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Jet drops ejected from bursting bubbles are ubiquitous, transporting aromatics from
sparkling beverages, pathogens from contaminated water sources, and sea salts and organic
species from the ocean surface to the atmosphere. In all of these processes, the smallest drops
are noteworthy because their slow settling velocities allow them to persist longer and travel
further than large drops, provided they escape the viscous sublayer. Yet it is unclear what sets
the limit to how small these jet drops can become. Here we directly observe microscale jet
drop formation and demonstrate that the smallest jet drops are not produced by the smallest
jet drop-producing bubbles, as predicted numerically by Duchemin et al. [Duchemin
et al., Phys. Fluids 14, 3000 (2002)]. Through a combination of high-speed imaging and
numerical simulation, we show that the minimum jet drop size is set by an interplay of
viscous and inertial-capillary forces both prior and subsequent to the jet formation. Based
on the observation of self-similar jet growth, the jet drop size is decomposed into a shape
factor and a jet growth time to rationalize the nonmonotonic relationship of drop size to
bubble size. These findings provide constraints on submicron aerosol production from jet
drops in the ocean.

DOI: 10.1103/PhysRevFluids.3.074001

I. INTRODUCTION

When a bubble at an air-liquid interface bursts, drops can be ejected by a liquid jet that forms at the
base of the bubble [Fig. 1(a)]. Bubbles generated from breaking waves in the oceans produce these
jet drops of salt water in abundance, carrying billions of tons of sea salt to the atmosphere every year
[1]. These sea spray aerosol particles play an important role in climate, acting as cloud condensation
nuclei and scattering radiation [2]. Aerosols from bursting bubbles have also been implicated in the
transfer of pathogens [3] from the surf zone of coastal regions [4] and raindrops on soil [5], as well
as on a smaller scale from recreational aquatic facilities [6] and toilets [7].

A key parameter in predicting the transport and residence time of an aerosol droplet is its size;
larger drops quickly fall back to the surface, while microscopic drops are more easily lifted by
turbulent eddies. Additionally, pathogen-laden drops smaller than 10 μm in diameter can penetrate
further into the respiratory tract than larger drops and therefore pose a higher risk for infection [8].
Over 60 years of experimental studies [9–24] have found that the radius of the top jet drop rd is roughly
10% of the radius R of the bubble that produced it [Fig. 1(b)]. Yet there is a scarcity of data to link
smaller jet drops to the bubbles that produce them, and it is unclear how small these jet drops can be.

Many sea spray aerosol studies focus on particle sizes between 10 nm and 1 μm [2,25], as these
dominate the production flux and are measurable using a scanning particle mobility sizer. These
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FIG. 1. Jet drops produced from a bursting bubble. (a) An air bubble of radius R = 1.5 mm at an air-water
interface produces a jet drop of radius rd = 280 μm within time t = 4 ms after rupturing. (b) Decades of
experiments (open symbols), most gathered in Ref. [2], have related the size of the top jet drop rd to the
bubble size R in fresh and salt water at various temperatures [9,11–24]; yet these measurements fall outside the
regime in which submicron aerosols from these jet drops might be expected (green shaded box). Results from a
computational study [27], included as pluses and dimensionalized to seawater at 20 ◦C, suggest a nonmonotonic
dependence of rd on R in this region. Also plotted are two data points from this study (yellow closed symbols),
the smaller of which extends into the submicron regime and has properties similar to salt water at 8 ◦C. The
commonly assumed 10% rule (dotted line), an empirical power-law dependence [2] rd = 150 μm(R/mm)1.3

(dashed line), and a theoretical scaling relationship [28] for 20 ◦C seawater (solid curve) are included, along
with regions where no jet drops are expected as a result of either viscous or gravitational effects.

submicron aerosol particles are most often attributed to the breakup of films from larger bubbles
(film drops), yet there is evidence that a significant fraction of these particles are formed by jet drops
[26]. Because submicron jet drop particles have a different composition and stronger ice nucleating
ability than film drop particles [26], climate and chemical transport models could be strengthened
by understanding under what conditions submicron jet drops are formed and whether their size is
bound by viscous effects.

It has been suggested that viscous effects prevent ocean bubbles smaller than R = 4 μm from
producing jet drops [23]. If the commonly assumed 10% rule were applied, the minimum jet drop
size would be rd = 400 nm. Other empirical power laws of the form rd ∼ Rp have been proposed
[2,15,18,21,22,24] with p ranging from 1.2 to 1.5, and these would produce different minima if
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they were extrapolated to this viscous cutoff. However, a numerical study [27] and recent theoretical
scaling analysis [28] suggest a singularity before or at the viscous cutoff, allowing for jet drops to get
arbitrarily small and likely regulated by a different mechanism. Here we investigate the mechanism
that sets the minimum jet drop size by directly visualizing the formation of micron-scale jet drops.
Figure 1(b) highlights that while the various models are consistent with available experimental
data, they diverge in the region where data is scarce, which is precisely the region that is relevant to
submicron jet drop aerosols. We combine dynamic similitude and numerical simulations to obtain and
rationalize the bubble-jet drop size dependence at the smallest scales and we explore the implications
for submicron aerosol production in the oceans.

