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Stratified flows in axially rotating pipes
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We study experimentally the effects of a pipe axial rotation on a stratified displacement
flow, using two miscible fluids of different density, in a long inclined pipe. Increasing the
pipe rotation speed induces transverse mixing and results in a complete removal of the
displaced fluid above a critical transition, described by Rb ≈ 5/2π Fr(1 − Fr)−1, relating
the Rossby number (Rb) to a modified Froude number (Fr). In addition, we quantify the
variation of the leading and trailing displacement front velocities (V̂f , V̂t ), as a function of
the mean displacement velocity (V̂0), showing that for Rb/Fr � 5/2π we find V̂f ≈ 1.3V̂0

and V̂t ≈ 0.8V̂0. These findings offer insights to greatly improve displacement efficiency
using rotational motion.
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I. INTRODUCTION

Displacement flows are frequently observed in natural phenomena and industrial systems; to
give a few examples, in lung airways [1], oil well cementing [2], coating and coextrusion [3],
and cleaning of processing machinery in food processing [4]. The fluids involved can be miscible
and they can have different densities. Displacement flows with a laminar imposed flow in inclined
pipes are also typical. It is known that the interpenetration of the displacing and displaced fluids
is governed by a combination of buoyancy, stratification, the imposed displacement flow rate, and
the flow geometry. From a practical point of view, analyzing these displacement flows may come
down to addressing a key question: Is the displacing fluid able to completely remove the in situ
displaced fluid out of the flow geometry? The answer to this question is often negative, for the
most part, due to the complex interaction between various forces, resulting in a weak control over
the interpenetration of the fluids. The present paper demonstrates that a pipe axial rotation can
significantly affect this interpenetration for buoyant miscible displacement flows in inclined pipes,
making a complete removal of the displaced fluid possible.

Our work extends from buoyant miscible lock-exchange flows, for which the literature is fairly
developed. While no displacement flow rate is imposed, buoyancy is the only driving force in
these flows. Seon et al. [5–7] studied in detail the effects of buoyancy in lock-exchange flows in
a long inclined pipe. Conceptually similar to the Boycott effect, they noted that at high inclinations
(from vertical) the light and heavy fluids are completely segregated and, therefore, they strongly
interpenetrate. They quantified the interpenetration front velocities versus an inertial velocity scale,√

AtĝD̂ [8], or a viscous velocity scale, AtĝD̂2/ν̂, with At denoting the Atwood number, ĝ the
acceleration due to gravity, D̂ the pipe diameter, and ν̂ the kinematic viscosity. Later, Taghavi et al.
[9,10] considered the effects of a flow rate (with mean velocity V̂0) imposed to confined buoyant
flows. Through analyzing the motions of the interpenetration fronts, including the leading and trailing
fronts, they defined a criterion for an efficient displacement based on whether the trailing front moves
upstream or downstream [11]. They found that, when buoyancy is strong, the trailing front moves
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continuously upstream against the imposed flow direction; thus, the displacing fluid is not able to
completely remove the displaced one (in other words, the displaced fluid is nonremovable).

In spite of detailed studies addressing single-fluid flows in axially rotating pipes (e.g., the classical
stability analysis of Pedley [12,13] and Mackrodt [14]), or two-fluid Taylor-Couette flows [15] and
rotating core-annular flows [16], it is still hard to predict how a pipe rotation affects stratified buoyant
flows. For example, Carrasco-Teja and Frigaard [17] demonstrated numerically that an inner cylinder
rotation in annular miscible displacements results in the positioning of heavy fluid above light fluid
at certain azimuthal positions, a configuration that is prone to buoyancy-driven fingering. However,
they found that the instability remains local, with negligible effects on the longer time displacement
dynamics.

Here, we present an experimental study of rotating pipe displacements and demonstrate that the
imposition of a pipe axial rotation on a buoyant miscible displacement flow strongly influences the
flow patterns, the leading and trailing front velocities, and the physical mechanisms by which the
displacement occurs. We propound the idea that a flow geometry rotation can be used to control
stratified displacement flows, yielding an efficient removal of the displaced fluid by the displacing
one.

Despite its fundamental nature, our work can have significant industrial applications, for instance
in oil well primary cementing operations, which involve pumping of cement along a circular pipe
(casing) to remove (displace) in situ drilling mud. Although there exist various types of casing
heads and special adaptors that could enable a casing axial rotation at moderate speeds [2], this
approach is not widely used to enhance casing displacements, perhaps due to a serious lack of
fundamental knowledge about the effects of such rotation. Our research may help develop a crucial
understanding that leads to enhancing displacement efficiently using a pipe rotation and eventually
eliminate primary cementing operational failures, which have previously contributed to catastrophic
consequences (e.g., the Deepwater Horizon drilling rig explosion [18]).

