential concentration. We
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found the optimal values of α = 0.066, β = 0.025, η1 = 0.8, and η2 = 2.8 by fitting ϕ to our data [see
the dashed line in Fig. 5(b)]. Finally, we propose the following algebraic form for the particle-to-gas
heat-transfer correction coefficient:

ϕ = σl
0.95

σl
0.95 + 0.066 St0.8

l

St2.8
l +0.025

. (13)

IV. CONCLUSION

In this paper, we developed a nondimensional set of equations describing heated point particles
suspended in a variable-density turbulent flow. We studied the averaged particle-to-fluid heat transfer
using direct numerical simulations for fluid and Lagrangian point particle tracking for the dispersed
phase. In the presented formulation, nine nondimensional numbers appear. Considering a wide range
of applications involving small solid particles in gas, we investigated the regime in which γ = 1.4,
Pr = 0.7, and Nu = 2, while we systematically varied all other nondimensional numbers.

We showed that in the regimes where the dilatational time is not fast compared to the eddy time
the number of particles, the dimensionless heating rate, the ratio of particle-to-fluid heat capacities,
and the Reynolds number have a minor effect on the mean heat-transfer coefficient. However, our
results indicate that the particle Stokes number Stη and the introduced nondimensional number, the
heat-mixing parameter σl , have a significant effect on the particle-to-fluid heat transfer. The former
parameter governs the topology of the particle distribution, which controls the spatial distribution
of heat sources to the fluid. The latter parameter determines how fast the background fluid can mix
the heat received by particles compared to the gas nominal thermal relaxation time. Therefore, even
for a high level of preferential concentration, we can expect an almost uniform fluid temperature
distribution due to turbulent mixing when σl is high.

Using our parameter study, in Sec. III F we introduced an algebraic closure formula to model
the macroscopic particle-to-gas heat transfer for general conditions. The inputs of our model are Stl
and σl , which were found to be the most relevant nondimensional numbers for the particle-to-fluid
heat transfer. This result can be used as a map predicting the order of magnitude of heat-transfer
modification in general configurations.

Furthermore, we explored different timescales to define the Stokes number and heat-mixing
parameter, namely, the large-eddy turnover time and Kolmogorov time. Our results indicate that
macroscopic-averaged heat-transfer correction coefficient ϕ is best described by these parameters
(i.e., independent of the system Reynolds number) when they are nondimensionalized based on the
large-eddy time. Investigation of cases with and without momentum two-way coupling between
the two phases suggests that the macroscopic heat-transfer correction coefficient ϕ is insensitive to
modulation of turbulence by the particles.

A future application of this study would be to provide closure to heat-transfer terms in subgrid-
scale models that do not directly capture particle clustering. For example, Reynolds-averaged Navier-
Stokes models only represent the ensemble-average velocity fields. Therefore, even the most accurate
particle solver can provide the mean particle number density while missing the clustering effect. This
is a suitable situation for application of the proposed model, by which the heat-transfer terms can
be closed using the available mean particle number density and mean turbulence dissipation rate
(provided by the turbulence model). Future research can investigate whether the presented approach
can be adopted in the context of large-eddy simulations, where the input parameters are defined
based on the subgrid turbulence dissipation rate.

This work can be extended by relaxing some of our assumptions such as considering temperature-
dependent thermodynamical properties, inhomogeneous flows, and compressibility effects in the case
of extreme heating. Furthermore, the dependence of our model parameter ϕ on the Reynolds number
can be further studied by considering flows with larger values of Reynolds number.
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