II. DYNAMIC SIMILITUDE FOR THE SMALLEST JET DROPS

With decreasing bubble and jet drop sizes, imaging becomes increasingly difficult for two reasons.
First, spatially resolving the jet drops requires higher magnification and more precise alignment of the
bubble before it ruptures. Second, temporally resolving the jet drops requires faster frame rates and
shorter exposure times, because the jetting dynamics scale with the inertial-capillary timescale τ =√

ρR3/γ , where ρ is the liquid density and γ is the surface tension. In response to these challenges, we
fabricate microfluidic devices with polydimethylsiloxane soft lithography that allow us to repeatedly
create and observe the spontaneous rupture of microbubbles of air with an inverted microscope and
high-speed camera (see Appendix A, Fig. 6, and movies 1 and 2 in the Supplemental Material [29]).
Air bubbles within the device range in size from R = 20 to 40 μm and create discernible jet drops
with radii rd between 1 and 4 μm within 30 μs following rupture [Figs. 2(a) and 2(b)]. These jet
drops appear to be the smallest reported from direct measurements for any liquid [Fig. 1(b)], yet they
do not rule out the possibility that even smaller jet drops would be generated from smaller bubbles.

To investigate the smallest top jet drops possible for a given liquid, we exploit dynamic similitude
within the microfluidic device. Surface tension and inertia dominate jet drop dynamics and set the
characteristic timescale τ . Viscous and gravitational effects can also be significant [23,24,27,30,31],
especially if the bubble size approaches their characteristic length scales Rμ ≡ μ2/ργ and Rg ≡√

γ /ρg, respectively, where μ is the liquid viscosity and g is the acceleration due to gravity. For
example, when R � 370Rμ, viscosity inhibits jet drop formation [23], whereas if R � Rg , gravity
inhibits jet drop formation [30,31] [shaded regions in Fig. 1(b)]. Therefore, jet drop dynamics can be
recast in terms of two independent dimensionless groups, which we select as the Laplace number La ≡
ργR/μ2 = R/Rμ and the Bond number Bo ≡ ρgR2/γ = (R/Rg)2. We have chosen the Laplace
number rather than the more common Ohnesorge number Oh ≡ 1/

√
La because the Laplace number

scales linearly with the size of the bubble. Note that we anticipate that gravity has a negligible
influence on the size of jet drops from microbubbles and, as a consequence, the size ratio rd/R

depends predominantly on the Laplace number.
We vary the Laplace number within the microfluidic device by working with glycerol-water

solutions of varying concentrations (Table I), allowing us to elucidate the role of viscous effects on
the size of the top jet drop. Figure 2(b) depicts the bubble and first discernible jet drop for three
different Laplace numbers by displaying the intensity difference for images before and after each
bubble ruptures; specifically, the subtracted image is dark where the source images differ and light
where they are similar, with a pixel intensity given by 255 (white) minus the absolute value of the
difference between images. As expected, the bubble with La < 370 does not produce jet drops, a
result consistent with past experiments [23] and simulations [31]. However, as the Laplace number
decreases toward this threshold, the results suggest that the ratio between the radii of the top jet drop
and the bubble rd/R increases, contrary to the behavior for larger bubbles [Fig. 1(b)].

To increase the spatial resolution and confirm that the results extend beyond the microfluidic
platform, we conduct experiments in which larger bubbles (R ≈ 200 μm) rise from the tip of a
pulled glass micropipette and rupture at a free interface (Fig. 7). Provided that the Bond number is
less than Bo ≈ 0.01, gravity negligibly distorts the bubble shape [31]; this condition is met when
R < 300 μm in glycerol-water mixtures. Figure 2(d) shows snapshots of the jet shortly after pinch-off
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FIG. 2. Experimental images of bursting bubbles and resulting jet drops. (a) A microfluidic device provides
a precisely designed environment to directly observe jet drops from the rupture of a microbubble. (b) Replacing
the surrounding liquid with glycerol-water solutions of varying concentrations primarily changes the viscosity
μ and therefore the Laplace number La ≡ ργR/μ2. Changing the Laplace number within the microfluidic
device changes the jet drop size, illustrated here by image subtraction for times before and after rupture.
The dashed boxes highlight the first discernible jet drop. (c) Micropipette experiments reveal finer detail of
the bubble-bursting process by generating bubbles of radius R ≈ 200 μm that collapse within hundreds of
microseconds. Note that the initial bubble shape in both microfluidic and micropipette experiments is nearly
spherical. (d) Changing the glycerol concentration of the liquid in the micropipette experiments reveals a
nonmonotonic relationship between the Laplace number and the size of the first discernible jet drop. No jet
drops are formed for La < 320.

for a range of glycerol-water solutions (see also movie 3 in [29]). A nonmonotonic dependence of
jet drop size on viscosity, or equivalently Laplace number, is evident. Jet drop size initially decreases
with Laplace number, reaching a minimum of rd = 5 μm (rd/R = 0.025) at La = 1000. Below this
Laplace number, the ratio of jet drop to bubble size increases until jet drops are no longer ejected
for La < 320, similar to the trend from microfluidic experiments [Fig. 2(b)]. This nonmonotonic
relationship was observed in the numerical simulations of Duchemin et al. [27] [Fig. 1(b)], which
also found a minimum drop size between La = 600 and La = 1500. However, subsequent empirical
and theoretical models of jet drop size [2,24,28] [Fig. 1(b)] have largely ignored this predicted
nonmonotonic behavior. Furthermore, the simulations of Duchemin et al. [27] had limited resolution
and sparse results near the minimum jet drop size and, combined with our experiments, do not rule
out the possibility that even smaller jet drops can be formed.