Below, after briefly discussing our experimental range, we will first present our experimental
results, showing qualitatively the general effects of a pipe rotation on buoyant flows (in the Boussinesq
limit), with a laminar imposed flow, in an inclined pipe. We will then quantify the leading and trailing
front velocities versus the flow parameters. We will analyze the corresponding exchange flows to
gain a deeper understanding. Finally, using the dimensionless groups that govern the flow, we will
provide a complete displacement flow regime map, based on whether the displaced fluid can be
removed by the displacing fluid.

II. METHODS AND MATERIALS

A. Experimental setup

Our experiments were performed in a transparent pipe (acrylic) with the length of L̂ = 3 m and
the inner circular diameter of D̂ = 19.05 mm (see Fig. 1). The pipe was split into two parts (2.3
and 0.7 m) by an automated pneumatic gate valve (VAT, Inc.), to completely separate displacing
and displaced fluids before running each experiment. The pipe was mounted on a robust frame,
which could be tilted to any inclination angles, between 0◦ and 90◦, measured from vertical (β). An
elevated tank filled with the heavier fluid was connected to the pipe and provided stable imposed flow
(with mean velocity V̂0) driven by gravity only. A system of a stepper motor and various connectors,
controlled by LabView, produced stable pipe rotations around its axis of symmetry, at precise rotation
speeds (ω̂), taking ∼10−3 s to reach steady state. Six vertical supports were included in the setup so
that any pipe vibrations or fluctuations remained below 10−1 mm even at high rotation speeds.

The upper and lower parts of the pipe were filled with displacing and displaced fluids, using
procedures that minimized bubble formations, while miniature valves were installed near the gate
valve to release any bubbles. A low-flow turbine flowmeter (Omega FTB-420; reading error <2%)
was used to measure the flow rate, which was adjusted using a needle valve placed before the drain.
Water colored by ink (Fountain Pen India) and transparent salt-water were used as light (displaced)
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FIG. 1. Schematic view of experimental setup.

and heavy (displacing) fluids, respectively. The amount of 550 mg of ink per liter of liquid was
found to be a reasonable trade-off. Sodium chloride (Sigma-Aldrich; assay �99%) was favored as
a weighting agent while maintaining the fluid viscosities nearly identical (confirmed by rheometry).
The densities were measured using a high-precision density meter (Anton Paar DMA 35). All the
experiments were performed at ambient temperature kept at 24 ± 1 ◦C.

A wide-angle lens digital camera (Basler acA2040; 212 gray-scale levels) was used to acquire
images at five frames per second, while the pipe was backlit using light-emitting diode strips placed
before diffusive layers to improve light homogeneity. Light absorption calibrations were carried out
in a usual fashion and image processing was performed using in-house MATLAB codes. In particular,
before each experiment, an image of the pipe containing the pure transparent fluid and another image
of the pipe containing the pure dark fluid were recorded. These images served as references of
light intensities to find normalized concentration values using the Beer-Lambert law. The calibrated
images delivered pseudoconcentration profiles (c), which varied between normalized values of 0 and
1. Note that considering the fact that the concentration can vary perpendicular to the view plane in
the circular pipe and that the fluids may not be well mixed, quantifying the real concentration field
of each phase in a highly precise manner may be difficult. However, since our purpose here is not
to quantify mixing between the phases, we adopt a common calibration method widely used for
miscible displacement and exchange flows, for which further details can be found in [6,10,19].

A large number of displacement flow experiments were conducted at two inclination angles
(β = 83◦ and 60◦) and two density differences (At = 3.5 × 10−3 and 10−2), with a systematic
variation of

[V̂0, ω̂] ∈ [0–60 mm/s,0–90 rpm],

where the Atwood number is defined as At = �ρ̂/2 ˆ̄ρ, with �ρ̂ and ˆ̄ρ being the small density
difference and the mean density, respectively. Several additional experiments at V̂0 = 0 were
also done with At ∈ [(8 × 10−4)–(3 × 10−2)]. The common kinematic viscosity was kept at ν̂ ≈
1 mm2/s.