Given the limits of the experimental data and previous simulations, we carry out jet drop
simulations with significantly increased resolution, neglecting gravity to isolate viscous effects. We
simulate bubble collapse and jet drop formation with the open-source computational fluid dynamics
solver Gerris [32–34], which solves the incompressible Navier-Stokes equations with a fractional-step
projection method, using an adaptive quad/octree spatial discretization and a multilevel Poisson
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TABLE I. Fluid properties and bubble size for microfluidic and micropipette experiments. Here C is the
glycerol concentration (weight percent) of the solution, T is the laboratory temperature, R is the bubble size,
and La is the corresponding Laplace number. Densities and surface tensions of glycerol-water solutions are
obtained from reference values [49], while viscosities are measured with a viscometer for the micropipette
experiments and given by an empirical formula [50] taking into account temperature variations for the
microfluidic experiments.

C (wt. %) T (◦C) ρ (kg m−3) μ (mPa s) γ (mN m−1) R (μm) La

0 23.2 997 0.931 72.0 35 2910
15 21.6 1037 1.43 70.0 23 814
30 23.5 1076 2.22 68.5 39 580
30 23.5 1076 2.22 68.5 30 449
50 23.0 1129 5.37 67.4 33 87

0 23.0 997 0.933 72.0 213 17500
20 24.8 1050 1.52 69.5 208 6530
30 24.1 1076 2.18 68.5 206 3200
35 25.1 1089 2.56 68.2 204 2310
40 25.3 1102 3.20 67.9 203 1480
45 25.3 1116 3.89 67.7 202 1010
47.5 23.2 1122 4.90 67.5 202 636
50 22.6 1129 5.55 67.4 201 496
55 23.3 1142 6.94 67.2 200 318
60 23.6 1155 9.35 66.9 199 176

solver. A volume of fluid scheme is used to capture the air-liquid interface, and its accurate,
well-balanced surface tension model has led to its use for many interfacial flow problems [33–36].

We initialize the bubble with a small hole to approximate rupture (see Appendix B for more
details on simulation setup) and evolve this shape in time for a range of Laplace numbers. Snapshots
[Fig. 3(a) and movie 4 in [29]] reveal how capillary waves originating from the retreating rim focus
at the bottom of the cavity, inverting it at time t0 into a jet that pinches off its first jet drop at
time tp. The nonmonotonic relationship between Laplace number and drop size mirrors that seen
in our experiments [Fig. 2(b)]. The ratio of jet drop size to bubble size again reaches a minimum
at La = 1000, now of rd/R = 0.008, and the critical Laplace number below which no drops are
ejected is found to be Lac = 430. We note that a recent numerical and experimental investigation
of the velocities of jets from bursting bubbles reported Lac = 500 and also found that an optimum
Laplace number around La = 1000 leads to the fastest jets when gravity is negligible [36].

The combination of experiments and high-resolution simulations provides evidence that the jet
drops observed in the experiments are indeed the top jet drops and that there are no smaller, undetected
drops emitted earlier in the jetting process. Specifically, our numerical results are sufficiently resolved
to establish that the top drop from a bubble of radius R = 200 μm for La = 1000 is larger than
1.5 μm in radius. Even with significant variability in jet drop size for nearby Laplace numbers
(discussed further below), additional simulations find a minimum of rd/R = 0.0057, corresponding
to rd = 1.1 μm. The drop diameters are larger than our experimental resolution of 1.3 μm/pixel and
therefore we conclude that our experimental setup has the optical resolution to detect the smallest top
jet drops. To determine what sets the size and differences between the experiments and simulations,
we explore the underlying mechanisms.

III. ORIGINS OF MINIMUM DROP SIZE AND NONMONOTONIC BEHAVIOR

Taken together, the experiments and numerical simulations illustrate that viscous stresses alone
can lead to a nonmonotonic relationship between the ratio of top jet drop radius to bubble radius
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FIG. 3. Simulations of jet drops forming from bursting bubbles. (a) Superimposed profiles spanning the
formation of the top jet drop demonstrate the nonmonotonic dependence of jet drop size on Laplace number La.
Pinch-off times and inversion times are labeled as tp and t0, respectively, and scaled by the inertial-capillary time
τ = √

ρR3/γ . The time between successive interfaces is 0.05τ , with the exception of black curves at t0 and tp
and a gray curve at t0 + 0.005τ . (b) Close-up view of final stages of cavity collapse, inversion, and jet growth
until pinch-off for La = 1000, with the time between interfaces scaling as |t − t0|3/2 and spanning 0.471 �
t/τ � 0.486. The base of the jet at inversion is labeled as z0/R. (c) A self-similar scaling of the same profiles
shows an approximate collapse of the growing jet. (d) Close-up of the tip of the jet in self-similar coordinates,
with the diameter labeled as 2r∗. (e) The shape factor r∗ ≡ rd (ρ/γ )1/3(tp − t0)−2/3 and jet growth time t∗ ≡
(tp − t0)/τ extracted from simulations of varying Laplace number. Both relationships are approximated by
hockey-stick fits, shown as dashed lines. Symbols with lighter shade denote data points excluded from the fits (see
Appendix C).

rd/R and the Laplace number, as suggested by the numerical simulations of Duchemin et al. [27].
Fundamentally, this nonmonotonic relationship is interesting because it suggests that viscous stresses
can both decrease and increase the jet drop size relative to the bubble. Duchemin et al. [27] speculated
that this relationship might originate from a cusp singularity set up by bubble entrapment, yet they
also note that bubble entrapment is numerically observed for other Laplace numbers where the
singularity is not. By contrast, we propose that the nonmonotonic behavior is primarily the result of
two separate mechanisms: one that occurs during the collapse of the bubble and another that occurs
during the pinch-off of the jet drop. During the collapse of the bubble, viscous stresses dampen
capillary waves and lead the cavity to adopt a self-similar profile [27,37]; that is, the influence of
the external length scale R disappears as the cavity collapses and is replaced with a characteristic
length scale (γ /ρ)1/3(t0 − t)2/3, where t0 is the singular time when the cavity inverts to form a jet.
Increased dampening of these waves allows for greater self-similar focusing of cavities, narrower
resulting jets [36,37], and by extension smaller jet drops [24]. Meanwhile, increasing viscous stresses
can increase the time it takes for a liquid jet to break up into droplets [35,38]. Therefore, as a second
mechanism, we propose that the far-field dynamics that lead to a self-similar collapsing cavity before
inversion also lead to a self-similar upward jet after inversion and thus a delay in pinch-off from
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viscous stresses enlarges the top jet drop. While the self-similarity of collapsing cavities from bubbles
[27,37] and overdriven Faraday waves [39] is well established, the authors are aware of only one
study suggesting the self-similarity of growing jets, for the case of cavity collapse following drop
impact on a hydrophobic surface [40].

To determine whether the jet shape exhibits self-similarity following bubble collapse, we consider
the simulations for La = 1000 and enlarge the interface profiles that span from slightly before
inversion through pinch-off [Fig. 3(b)]. Note that the negative values of height z signify that the
jet is below the initial free surface. By referencing the height with respect to the base of the jet at
inversion z0 and rescaling both the axial and radial axes by the self-similar length scale, the profiles
in Fig. 3(b) collapse predominantly onto one of two master curves [Fig. 3(c)]: one corresponding
to the self-similar shape of the cavity and the other to the jet. A closer inspection of the jet tip in
scaled coordinates reveals that the tip radii of these overlaid profiles collapse fairly well [Fig. 3(d)],
supporting the hypothesis that the shape of the jet is approximately self-similar through pinch-off.
A more thorough analysis of the self-similarity of jets after inversion is presented in Appendix C
and Figs. 11 and 12, finding that several length scales associated with the jet grow approximately as
(t − t0)2/3 for simulations with a range of Laplace numbers, as predicted for this inertial-capillary
self-similarity. We note that a pair of papers [41,42] investigating the generation and breakup of
Worthington jets following cavity collapse defined lengths of a growing jet in a similar way (see Fig.
14 in [41]); they ignored viscous effects and did not test for self-similarity, however.

The observation of self-similar jet growth motivates the decomposition of the jet drop size into
two components: one due to the time for which the jet grows before pinching off, defined as t∗ ≡
(tp − t0)/τ , and another that depends only on the shape of the cavity at inversion and the subsequent
self-similar jet shape, independent of jet growth time. A convenient choice for this shape factor is
the self-similar radius of the jet drop at pinch-off r∗ ≡ rd (ρ/γ )1/3(tp − t0)−2/3, allowing us to write
rd/R = r∗(La)[t∗(La)]2/3. Both r∗ and t∗ are plotted against La in Fig. 3(e) and the general trends
of both factors are captured by the piecewise power-law fits r∗(La) = 0.166 max[1,(La/1200)0.66]
and t∗(La) = 0.040 max[(La/1200)−3,1]. These hockey-stick fits suggest that for La � 1200, jets
grow self-similarly with a nearly constant shape factor r∗ and most of the variation in jet drop size
can be attributed to jet growth time t∗ increasing as La decreases [Fig. 11(b)]. For La � 1200, the jet
growth time is instead approximately constant, but the shape factor increases with La [Fig. 12(a)].

The two monotonic fits for r∗ and t∗ combine to produce a nonmonotonic expression for the jet
drop size ratio

rd/R = 0.020 max[(La/1200)−2,(La/1200)0.66], (1)

shown with dashed curves in Fig. 4(a) alongside measurements from experiments and simulations
of the top jet drop radius. This model provides a useful estimate for rd/R in the range 400 � La �
10 000, capturing the nonmonotonic trend between rd/R and La from experiments and simulations.
The model and experiments predict rd/R reaching a minimum of 0.02 and simulations suggest it
could reach as low as 0.006. Some of the size variability may be attributed to rapid recoalescence
of the top drop to subsequent drops as well as escape from pinch-off [35], a temporary reversal
of the narrowing of the neck of a jet (Fig. 9). In any case, we provide a floor for the ratio of jet
drop radius to bubble radius at which the theoretical scaling [28] [green curve in Fig. 4(a)] breaks
down. In addition, we provide evidence that viscous effects related to the pinch-off time of the jet
are responsible for the minimum drop size. While it may seem counterintuitive that the model uses
inviscid self-similar scalings to predict the size of the ejected top drop, as the ejection process is a
clear deviation from self-similar behavior, we emphasize that the self-similar growth is coupled with
the Laplace number-dependent pinch-off time of the jet t∗(La) to obtain an estimate for rd/R. We
also note that r∗(La) can be fit with the same functional form as that of the theoretical scaling [28]
for La � 1200 to give a similar curve with slightly differing fitting coefficients.