As depicted schematically in Fig. 1, due to the influence of buoyancy and inclination, a stratified
displacement flow may be expected to occur. In a static inclined pipe, as the interface spreads
longitudinally, buoyancy and the imposed flow compete to govern the interface motion. As the fluids
interpenetrate, a leading front toward the pipe’s lower part (with velocity V̂f ) and a trailing front
toward the pipe’s upper part (with velocity V̂t ) are formed. Our experiments focus on analyzing the
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FIG. 2. (a) Evolution of V̂t (t̂ ) (blue curve) and V̂f (t̂ ) (red curve) with time, t̂ , for a typical experiment:
[β, At; V̂0; ω̂] = [83◦; 10−2; 30 mm/s; 40 rpm]. Dashed lines show the nearly steady front velocities reached at
longer times. (b) Comparison between our experimental front velocities (V †

f ) and those of the literature (V �
f )

in a static pipe (ω̂ = 0): [β; At; V̂0] = [83◦; 3.5 × 10−3; 10–60 mm/s] ( ) [10]; [83◦, 10−2, 10–60 mm/s] ( )
[19]; [60◦; 10−2; 0–20 mm/s] (�) [19]; [83◦; 3.5 × 10−3 and 10−2; 0] ( ) using V �

f = 0.7
√

AtĝD̂ provided by

[7]. Dashed line represents V̂
†
f = V̂ �

f .

effects of a pipe axial rotation on this configuration. For convenience throughout the text, the term
“rotational speed” is a measure of the axial rotation frequency in revolutions per minute (rpm).

B. Validations

In this work, our main measurement technique was based on quantitative image analysis to extract
information about large-scale displacement features such as the leading (V̂f ) and trailing (V̂t ) front
velocities at long times. There are a number of methods to define a fluid front in fluid flows with or
without mixing [6,10,19]. Following [19], to avoid noise in the data close to the pipe walls, the speed
of the trailing front was systematically estimated by the velocity of the depth-averaged concentration
level at c̄ = 0.1 and the speed of the trailing front by the velocity of the depth-averaged concentration
level at c̄ = 0.9. Note that the depth-averaged concentration value, c̄, is simply the mean value of
the fluid concentration averaged across the pipe. Obviously, selection of these threshold values is a
trade-off between robustness and proximity to the pipe walls.

Figure 2(a) shows the variations of the leading and trailing front velocities with time, for a typical
experiment. As can be seen, the accumulative front velocities increase with time and eventually
reach their nearly steady values. As there may be infinitesimal fluctuations or very small increases
or decreases in the values of the leading and trailing front velocities at long times, we assume that
V̂f and V̂t have reached their steady values if the fluctuations or variations are within 1 mm/s, over
a reasonable period.

Many experiments were performed for validation purposes against the literature [7,10,13,19,20].
For a buoyant flow in a static pipe (i.e., At > 0 and ω̂ = 0), we have validated our experimental
results against the works of Taghavi et al. [10] and Alba et al. [19] for displacement flows (i.e.,
V̂0 > 0), and against the work of Séon et al. [7] for exchange flows (i.e., V̂0 = 0), for different
density differences and pipe inclination angles. An example of such comparison can be seen in
Fig. 2(b), where reasonable agreement is observed between the front velocities measured in our
work (V̂ †

f ) and those of the literature (V̂ �
f ). In particular, we always find |V̂ †

f − V̂ �
f |/V̂ †

f < 0.05.
For an isodensity flow in a rotating pipe (i.e., At = 0 and ω̂ > 0), we have compared our results

against the theoretical work of Pedley [13]. In this case, our system is technically equivalent to a
single fluid flowing in a rotating pipe, in which the ink used to color the displaced phase serves as a
passive tracer. Pedley [13] analyzed the stability of a viscous flow in a rapidly rotating pipe, finding
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FIG. 3. Spatiotemporal diagrams of isodensity displacements (At = 0) in a rapidly rotating pipe (ω̂ =
90 rpm). The corresponding Reynolds numbers (Re) are approximately equal to (a) 31, (b) 50, (c) 76, (d) 122,
(e) 139, and (f) 198. The vertical line in each image represents distorted pixels due to the presence of the pipe
support, here and elsewhere.

that the flow becomes unstable for Reynolds numbers (Re ≡ V̂0D̂/ν̂) greater than 82.9 and that the
unstable disturbances appear as growing spiral waves. Figure 3 shows an example of our isodensity
displacements, depicting spatiotemporal diagrams of the averaged concentration profiles along the
length of the pipe rotating at ω̂ = 90 rpm, for increasing values of Re. As can be seen the flow
shows signs of convective instabilities at Re ≈ 76. The flow is further destabilized as Re increases.
Therefore, the pipe rotation destabilizes the flow, resulting in the appearance of spiral waves. Overall,
these observations are in reasonable agreement with the literature ([13,20]).