Thus far, our analysis has assumed that gravitational effects are negligible, an assumption that
breaks down for sufficiently large bubbles. To probe this transition, we run additional simulations
that include the effects of gravity [purple symbols in Fig. 4(a)]. Gravity acts on the jet and drops
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FIG. 4. Dimensionless and dimensional plots of jet drop radius relative to bubble radius. (a) Ratio of jet
drop radius to bubble radius as a function of Laplace number for both sets of experiments and simulations. The
dashed black line corresponds to Eq. (1), the self-similar model prediction based on Fig. 3(e). The solid green
curve denotes the theoretical scaling [28] rd/R = kd (

√
La/Lac − 1)5/4/La3/8, with kd = 0.6 and Lac = 540.

(b) Jet drop radius as a function of bubble radius from previous studies [same symbols as in Fig. 1(b)], along
with the redimensionalized model (2) for seawater at temperatures of 0 ◦C, 8 ◦C, and 40 ◦C. The yellow triangle
corresponds to the microfluidic data point [Fig. 2(b)] from the 15% glycerol-water solution, as the liquid
properties are similar to seawater at 8 ◦C.

as they form, but the more significant effect for jet drop formation was found [31] to be the change
in the equilibrium shape of the bubble before bursting [43,44], shown for a few Bond numbers in
Fig. 8. These simulations are conducted using bubbles of varying radius in seawater at 20 ◦C, for which
Rg = 2.7 mm and Rμ = 16 nm. A convenient dimensionless parameter to describe these simulations
is the Morton number Mo ≡ gμ4/ργ 3 = (Rμ/Rg)2, which depends only on fluid properties and is
Mo = 3.5 × 10−11 here. In contrast, the simulations without gravity have a Morton number Mo = 0.
As expected, simulations with and without gravity show the same behavior at small Laplace numbers
and only start to differ at the largest Laplace numbers; gravitational effects are indeed negligible when
Bo � 0.01, which corresponds to La � 17000 for seawater at 20 ◦C. Interestingly, for large bubbles,
the theoretical scaling [28] shows better agreement with our simulations including gravity than those
neglecting it, despite gravity being ignored in the analysis. Although our analysis indicates that
gravitational effects are not significant for the smallest jet drops over the ocean, they likely set the
size of the smallest drops for more viscous liquids with higher Morton numbers, consistent with
previous studies [24,31,36].

IV. CONCLUSIONS AND IMPLICATIONS

The results in this study provide clarity on the conditions that lead to the smallest top jet drops
from bursting bubbles. Specifically, we report systematic experiments on the jet drop size when
gravitational effects are negligible. Together with high-resolution simulations, our experiments
provide evidence that the minimum size for the top jet drop is approximately 1% of the size of
the initial bubble. We attribute the minimum size to a confluence of two counteracting processes:
viscous stresses before jet formation decrease drop size by sharpening a self-similar shape factor
and viscous stresses after jet formation increase drop size by increasing the jet growth time. These
competing processes provide a means by which the minimum drop size also depends on a balance
of viscous and inertial-capillary stresses rather than depending on a singularity that is regulated by
a separate set of dynamics.

To illustrate the implications of our study to sea spray aerosol production in the oceans, we convert
the model to dimensional form by taking reference values for the viscosity, density, and surface
tension of seawater [45,46]. Of particular interest has been the role of temperature in modifying the
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TABLE II. Seawater properties as a function of temperature for a salinity of 35 g kg−1 [45,46]. The viscous
length scale Rμ ≡ μ2/ργ is included as well.

Temperature (◦C) Density (kg m−3) Viscosity (mPa s) Surface tension (mN m−1) Rμ (nm)

0 1028.0 1.906 76.64 46.1
8 1027.2 1.479 75.54 28.2
10 1027.0 1.397 75.26 25.2
20 1024.9 1.077 73.81 15.3
30 1022.0 0.861 72.31 10.0
40 1018.3 0.707 70.74 6.95

jet drop size, as previous experiments have found contradictory results [12,15,16]. Over a temperature
range of 0 ◦C to 40 ◦C, the density and surface tension of seawater vary by less than 5%, whereas
the viscosity decreases by nearly a factor of 3 (Table II). Fitting the temperature dependence of
the viscous length scale Rμ(T ) for seawater (Fig. 5) and recalling that La = R/Rμ allows us to
manipulate Eq. (1) to obtain an expression for the drop radius as a function of bubble radius and
temperature,

rd (R,T ) = 0.020R max{[A(R,T )]−2,[A(R,T )]0.66}, (2)

where

A(R,T ) = 13.4 exp

(
− 661

100 + T/◦C

)
R/μm, (3)

Note that the temperature changes both the Morton and Laplace numbers, but because of the bubble
size, our analysis need only consider the contribution of the Laplace number. Equation (2) is plotted
for two extreme ocean temperatures as well as T = 8 ◦C [Fig. 4(b)], a temperature at which seawater
has a viscous length scale similar to the 15% glycerol-water solution [Fig. 2(b) and yellow triangle
in Fig. 4(b)]. Bubbles of radius R ≈ 50 μm are predicted to form jet drops of radius rd ≈ 1.2 μm

0 10 20 30 40
Temperature (◦C)
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µ
≡

μ
2 /

ρ
γ

(n
m

)

Combined reference correlations

Arrhenius fit, Aexp B
C+T/◦C

FIG. 5. Viscous length scale of seawater as a function of temperature. Reference correlations [45,46] for the
viscosity, density, and surface tension of seawater with salinity 35 g kg−1 (typical of the oceans) as a function
of temperature are combined to form the viscous length scale Rμ ≡ μ2/ργ . This length scale is plotted along
with an Arrhenius fit of the form Rμ(T ) = A exp( B

C+T/◦C ), where A = 0.06202 nm, B = 661.3, and C = 100.1.
The Arrhenius fit differs from the combined reference correlations by less than 0.5% for the whole temperature
range 0 ◦C � T � 40 ◦C.
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(a)
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FIG. 6. Microfluidic device design. (a) Schematic of the microfluidic device with channel flow moving from
left to right. Air and liquid enter channels through the three circular ports at the left-hand side of the device.
(b) The liquid and air are forced through a 10-μm-diameter nozzle where air bubbles are formed. Bubbles
produced at the nozzle are of radius R ≈ 30 μm. The channel width and height after the nozzle are 80 μm. (c)
Air bubbles come into contact with an air-liquid interface and burst at the device outlet.

in polar waters around 5 ◦C and at least twice that size in tropical waters around 30 ◦C. Meanwhile,
smaller bubbles of radius R ≈ 10 μm are predicted to produce jet drops with rd ≈ 300 nm in tropical
waters, whereas the drops would be larger in cooler temperate waters and nonexistent in polar waters.
This size- and temperature-dependent relationship may provide insight into why large (greater than
1 μm) aerosol particle production increases with increasing temperatures while small aerosol particle
production remains constant or decreases [47,48]. Similarly, this relationship can be applied to
pathogen transfer in a wide range of urban environments. Our findings suggest that the bubble
sizes leading to effective transport of pathogens in jet drops would differ between a public drinking
fountain (5 ◦C) and a hot tub (40 ◦C). More generally, our analysis elucidates the missing range of top
jet drop sizes from microscopic bubbles [Fig. 1(b)] and constrains jet drops as a source of submicron
aerosols. Although marine aerosols are observed at sizes less than 100 nm, our findings suggest that
it is unlikely these smallest aerosols originate from top jet drops.
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APPENDIX A: EXPERIMENTAL SETUP

A microfluidic device is fabricated from polydimethylsiloxane and bonded to a glass microscope
slide with the design shown in Fig. 6. Air and liquid are injected into the three labeled circular ports
in Fig. 6(a) via a syringe pump, with an inlet pressure of P ≈ 50 kPa for the air. Channels direct the
air and liquid to meet at the junction in Fig. 6(b), where they are forced through a nozzle of diameter
10 μm; the air repeatedly pinches off to form bubbles of repeatable size (20-40 μm). Additional
liquid flows through a side channel after the nozzle, which increases the spacing between bubbles
and prevents coalescence. Movie 1 in [29] shows these bubbles being produced at a rate of around
5000 bubbles per second. The air bubbles are then carried in a channel of height and width 80 μm
to the circular outlet port of the device [Fig. 6(c)]. Here the bubbles encounter a large pocket of
air at atmospheric pressure and burst, producing a liquid jet that breaks up into jet drops [Fig. 2(a)
and movie 2 in [29]]. Images of the process are captured using a Zeiss A1 Axio Observer inverted
microscope together with the Photron FASTCAM SA5 (described below).
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FIG. 7. Micropipette experimental setup. (a) Schematic of the micropipette experiment. (b) Image of an air
bubble in a 20% glycerol-water solution just after pinching off from the micropipette.

Densities and surface tensions of glycerol-water solutions are obtained from reference values
[49] assuming a temperature of 25 ◦C and viscosities are obtained from an empirical formula [50]
that accounts for temperature variations (Table I). Laboratory temperatures varied from 21.5 ◦C to
25.5 ◦C.

For the micropipette experiments, glass micropipettes are made with a programmable micropipette
puller and threaded through a rubber stopper into a glass test tube containing water or a glycerol-water
solution. The micropipette is connected to a syringe pump and injects individual air bubbles into the
liquid that rise to the surface and burst [Fig. 7(a)]. The bubble radius is found by imaging it upon
release from the micropipette [Fig. 7(b)]. Bubble sizes from five micropipettes in solutions with
varying glycerol concentrations were averaged to find the linear fit R = 212.5 − 23.2C, where R is
in units of μm and C is the mass fraction of glycerol in the solution, with a standard deviation of
18.1 μm or about 8.5%. Densities and surface tensions of glycerol-water solutions are again obtained
from reference values [49] and viscosities are measured with a viscometer, agreeing with the formula
from the literature [50] (Table I).