III. RESULTS AND DISCUSSION

A. General observations

Figure 4 shows four image sequences for increasing ω̂ at a fixed moderate imposed flow velocity
(V̂0 = 30 mm/s), as the transparent heavy fluid displaces the dark light fluid. The corresponding
experimental videos are available in the Supplemental Material [21]. When there is no rotation
(ω̂ = 0 rpm), there exists a countercurrent flow with a clear slumping pattern, in which the leading
front advances downstream and the trailing front moves upstream. The light fluid lies on top of the
heavy fluid. Although there are some Kelvin-Helmholtz–like instabilities observed on the interface
between the displacing and displaced fluids, the fluids are not much mixed transversely as the
transverse buoyancy force is strong, keeping the fluids segregated. By introducing a small rotation
speed (ω̂ = 20 rpm), the flow transitions from a countercurrent form to a flow where no upstream
motion of the trailing front is observed. The dynamics of the flow is still governed mainly by
buoyancy, as the heavy fluid slumps underneath the light one. However, the mixing between the
phases is more visible compared to that for the static pipe, as the two pure fluid layers now seem to
be transversely separated by a mixed layer. As the rotation inertia becomes stronger (ω̂ = 30 rpm), it
eventually overcomes the transverse buoyancy force that segregates the heavy and light fluids. Thus,
the flow is further destabilized and a notable transverse mixing is seen between the two fluids. At
a higher rotation speed (ω̂ = 40 rpm), the flow becomes fully mixed transversely. For ω̂ � 40 rpm,
increasing the rotation speed has no significant effect on the flow patterns. In addition, as the fluids
mix quite efficiently in the transverse direction, the buoyant effects seem to become less relevant
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FIG. 4. Sequence of experimental snapshots at β = 83◦, V̂0 = 30 mm/s, and At = 10−2, with increasing
pipe rotation speeds: (a) ω̂ = 0, (b) 20, (c) 30, (d) 40 rpm. Experimental times in seconds, t̂ , are indicated beside
each snapshot. Field of view in each snapshot is 19.05 × 3000 mm2, covering the whole pipe (note that the
images are vertically stretched for visualization). Displacement is from right to left in each snapshot. Gate valve
and pipe supports are marked by G and S, respectively.

at very large rotation speeds. Finally, the ensemble of the images in Fig. 4 reveals that, in general,
the flow patterns depend on a competition between motion of the pipe, which attempts to tilt the
interface (and eventually mix the fluids), and buoyancy, which tends to bring it to horizontal (and
avoid mixing). In order to further understand the mechanism behind such a competition, we will
later estimate the ratio of these two effects, for the simpler case of exchange flows (V̂0 = 0).

Figure 5 shows the variation of V̂f and V̂t versus ω̂ for a moderate imposed flow rate (V̂0 =
30 mm/s) at β = 83◦ and At = 10−2. The leading front velocity gradually decreases with increasing
the rotation speed and eventually reaches an almost constant value at large ω̂. The trend is opposite
for the trailing front velocity. The trailing front velocity gradually increases with the rotation speed
and reaches a constant value. The snapshot images superimposed on the subfigures depict the
displacement for the entire pipe length, showing that dynamics of the flow is not much affected
by increasing the rotation speed at large ω̂.

B. Analyzing the pipe rotation effects on the flow dynamics

Analyzing the leading and trailing front velocities can help unravel the complexity of our flows.
In a typical experiment, after the gate valve is opened, there is a short development timescale over
which the leading and trailing fronts accelerate; however, the initial transition phase subsides over
O(10) s and the flow reaches a fully developed state, where the accumulative front velocities are
almost constant [see Fig. 2(a)]. Let us explore the effects of a pipe rotation on these longer time front
velocities.

Figure 6(a) shows the variation of V̂f and V̂t versus V̂0 at β = 83◦ and At = 10−2, with increasing
rotation speeds. For a given rotation speed, V̂f and V̂t increase with V̂0, which is an expected behavior.
However, for a given mean imposed velocity, V̂f decreases with ω̂ while V̂t increases with ω̂. In fact,
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FIG. 5. Variation of V̂t ( ) and V̂f ( ), as a function of ω̂, for V̂0 = 30 mm/s, β = 83◦, and At = 10−2. Error
bars are small, so they are dropped, here and elsewhere. The superimposed snapshots show the displacement for
the corresponding experiments. The field of view in each snapshot is 19.05 × 3000 mm2, covering the whole
pipe.

the effect of ω̂ on V̂t is more significant in the sense that V̂t can transition from negative to positive
values, at a critical rotation speed (ω̂c), as will be noted further below.

Figure 6(a) also shows that, at large rotation speeds, the variations of V̂f and V̂t versus V̂0 are
not much affected by the rotation and we find V̂f ≈ 1.3V̂0 and V̂t ≈ 0.8V̂0, as all the datapoints
collapse onto a single trend. This is due to the fact that, once ω̂ exceeds a certain critical value, the
fluids mix well transversely and further increasing the rotation speed has only a slight influence on
the dynamics of the flow or intensifying the mixing degree. On the other hand, as mixing becomes
efficient, buoyancy becomes less relevant. Consequently, at large rotation speeds, the leading and
trailing front velocities are not much influenced by ω̂. This indicates that a combination of the rotation
inertia and the imposed pressure gradient controls the flow dynamics at larger ω̂.

Figures 6(b)–6(d) show that very similar trends are obtained for displacements with [At, β] =
[10−2, 60◦] [Fig. 6(b)], [At, β] = [3.5 × 10−3, 83◦] [Fig. 6(c)], and [At, β] = [3.5 × 10−3, 60◦]
[Fig. 6(d)]. The relations mentioned (i.e., V̂f ≈ 1.3V̂0 and V̂t ≈ 0.8V̂0) are nearly independent of the
variation in the pipe inclination angle (when highly inclined) and the density difference (when kept
small).

Figure 6 reveals three more findings that are worth discussing. First, when V̂0 > 0, there are flows
at a critical rotation speed for which we find V̂t ≈ 0, i.e., the trailing front is almost motionless (or
with an extremely small velocity) at long times (note that, due to mixing or other effects, a front
velocity may be very slow, making it difficult to define motionless; thus, we consistently define
an almost “motionless” front throughout the paper as a front whose long-time velocity varies less
than or fluctuates within 1 mm/s, i.e., a typical measurement error). For a given parameter set, this
critical rotation speed marks the transition between negative and positive values of V̂t . Intuitively, the
displaced fluid cannot be removed if V̂t � 0, while it can be removed otherwise. Second, the width
of the range where the trailing front remains almost motionless decreases as ω̂ increases, while it
completely disappears at large ω̂. This feature indicates that, at small ω̂, the delicate balance between
the pressure gradient and buoyancy forces, keeping the trailing front immobile (or with a very small
velocity), can be achieved over a range of mean imposed velocities. However, as ω̂ increases, the
fluids mix transversely and the displaced layer toward the pipe’s upper walls can be washed much
more easily; therefore, the chance for the trailing front to remain motionless decreases considerably.
Third, when V̂0 = 0, there are exchange flows at a critical rotation speed for which V̂f = V̂t ≈ 0, i.e.,
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FIG. 6. Variation of V̂f and V̂t versus V̂0, above and below the thick solid line, respectively. Flow parameters
are (a) β = 83◦ and At = 10−2, (b) β = 60◦ and At = 10−2, (c) β = 83◦ and At = 3.5 × 10−2, and (d) β = 60◦

and At = 3.5 × 10−2 with different pipe rotation speeds: ω̂ = 0 ( ), 10 ( ), 20 ( ), 30 ( ), 40 ( ), 50 ( ),

60 ( ), 70 (×), 80 ( ), and 90 (•) rpm. The slopes of the dotted, solid, and dashed lines are 0.8, 1, and 1.3,
respectively. As the maximum errors are small, the horizontal and vertical error bars are removed from the
datapoints, here and elsewhere.

the trailing and leading fronts both become motionless at long times. We call these nearly stagnant
flows, in which two pure fluids are separated by a bulk of a nearly stagnant mixed zone. We will
analyze these exchange flows further below.

After presenting Fig. 6 showing V̂f and V̂t versus V̂0 for fixed values of ω̂, it is instructive to
plot the variation of V̂t and V̂f as a function of ω̂, at a few selected imposed velocities, as presented
in Fig. 7 for V̂0 = 0 and 50 mm/s. This figure illustrates, for exchange flows (V̂0 = 0 mm/s), the
existence of a rotation speed threshold value (here ω̂ ≈ 40 rpm) for which the motion of the leading
and trailing fronts is blocked: as mixing becomes dominant, the interpenetration stops at long times,
due to a serious lack of a longitudinal buoyant force (which is the main driving force in exchange
flows). On the other hand, for the displacement flow at V̂0 = 50 mm/s, Fig. 7 shows that the trailing
front velocity gradually increases with ω̂, while the leading front velocity gradually decreases with
ω̂. After a critical rotation speed, the front velocities reach plateau values and they are not anymore
affected by a further increase in ω̂. In this case, due to the imposed pressure gradient, the mixing zone
between the two fluids moves downstream while its extent grows with a speed equal to ∼|V̂f − V̂t |.