Experimental images are obtained with a Photron FASTCAM SA5 or SA-X2 at frame rates
between 45 000 and 100 000 frames per second and shutter speeds between 300 ns and 1 μs. Jet
drop and bubble radii are measured with ImageJ, with resolutions of 0.96 and 1.35 μm/pixel for
microfluidic and micropipette experiments, respectively.

APPENDIX B: NUMERICAL SIMULATIONS

We use the open-source package Gerris [32,34] to solve the two-phase incompressible Navier-
Stokes equations in an axisymmetric coordinate system with a volume-of-fluid method to capture the
interface. The density and viscosity ratios correspond to water at 20 ◦C in air, with ρg/ρ = 1.2 × 10−3

and μg/μ = 0.018, where ρg and μg denote density and viscosity of the gas phase.

FIG. 8. Initial bubble shape for varying Bond number Bo = ρgR2/γ . Each bubble has a constant volume-
equivalent radius R. For simulations including gravitational effects, the bubble is initialized without the spherical
film cap (drawn in gray for each bubble).
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Simulations ignoring gravity are initialized as a spherical bubble resting at a flat gas-liquid
interface with a hole to connect the bubble interior to the gas phase above the interface. This
hole has a radius of 0.01R and the rim is a semicircular cap (in the axisymmetric domain). The
computational domain is a cylinder of radius 4R and height 16R, discretized as a two-dimensional
rectangle (four square “boxes” of side length 4R) by using axisymmetry. The initially flat (apart
from the hole connecting to the bubble) air-liquid interface z = 0 divides the domain in half. A
free-slip impermeable (symmetry) boundary condition is applied on the axis of symmetry r = 0 and
r = 4R, while free outflow and inflow is applied at the top and bottom boundaries z = ±8R by
enforcing a Dirichlet condition p = 0 for the pressure and Neumann condition ∂v/∂z = 0 for the
vertical velocity. The quadtree mesh is adaptively refined and coarsened based on the local vorticity
and curvature of the interface to a maximum level of 14, which means that each box of length 4R

can be subdivided up to 14 times, resulting in a minimum cell size � = 4R/214 = 2.4 × 10−4R, or
4200 cells per bubble radius. This choice results in a radius of 31 cells for the top drop from the
La = 1000 simulation. Note that the maximum level of refinement based on vorticity is set to 10, so
only high-curvature regions of the interface achieve the maximum refinement.

For the simulations including gravity, the flattened equilibrium bubble shape and its deformation
of the gas-liquid interface are calculated numerically as a function of Bond number with a shooting
method, balancing hydrostatic and capillary pressures [43,44]. The spherical thin film cap, which
grows with Bond number, is removed entirely as an approximation of the initial rupture of the
bubble. Figure 8 shows examples of the initial bubble shapes for a few Bond numbers, including
their spherical caps. Note that the range of Bond numbers corresponding to the bubble radii tested was
3.5 × 10−6 � Bo � 1.8. It is also worth emphasizing here that R is the volume-equivalent bubble
radius, or (3V/4π )1/3 for bubble volume V . In some studies [31], the Bond number can refer to the
radius of the spherical cap Rcap, which varies between 2R at small Bo and 21/3R at large Bo.

Interfaces are extracted for visualization and jet analysis purposes at a temporal resolution of
0.001τ , except for the simulations used to check self-similar scalings (discussed below and in Figs. 11
and 12), which used 0.0001τ near the inversion time for more accurate scaling. The actual time step
of the simulation is automatically set to ensure a Courant-Friedrichs-Lewy number C � 0.8 and
typically varied between 10−7τ and 10−6τ . The interface output from Gerris is a series of line
segments in an arbitrary order and a Python script is used to connect them to make a continuous
interface curve. Bubbles formed during inversion are automatically removed to avoid occasional
problems in running the solver, with small effects on jet drop size.

Simulations are run with a higher maximum level of refinement for nine Laplace numbers between
720 and 7200 to check for grid independence. Comparing the base-level simulations to those with
a higher maximum refinement level, inversion and pinch times vary by less than 0.5% and 4%,
respectively. Jet drop radius varies by up to 50% in the region (960 � La � 1300) where rd/R

oscillates between large and small modes due to the uncertain escape from pinch-off process (Fig. 9),
but the radii of these large and small modes are comparable to those from the normal simulations
(around 2% variation). Outside this region, jet drop radius differs by up to 7% between refinement
levels. Figure 10 also shows good agreement between experiments and simulations for images of a
collapsing bubble.

APPENDIX C: SELF-SIMILAR SCALING AND FITS

For the self-similar scaling, z0 is defined as the height of the base of the jet at inversion, which we
obtain by linearly extrapolating the base height half a time step before the first time step showing a
jet [see also Fig. 11(a)]. One could alternatively define z0 as a limiting height of the cavity bottom in
order to collapse the profiles of the cavity leading up to inversion, similar to previous studies [27,37].