For exchange flows (V̂0 = 0), the axial interpenetration of the fluids is driven by the longitudinal
component of buoyant stresses that scales like δρ̂ĝD̂ cos β, in which δρ̂ is the local density contrast.
Intuitively, increasing the rotation speed enhances the transverse mixing, which in return weakens
the longitudinal buoyant stresses as δρ̂ decreases. Eventually, the exchange flow will lack sufficient
longitudinal buoyancy force to maintain the advancement of the pure fluids into each other. On
the other hand, in order for the fluids to transversely mix, the stresses caused by the rotation must
overcome transverse buoyant stresses, which act to stabilize the interface and segregate the two
fluids. Note that the rotation inertia of a rotating body is proportional to its density and to how fast
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FIG. 7. Variation of V̂f and V̂t versus ω̂. Flow parameters are β = 83◦ and At = 10−2, with different imposed
flow rates: V̂0 = 0 ( , ), V̂0 = 50 ( , ) mm/s. The leading and trailing front velocities are illustrated by the
filled and hollow symbols, respectively.

it is turning, while transverse buoyant stresses highly depend on the density contrast, the transverse
length scale, and the inclination angle. More formally, it can be shown that the rotation inertia is
scaled as ˆ̄ρω̂2D̂2 while the transverse buoyant stresses prior to mixing are scaled as �ρ̂ĝD̂ sin β,
leading to the balance

ˆ̄ρω̂2D̂2 ∼ �ρ̂ĝD̂ sin β, (1)

which allows defining a critical characteristic rotation velocity:

V̂ω,c = D̂ω̂c = C

√
AtĝD̂ sin β,

where C is a constant yet to be found.
Figure 8 quantifies experimental results in the plane of V̂ω = D̂ω̂ and

√
AtĝD̂ sin β. The

datapoints for nearly stagnant flows appear above a critical line for which the slope is roughly
C = 2π/5, implying that a weak rotation may be sufficient to overcome the segregation and mix the
fluids. The spatiotemporal diagrams of the depth-averaged concentration superimposed on the figure
show that by increasing ω̂, V̂f decreases and, when ω̂ crosses over the critical line, we find V̂f ≈ 0.

Note that Fig. 8 also provides an insight into a competition between the motion of the pipe (which
tilts the interface and eventually causes efficient mixing) and the transverse buoyancy component
(which brings the interface to horizontal, segregates the fluids, and avoids mixing). For exchange
flows, an efficient mixing eliminates the longitudinal buoyancy force and results in a nearly stagnant
flow. The ratio between these two effects, i.e., pipe motion and transverse buoyancy, can be crudely
described by D̂ω̂/

√
AtĝD̂ sin β: loosely speaking, when D̂ω̂/

√
AtĝD̂ sin β < 2π/5, the transverse

buoyancy component wins and when D̂ω̂/
√

AtĝD̂ sin β > 2π/5, the rotation wins.
Before we proceed, it is worth mentioning that the balance presented in (1) is a simplified

relation. For instance, the transverse buoyancy stresses, which are scaled in reality as δρ̂ĝD̂ sin β,
are approximated by �ρ̂ĝD̂ sin β. While the former considers the mixing effects through δρ̂, which
is a function of mixing, the latter ignores these effects entirely. This highlights the fact that the main
purpose of our simplified scaling arguments is to provide only a leading order approximation to the
complex flow behaviors.

After reviewing the results at V̂0 = 0, it is useful to also look into the behaviors of the flow system
at a very low (although nonzero) mean imposed velocity, as presented in Figs. 9 and 10. The former
shows the variation of V̂f (filled symbols) and V̂t (hollow symbols) with ω̂ at V̂0 = 10 mm/s, for
different values of the inclination angle and the density difference. Due to the mean imposed velocity,
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FIG. 8. Exchange flow regime classification: nearly stagnant ( ) and nonstagnant ( ) flows, separated by
the oblique line. From left to right, images show spatiotemporal diagrams for At = 10−2 and β = 83◦ at ω̂ = 0,
20, and 40 rpm, with vertical axis of 0 � t̂ � 60 s and horizontal axis of 0 � x̂ � 1000 mm. Dashed line slopes
represent V̂f at long times.

the front velocities are quite asymmetric with respect to zero, as they gradually vary with ω̂. For
different β and At, although V̂f and V̂t initially have different values at small ω̂, they eventually
reach steady values at large rotation speeds. Note that, in all cases before reaching the steady value,
the trailing front velocity crosses from negative values (where the trailing front moves upstream) to
positive values (where the trailing front moves downstream), as discussed above. This figure shows
that, in comparison to exchange flows (V̂0 = 0) where V̂f = V̂t ≈ 0 at large ω̂, even a very small
V̂0 > 0 combined with a ω̂ larger than a critical value is sufficient to induce positive velocities for

0 20 40 60 80 100
-40

-20

0

20

40

FIG. 9. Variation of V̂f (filled symbols) and V̂t (hollow symbols) with ω̂ at a very low (although nonzero)
mean imposed velocity with V̂0 = 10 mm/s: β = 83◦ and At = 10−2 ( , ); β = 60◦ and At = 10−2 ( , );
β = 83◦ and At = 3.5 × 10−3 ( , ); β = 60◦ and At = 3.5 × 10−3 ( , ).
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FIG. 10. Spatiotemporal diagrams for V̂0 = 10, At = 10−2, and β = 83◦, at ω̂ = (a) 0, (b) 10 rpm, (c)
20 rpm, (d) 30 rpm, (e) 40 rpm, and (f) 50 rpm. These diagrams correspond to a part of the case marked by ( ,

) in Fig. 9.

the leading and trailing fronts, resulting in the removal of the displaced layer at long times. For a
better visual demonstration, Fig. 10 shows a sequence of spatiotemporal diagrams with increasing
ω̂, corresponding to one of the cases presented in Fig. 9 (i.e., At = 10−2, β = 83◦). At ω̂ = 0, there
are Kelvin-Helmholtz–like instabilities at the interface, similar to those in exchange flows (cf. the
left image in Fig. 8). Although V̂0 > 0, the flow is still largely buoyancy driven since V̂0 is quite
small. By increasing ω̂, the spatiotemporal diagrams undergo significant changes; in particular, the
advancement of the fronts as well as the interfacial instabilities are affected. The gray region becomes
smooth and the fluids further mix. By increasing ω̂, the leading front velocity decreases. At very
large ω̂, a white region starts to appear in the spatiotemporal diagram. This region corresponds to
the pure displacing fluid, which is separated from the pure displaced fluid (black region) through an
efficiently mixed zone (gray region).

C. Main flow regime classification

We classify now our displacement flow regimes based on whether the displacing fluid is able to
remove the displaced fluid when a pipe rotation is imposed. The key parameters are the rotation,
buoyancy, and the mean imposed flow velocity. By removing V̂0 as a parameter and analyzing the
exchange flow results, we concluded that the balance between D̂ω̂ and

√
AtĝD̂ sin β is crucial in

governing the transverse segregation between the fluids. This can be equivalently written as

D̂ω̂√
AtĝD̂ sin β

≡ Fr

Rb
,

where Fr ≡ V̂0/
√

AtĝD̂ sin β is a modified densimetric Froude number, quantifying the ratio of
inertial to transverse buoyant forces, and Rb ≡ V̂0/ω̂D̂ is the Rossby number, describing the ratio of
inertial to Coriolis forces. Provided that the rotation inertia is sufficiently large to overcome transverse
buoyant stresses segregating the fluids, an efficient transverse mixing can be achieved; therefore, in
this case one may expect the displaced fluid to be removed “more easily.” On the other hand, the
removal of the displaced fluid in a static pipe may be crudely described by a balance between the
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FIG. 11. Displacement flow regime classification, with V̂t > 0 ( ) and V̂t < 0 ( ), roughly separated by the
oblique straight line (empirical) passing through Fr = 1 and Fr/Rb = 2π/5. Motionless trailing fronts (V̂t ≈ 0)
and nearly stagnant flows (V̂f = V̂t ≈ 0) are marked by and , respectively. The empirical line corresponds
to flows with V̂t = 0, marking the transition between the regimes of removable and nonremovable displaced
fluids.

imposed flow inertia and the transverse buoyant stresses prior to mixing:

¯̂ρV̂ 2
0 ∼ �ρ̂ĝD̂ sin β, (2)

the ratio of which is proportional to Fr.
Based on these two arguments above, Fig. 11 assembles our results in the plane of Fr and Fr/Rb to

classify our main flow regimes: V̂t > 0 ( ) and V̂t < 0 ( ). These indeed correspond to removable
( ) and nonremovable ( ) displaced fluids. Our criterion to define a removable or a nonremovable
displaced fluid is simply whether V̂t is positive: if V̂t > 0, the displaced fluid can be removed at
long times; otherwise the displaced fluid cannot be removed at long times. In other words, a flow
with a removable displaced fluid is that in which the trailing front moves continuously downstream.
The datapoints for each regime are clearly separated, for which the critical transition can be crudely
described by an empirical straight line passing through Fr = 1 and Fr/Rb = 2π/5. The former
(Fr = 1) has been previously reported to be roughly the critical number that describes relatively
efficient displacements in static pipes [11]. The latter (Fr/Rb = 2π/5) is the critical ratio extended
from our exchange flow results. This regime classification suggests that a light fluid in an inclined
pipe can be removed by a heavy fluid provided that a pipe rotation above a critical speed is imposed.
This critical condition can be formally expressed as