The hockey-stick fits are obtained from least-squares linear fits of log r∗(La) as a function of
max[0, log(La/1200)] and log t∗(La) as a function of min[log(La/1200),0]. Zeroing out the Laplace
numbers on either side of La = 1200 leads to a fit that is constant on one side and a power law on
the other side, giving the hockey-stick shape. The lighter symbols in Fig. 3(e) (960 � La � 1380
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FIG. 9. Escape from pinch-off [35]. (a) For simulations near the minimum in jet drop size, in some cases the
jet pinched off relatively early (La = 1000, top), while in others the jet initially escaped pinch-off (La = 1100,
bottom). The neck radius temporarily reverses from shrinking to growing and extra liquid is collected at the
tip, resulting in a larger jet drop when it later pinches off. (b) Experiments with bursting bubbles of radius
R = 200 μm in 55% glycerol solutions (La = 320) similarly had some jetting events with an early pinch-off
(top) along with others in which the jet escaped pinch-off (bottom), leading to a much larger jet drop. Dashed
boxes highlight the pinch-off and escape from pinch-off events in each case.

and La � 5400) were excluded from the fit to capture the general trend away from the much smaller
drops near La = 1200 or the large Laplace numbers where the self-similarity assumption breaks
down.

Figures 11 and 12 go into more depth on the validity of the self-similar jet growth hypothesis.
First, Fig. 11(a) defines relevant length scales for the jet, including the initial base height at inversion
z0, the radius and height of the jet base rb and zb, the radius of the jet tip rj , and the height of the

FIG. 10. Overlays of the air-water interface during bubble burst from simulation results (red) with
experimental images. The experimental bubble radius is R = 209 μm and bursts in water, corresponding to
a Laplace number La = 17 200. The time between snapshots is 20 μs and no fitting parameters are used other
than the offset time, here 26 μs, of the first experimental image relative to t = 0 in the simulation.
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FIG. 11. Scaling of jet lengths after inversion for La < 1200. (a) Snapshot of jet at t/τ = 0.76 for La = 610
with jet radius rj , jet height zj , base radius rb, base height zb, and base height at inversion z0 labeled accordingly
(omitting nondimensionalizing factors of R). The profiles at t = 0 and the inversion time t0 are plotted in gray
and blue, respectively. (b) Scaling of these jet lengths with (t − t0)/τ for simulations with La = 610, 830, and
1000. Top drop radii are plotted at time of pinch-off with circles and the curve 0.166[(t − t0)/τ ]2/3 is the model
prediction for self-similar jet drop radius evolution for La � 1200, as r∗ = 0.166 here.

jet zj relative to the initial base height. The jet tip radius rj is defined by obtaining all local maxima
in the jet radius r(z) and choosing the one with the largest value of z; note that there may be no
maximum, especially early on in the jet formation process before surface tension forms the bulbous
tip. In Fig. 11(b), these lengths are plotted versus dimensionless time past the inversion time for
three simulations with La < 1200. Most of the jet lengths collapse well and approximately follow
the (t − t0)2/3 power law predicted for inertial-capillary self-similarity for a significant portion of the
jet growth. Notably, the jet tip radius initially grows at a rate slower than (t − t0)2/3 in each simulation,
but the final drop radii still lie along the model curve rd = 0.166(tp − t0)2/3. These scalings suggest
that to a good approximation, the radius of the top jet drop in this La � 1200 regime is mainly
controlled by the time for which the jet grows self-similarly before pinch-off, t∗ = (tp − t0)2/3.

FIG. 12. Scaling of jet lengths after inversion for La > 1200. (a) In this regime, 0.166[(t − t0)/τ ]2/3 is no
longer a good estimate for jet tip or drop radius; the model instead assumes a constant scaled jet growth time to
pinch-off of t∗ = 0.04, shown here as a vertical dotted line. For larger Laplace numbers, the base radius starts
at a nonzero value at inversion [as seen in Fig. 3(a)] but follows a (t − t0)2/3 scaling at later times. Markers have
been added to the first ten time steps after inversion to highlight the temporal resolution of the data; the jump
in rb for La = 3000 is due to the inversion of a smaller jet base before the main one. (b) While the jet tip height
zj grows roughly with (t − t0)2/3, the base height zb at large La appears to grow linearly with time.
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Figure 12 considers the large-La regime, plotting the same lengths for three Laplace numbers
with La > 1200. Jet tip and base radii [Fig. 12(a)] have been separated from jet and base heights
[Fig. 12(b)] for clarity, as the lengths differ more between simulations. The jet tip and drop radii no
longer lie along 0.166[(t − t0)/τ ]2/3, as r∗ varies approximately as r∗(La) = 0.166(La/1200)0.66 in
this regime. However, the hockey-stick fits assume a constant jet growth time t∗ = (tp − t0)/τ of
0.040, which is included as a vertical dotted line in Fig. 12(a) and agrees with the drop pinch-off
times well for La = 1700 and 3000 but underpredicts tp for La = 7200.

The base radius rb deviates significantly from (t − t0)2/3 for La = 3000 and 7200 at early times
due to a nonzero initial radius of the base resulting from capillary wave interference [Fig. 3(a)]. As
the jet grows, however, the base radius does appear to approach an intermediate asymptotic regime
where all three simulations collapse to the same curve proportional to (t − t0)2/3. The heights of
the jet tips appear to grow with a power slightly larger than 2/3 and the base height for La = 7200
follows zb/R ∼ (t − t0)/τ at early times. Perhaps this relationship could be explained together with
the constant base radius observed.
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