Rbc ≈ 5/2π Fr(1 − Fr)−1. (3)

If Rb < Rbc, the flow belongs to the efficient displacement regime, above the thick line in Fig. 11. As
can be seen, an efficient displacement can be obtained using a relatively “weak” rotation for a wide
range of flow parameters. Finally, regarding the front velocity correlations at large rotation speeds,
i.e., V̂f ≈ 1.3V̂0 and V̂t ≈ 0.8V̂0, we find that these relations are roughly valid when Rb/Fr � 5/2π ,
consistent with the discussion above.

It is worth mentioning that, in order to appreciate the role of the Rossby number in governing the
flow, one could simply write the equations of motion of our flows in a moving frame of reference
(i.e., rotating with a constant speed ω̂) in a dimensionless form. In this case, the Rossby number
would appear in these equations, both in Coriolis and centrifugal terms. On the other hand, the
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Froude number would appear in a buoyancy term. One can simply show that the centrifugal term is
of O(1/Rb2), which should balance the buoyant term that is of O(1/Fr2). This results in a ratio of
O(Fr/Rb), which describes the flow dynamics, as also found through the scaling argument above.

Although it is preferable to present the main findings in terms of the dimensionless groups, namely,
Rb and Fr, which are widely used in studying fluid flows with rotation effects [20,22,23], it is also
instructive to analyze the flow dynamics in terms of physically meaningful characteristic velocities
that are frequently encountered in many buoyancy-driven flows. In this context, a characteristic
buoyant velocity can be defined as V̂g =

√
AtĝD̂ sin β, already used to define Fr. Therefore, the

flow dynamics can be expressed versus three characteristic velocities (i.e., V̂0, V̂g , and V̂ω):

Fr ≡ V̂0

V̂g

,

Fr

Rb
≡ V̂ω

V̂g

.

Using these variables, the equation of the oblique straight line becomes

V̂ω

V̂g

= 2π

5

(
1 − V̂0

V̂g

)
. (4)

A final note on Fig. 11 may be that the red symbols ( ), corresponding to displacements with
motionless trailing fronts, do not fall exactly on the thick line. This implies that the transition line
suggested is only a leading order approximation to the complex flow behaviors in our system. For
example, our scaling arguments in the current paper did not include any effects of mixing and/or
entrainment, which need to be taken into consideration in order to provide a more accurate description
of the flow, in general, and the transition behaviors, in particular (for instance, the entrainment near
the trailing front may affect the flow dynamics and the movement of this front). These intricacies
emphasize that more research must be conducted to understand stratified displacement flows in
rotating pipes and to accurately quantify the transition between the regimes of removable and
nonremovable displaced fluids.

IV. CONCLUSION

In conclusion, we carried out an experimental study on buoyant miscible displacement flows
in an axially rotating inclined pipe and discovered that the pipe rotation significantly influences
the displacement process. As ω̂ increases from zero, the leading front velocity decreases while the
trailing front velocity increases from negative values, exceeding zero at a critical rotation speed
(ω̂c). For displacements with ω̂ > ω̂c, the trailing front continuously moves downstream; thus, a
complete removal of the displaced fluid is obtained. A flow regime classification over the full range
of experiments in the plane of Fr and Fr/Rb enables a separation of removal and nonremoval displaced
fluid datapoints, based on a critical Rossby number (Rbc ≡ V̂0/ω̂cD̂) versus a modified densimetric
Froude number, i.e., Rbc ≈ 5/2π Fr(1 − Fr)−1. In order to achieve an efficient removal of a displaced
fluid, displacement flows must be operated at Rb < Rbc. In addition, for displacement flows with
Rb/Fr � 5/2π , which are characterized by significant transverse mixing, the leading and trailing
front velocities vary linearly with the mean imposed flow velocity, following V̂f ≈ 1.3V̂0 and V̂t ≈
0.8V̂0, respectively. This implies that the mixing region grows at a speed ∼0.5V̂0, at least over
the period that can be studied in our experimental pipe (i.e., ∼102 × τ̂ with τ̂ = D̂/V̂0 being the
characteristic timescale of the flow).
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